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NONLINEAR MONOTONE ILL-POSED PROBLEMS
IN BANACH SPACES

NGUYEN BUONG

Abstract. In this paper, convergence rates for an operator version of
Tikhonov regularization constructing on the base of subdifferential of uni-
formly convex functional on real reflexive Banach space are obtained with-
out both closeness conditions and parameter selection method. Then, the
obtained results are considered in combination with finite-dimensional ap-
proximations of the space. An example is given for the illustration.

1. Introduction

Let X be a real reflexive Banach space and X∗ be its dual space. For
the sake of simplicity, norms of X and X∗ will be denoted by one symbol
‖.‖. We write 〈x∗, x〉 instead of x∗(x) for x∗ ∈ X∗ and x ∈ X. Let A
be a nonlinear operator with domain of definition D(A) = X and range
R(A) ⊆ X∗. Let f0 be an element of R(A).

Consider the nonlinear ill-posed problem

(1.1) A(x) = f0.

By ill-posedness we mean that solutions of (1.1) do not depend continu-
ously on the data f0. Various aspects about regularization of (1.1) were
studied in detail, when A is compact or continuous and weakly closed, and
X = H is a Hilbert space (see, for instance, [5], [11-15]). The variational
method of Tikhonov regularization consists of minimizing the functional

(1.2) F δ
α(x) = ‖A(x)− fδ‖2 + α‖x‖2,

where α > 0 is the parameter of regularization and fδ are the approxima-
tions of f0 with the well-known informations
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‖fδ − f0‖ < δ, δ → 0.

In order to study convergence rates of this method one needs to have, in
general, the following conditions (see [5]): (i) A is Fréchet differentiable,
(ii) there exists a constant L > 0 such that ‖A′(x) − A′(y)‖ ≤ L‖x − y‖,
x, y ∈ D(A), (iii) there exists an element ω ∈ H such that A′∗(x0)ω = x0,
where A′∗(x0) denotes the adjoint of derivative of A at x0 being a norm-
minimal solution of (1.1), and (iv) L‖ω‖ < e = 1. Usually, the last
requirement names the closeness condition.

In [13] A. Neubauer estimated e ≈ 0.9476 for a modification of (1.2).
We see that the equation in condition (iii) is not explicitly defined because
the operator A′∗(x0) and the right-hand side x0 are not known. Therefore,
the verification of (iv) is in general too difficult to realize. To exceed
this difficulty, in [11] A. Neubauer developed an approach of [9] in the
linear case for nonlinear problems involving compact operators. A big
advantage of this approach is that rates are obtained by merely requiring
smoothness conditions for the exact solution as in the linear case and
parameter selection method.

In [2], when A is a monotone operator in H (see terminologies in [16]),
the author obtained e = 2 for the following operator version of Tikhonov
regularization

A(x) + αx = fδ.

In [4], when A is a monotone operator in Banach space X, the conver-
gence rates are obtained for solution of the regularized equation

A(x) + αBx = fδ,

where B is a linear and strongly monotone operator, i.e.

〈Bx, x〉 ≥ mB‖x‖2, mB > 0.

In this case e = 2mB .
For a real number s denotes by [s] its integer part. In [3], the conver-

gence rates are obtained for the following regularized equation

(1.3) A(x) + αUs(x) = fδ, fδ ∈ X∗,

where Us is the nonstandard dual mapping of X satisfying the condition

〈Us(x), x〉 = ‖x‖s, ‖Us(x)‖ = ‖x‖s−1, s ≥ 2,
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without closeness conditions when s 6= [s], Note that (1.3) was studied
in [1]. These results can be applied to investigate nonlinear monotone
ill-posed problems in the spaces of type `p, Lp, Wp with p > 2 and p 6= [p].
They are still open if 1 < p < 2 or 2 ≤ p = [p] < +∞.

In this paper, we shall show that using the following regularized equa-
tion (cf. [14])

(1.4) A(x) + α∂ϕ(x) = fδ,

where ∂ϕ is the subdifferential of the uniformly convex functional ϕ on X,
and replacing the smoothness condition (iii) by a more general condition
we can exclude condition (iv). Main results about convergence rates are
presented in Section 2. An example is given in Section 3. Note that, the
results in this paper are more general than the ones in [3].

Below, by a ∼ b we mean a = O(b) and b = O(a). The symbols ⇀ and
→ denote weak convergence and convergence in norm, respectively.

2. Main results

Assume that there exists a uniformly convex functional ϕ(x) on X such
that

〈∂ϕ(x)− ∂ϕ(y), x− y〉 ≥ mϕ‖x− y‖β , ∀x, y ∈ X, mϕ > 0, 2 < β 6= [β].

The existence of such uniformly convex functionals is investigated in [8].
It is shown in [14] that for every fixed α > 0, Eq. (1.4) has a unique
solution xαδ, fδ ∈ X∗ and the sequence {xαδ} converges in norm of X to
x0 if δ/α and α tend to zero, where x0 satisfies the inequality

〈∂ϕ(x0), x− x0〉 ≥ 0,

for all x in the set S0 of solutions of (1.1). We shall prove the following
result.

Theorem 2.1. Suppose the following conditions hold:
(i) A is [β]-times Fréchet differentiable in some neighbourhood of S0,
(ii) There exists a constant L > 0 such that

‖A([β])(x)−A([β])(z)‖ ≤ L‖x− z‖,

for x, z ∈ S(x0, r), where S(x0, r) is a ball with center x0 and radius r,
and
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(iii) The equation

(
A′∗(x0)+

1
2!

A(2)∗(x0)y1 +
1
3!

A(3)∗(x0)y1y2 + ...+

1
[β]!

A([β])∗(x0)y1y2...y[β]−1

)
ω = ∂ϕ(x0)

has a bounded solution ω(y1, ..., y[β]−1), yi ∈ S(x0, r), i = 1, ..., [β]− 1.
Then for a choice α ∼ δµ, 0 < µ < 1, we obtain

‖xαδ − x0‖ = O(δθ), θ = min {(1− µ)/β, µ/β}.

Proof. By virtue of Eqs (1.1), (1.4) and the monotone property of A and
∂ϕ we have

αmϕ‖xαδ − x0‖β ≤ δ‖xαδ − x0‖ − α〈∂ϕ(x0), xαδ − x0〉.

From this inequality and condition (iii) of the theorem it follows that

αmϕ‖xαδ − x0‖β ≤ δ‖xαδ − x0‖+ α
〈
ω(y1, ..., y[β]−1),

(
A′(x0)

+
1
2!

A(2)(x0)y1 +
1
3!

A(3)(x0)y1y2 + · · ·

+
1

[β]!
A([β])(x0)y1, ..., y[β]−1

)
(x0 − xαδ)

〉
,

where yi ∈ S(x0, r).
Using Taylor expansion (see [16]) and taking yi = xαδ−x0 we can write

A′(x0)(x0 − xαδ)− 1
2!

A(2)(x0)(x0 − xαδ)2 +
1
3!

A(3)(x0)(x0 − xαδ)3−

· · ·+ (−1)[β]−1)

[β]!
A([β])(x0)(x0 − xαδ)[β] = A(x0)−A(xαδ) + rαδ,

‖rαδ‖ ≤ L‖xαδ − x0‖[β]+1/([β] + 1)! .

Hence we obtain

αmϕ‖xαδ − x0‖β ≤ δ‖xαδ − x0‖+ α‖ωαδ‖
(
δ + α‖∂ϕ(xαδ)‖

+ L‖xαδ − x0‖[β+1]/([β] + 1)!
)
,



NONLINEAR MONOTONE ILL-POSED PROBLEMS 7

where ωαδ = ωαδ(xαδ−x0, ..., xαδ−x0). The rest of the proof is proceeded
similarly as in [4].

Remark 2.1. Note that for the proof of this theorem we only need the
differentiability of A in some neighbourhood of x0. If A(2)(x0) = · · · =
A([β])(x0) = 0 (for instance, A is linear on S0) condition (iii) of Theorem
2.1 has the common form as in condition (iii) in the introduction with the
right-hand side ∂ϕ(x0). We shall see this in an example in Section 3.

For numerical approximations one has to approximate the infinite di-
mensional Banach space X by a sequence of finite-dimensional subspaces
Xn:

X1 ⊂ X2 ⊂ ... ⊂ Xn ... ⊂ X, Pnx → x, n → +∞, ∀x ∈ X,

where Pn denotes the bounded projection from X onto Xn. Now, instead
of (1.4) consider the finite-dimensional problems

(2.1) An(x) + α∂ϕn(x) = fδn, x ∈ Xn,

where An = P ∗nAPn, ∂ϕn = P ∗n∂ϕPn and fδn = P ∗nfδ. It is easy to verify
that An and ∂ϕn are monotone and continuous in Xn. Therefore, Eq.
(2.1) has a unique solution xn

αδ for α > 0, fδ ∈ X∗, and the sequence
{xn

αδ} converges to xαδ as n →∞ (see [14]).

Theorem 2.2. Suppose the following conditions hold:
(i) A is [β]-times Fréchet differentiable at some neighbourhood U0 of

S0,
(ii) There exists a constant L > 0 such that

‖A([β])(x)−A([β])(y) ≤ L‖x− y‖, x ∈ S0, y ∈ U0,

and
(iii) α = α(n, δ) is chosen such that α, δ/α → 0 and

(
γn(x)‖(I − Pn)x‖+ L‖(I − Pn)x‖[β]+1/([β] + 1)!

)
/α → 0, ∀x ∈ S0,

as n →∞, where I is the identity operator in X and γn(x) is defined by

γn(x) = max
{
‖A′(x)(I − Pn)‖, 1

2!
‖A(2)(x)(I − Pn)‖‖(I − Pn)x‖,

. . . ,
1

[β]!
‖A([β])(x)(I − Pn)‖‖(I − Pn)x‖[β]−1

}
.
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Then the sequence {xn
αδ} converges to x0.

Proof. From (2.1) we have
〈
An(xn

αδ)−An(xn) + α(∂ϕn(xn
αδ)− ∂ϕn(xn)), xn

αδ − xn

〉

=
〈
fδn −An(xn), xn

αδ − xn

〉
+ α

〉
∂ϕn(xn), xn − xn

αδ

〉
,

(2.2)

where xn = Pnx, x ∈ S0. As

A(Pnx) = A(x) + A′(x)(Pnx− x) +
1
2
A(2)(x)(Pnx− x)2

+ · · ·+ 1
[β]!

A([β])(Pnx− x)[β] + rn,

‖rn‖ ≤ L‖(I − Pn)x)‖[β]+1/([β] + 1)!, x ∈ S0,

from (2.2) together with 〈fδn−An(xn), xn
αδ−xn〉 = 〈fδ−A(xn), xn

αδ−xn〉
and I − Pn = (I − Pn)2 it follows that

mϕ‖xn
αδ − xn‖β ≤

(
δ + [β]γn(x)‖(I − Pn)x‖

+ L‖(I − Pn)x‖[β]+1/([β] + 1)!
)
‖xn

αδ − xn‖/α

+ 〈∂ϕ(xn), xn − xn
αδ〉, xn = Pnx, x ∈ S0.(2.3)

Applying the technique in the proof of Theorem 2.2 in [4], we get the
conclusion of our theorem.

Remark 2.2. From the above proof we can see that this theorem is still
valid if condition (iii) is replaced by

(iii’) γ1
n(x)/α → 0, γ1

n(x) = ‖(I − Pn)x)‖, ∀x ∈ S0.

Theorem 2.3. Assume that conditions (i) - (iii) of Theorem 2.1 and (iii’)
hold, and:

(*) There exist two constants L′ > 0, γ′ > 0 such that

〈∂ϕ(y)− ∂ϕ(x0), z〉 ≤ L′‖y − x0‖γ′‖z‖, ∀y, z ∈ S(x0, r).

Choose α ∼ (δ + γ̃n)µ, 0 < µ < 1, where

γ̃n = max
{
‖(I − Pn)x0‖, sup

yi∈S(x0,r)

‖(I − Pn)ω‖, ‖(I∗ − P ∗n)f0‖
}

.



NONLINEAR MONOTONE ILL-POSED PROBLEMS 9

Then

‖xn
αδ − x0‖ = O

(
δθ1 + γ̃θ2

n

)
,

where

θ1 = min{(1− µ)/(β − 1), µ/β}, θ2 = min{θ1, γ
′/(β − 1)}.

Proof. Since

‖A(Pnx0)− fδ‖ ≤ δ + [β]γn(x0)‖(I − Pn)x0‖
+ L‖(I − Pn)x0‖[β]+1/([β] + 1)! ,

from (2.3) (with x = x0) and condition (*) it follows that

αmϕ‖xn
αδ − x0n‖β

≤
(
δ + [β]γn(x0)γ̃n + Lγ̃[β]+1

n /([β] + 1)!
)
‖xn

αδ − x0n‖
+ α〈∂ϕ(x0), x0n − xn

αδ〉+ α〈∂ϕ(x0n)− ∂ϕ(x0), x0n − xn
αδ〉

≤
(
δ + [β]γn(x0)γ̃n + Lγ̃[β]+1

n /([β] + 1)! + L′αγ̃γ′
n

)
‖xn

αδ − x0n‖
+ α〈ω, A(x0)−A(xn

αδ)〉+ α‖ω‖‖rn
αδ‖,

where

rn
αδ = A(xn

αδ)−A(x0) + A′(x0)(x0 − xn
αδ)−

1
2!

A(2)(x0)(x0 − xn
αδ)

2

+
1
3!

A(3)(x0)(x0 − xn
αδ)

3 − · · ·+ (−1)[β]−1

([β])!
A([β])(x0)(x0 − xn

αδ)
[β],

ω = ω(xn
αδ − x0, ..., x

n
αδ − x0), and

‖rn
αδ‖ ≤ L‖xn

αδ − x0‖[β]+1/([β] + 1)!

≤ L‖xn
αδ − x0n‖[β]+1/([β] + 1)! + O(γ̃n).

Let C1 be a constant such that ‖Pn‖ ≤ C1. Then

〈ω,A(x0)−A(xn
αδ)〉

= 〈ω, f0 − fδn + fδn −An(xn
αδ)〉+ 〈ω, An(xn

αδ)−A(xn
αδ)〉

≤ ‖ω‖
(
γ̃n + C1(δ + α‖∂ϕ(xn

αδ)‖)
)

+ 〈(Pn − I)ω, A(xn
αδ)〉.
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Because of locally bounded property of a semicontinuous and monotone
operator (see [6]), there exists a positive constant C2 such that

〈ω,A(x0)−A(xn
αδ)〉 ≤ ‖ω‖(γ̃n + C1δ + C2α) + C2‖(I − Pn)ω‖.

Consequently, for a constant C3 > 0 we get

α
(
mϕ − L‖ω‖

([β] + 1)!
‖xn

αδ − x0n‖[β]+1−β
)
‖xn

αδ − x0n‖β

≤
(
δ + [β]γn(x0)γ̃n + Lγ̃[β]+1

n /([β] + 1)! + L′αγ̃γ′
n

)
‖xn

αδ − x0n‖

+ ‖ω‖
(
C1δ + C2α + C3γ̃n

)
.

By [10], we have
‖xn

αδ − x0n‖ = O(δθ1 + γ̃θ2
n ).

Thus
‖xn

αδ − x0‖ = O(δθ1 + γ̃θ2
n ).

Remark 2.3. If X is a Hilbert space, we can take the functional ϕ(x) =
‖x‖β , 2 < β < 3. Then mϕ = 22−β and condition (iii) of Theorem 2.1 has
the form (

A′∗(x0) +
1
2
A(2)∗(x0)y

)
ω = ∂ϕ(x0).

For the Banach spaces of Lebesgue’s type `p, Lp, W p
m, 1 < p < 2 if s = 2,

we can construct ϕ(x) as in the Hilbert space case. For the case 2 < p,
s = p and p 6= [p], our results are still true if we use ∂ϕ(x) = Uβ(x) (see
[3]). And we have mϕ = 22−p/p. If p = [p], the number β is chosen so
that p < β < p + 1. We can also use other forms of ϕ(x) (see [8]).

3. Application

Consider the nonlinear singular integral equation in the form (see [7])

(3.1)

t∫

0

(t− s)−λx(s) + F (x(t)) = f0(t), 0 < λ < 1,

where f0 ∈ Lq([0, 1]), 1 < q < +∞ and the nonlinear function F (t)
satisfies the following conditions:
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- |F (t)| ≤ a1 + a2|t|p−1, a1, a2 > 0, p−1 + q−1 = 1,
F (t1) ≤ F (t2) iff t1 ≤ t2, and

- F is differentiable.
Thus, F is a monotone operator from X = Lp([0, 1]) into X∗ = Lq([0, 1]).
In addition, assume that F is a compact operator. Then (3.1) is an ill-
posed problem, because the operator K defined by

Kx(t) =

t∫

0

(t− s)−λx(s)ds,

also is compact. The above theoretical results can be applied to this
problem. Note that in the cases 1 < p ≤ 2 the smooth condition (iii) in
the introduction now has the form

(3.2)
(
K∗ + F ′∗(x0) +

1
2
F (2)∗(x0)y

)
ω = ∂ϕ(x0),

where x0(t) is a norm-minimal solution of (3.1) and ϕ is as in Section 2
with 2 < p < 3. If F (x(t)) = const. for all solutions x(t) of (3.1), then
equation (3.2) has a simpler form K∗ω = ∂ϕ(x0).
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