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ON AN EXPANSION OF
THE SPECIAL LAGRANGIAN FORM

DAO TRONG THI AND NGUYEN DUY BINH

Dedicated to Hoang Tuy on the occasion of his seventieth birthday

Abstract. In this paper we present a class of k-forms on Cn induced by
k-forms on Rn and investigate their comass and set of maximal directions.
In particular, the set of maximal directions of the real part of powers of
the complex symplectic form on Hn is described completely.

1. Introduction

The problem of calculating the comass of a covector and determining
the set of its maximal directions plays an important role in the theory of
calibrated geometries (for a survey on calibrated geometries see [HL1]) and
has been dealt with by many authors [D], [HL1], [HL2], [H], [M]. Among
forms of constant coefficients on Cn ∼= R2n (which can be identified with
covectors on Cn ∼= R2n) the special Lagrangian form Re(dz1∧ . . .∧dzn) is
the one which have been investigated most (see [HL1], [HL2],...). In this
paper we shall study a class of forms on Cn ∼= R2n induced by forms on
Rn. This class contains the special Lagrangian form. The forms mentioned
below are forms of constant coefficients.

Let Rn be the n-dimensional Euclidean space with the standard inner
product given by 〈a, b〉 =

∑
aibi where a = (ai), b = (bi). Let Cn be the

n-dimensional Hermitian space with the Hermitian inner product given by
〈z, w〉C =

∑
ziw̄i where z = (zi), w = (wi). Note that Cn ≡ Rn + iRn ∼=

R2n can be considered as the 2n-dimensional Euclidean space with the
real inner product given by 〈z, w〉R = Re〈z, w〉C = Re

∑
ziw̄i and Rn ≡

{(wi) ∈ Cn : wi ∈ R} with the standard inner product is as its Euclidean
subspace. Below we call orthonormal (orthogonal) vectors with respect to
the real inner product and with respect to the Hermitian inner product
in Cn real orthonormal (orthogonal) vectors and complex orthonormal
(orthogonal) vectors, respectively.
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Now let ω be a k-form on Rn, we shall define a complex k-form on Cn

as follows.
Let e1, . . . , en be an orthonormal basis of Rn. Then e1, . . . , en,

ie1, . . . , ien is a real orthonormal basis of Cn ∼= R2n. Let dx1, . . . , dxn,
dy1, . . . , dyn denote the basis dual to the basis e1, . . . , en, ie1, . . . , ien.
For the basis e1, . . . , en, ω can be expressed as follows:

ω =
∑

aJdxJ ,

J = (i1, i2, . . . , ik), 1 ≤ i1 < i2 < . . . < ik ≤ n, dxJ = dxi1 ∧ dxi2 ∧ . . . ∧
dxik

, aJ ∈ R.
Set

ωc =
∑

aJdzJ

where dzα = dxα + idyα and dzJ = dzi1 ∧ dzi2 ∧ . . . ∧ dzik
.

We see that the complex k-form ωc defined above does not depend on
choosing any orthonormal basis e1, . . . , en of Rn (the matrix of transfor-
mation between systems of forms dx1, . . . , dxn and dx′1, . . . , dx′n is just
the matrix of transformation between systems of forms dz1, . . . , dzn and
dz′1, . . . , dz′n). We call ωc the complex form induced by ω.

Consider the form Reωc on Cn which is the real part of ωc. In the
case k = n, ω = dx1 ∧ . . . ∧ dxn is the unit volume form on Rn and
Reωc = Re(dz1 ∧ . . . ∧ dzn) is just the special Lagrangian form on Cn.
For investigating the relation between the comass, maximal directions of
ω and those of Reωc, we show that ‖Reωc‖∗ = ‖ω‖∗ for ω being an
arbitrary simple separable form (Theorem 2.5). Moreover, we also obtain
a complete description for the set of maximal directions of some forms
belonging to the above class (Theorem 3.2).

2. Complex separable forms

In this section we consider forms ωc induced by separable forms ω on
Rn. First we recall some necessary notions.

Let ω be a k-form (of constant coefficients) on the Euclidean space Rn.
The comass ‖ω‖∗ of ω is given by

‖ω‖∗ = max{ω(ξ) : ξ ∈ G(k, Rn)},
where the Grassmannian G(k, Rn) consists of all oriented k-planes in Rn

and can be identified with the collection of all unit simple k-vectors in Rn.
The set G(ω) of maximal directions of ω is given by

G(ω) = {ξ ∈ G(k,Rn) : ω(ξ) = ‖ω‖∗} .
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The comass of the form ωc on Cn ∼= R2n is given by

‖ωc‖∗ = max{|ωc(ξ)| : ξ ∈ GR(k, Cn)},

where GR(k, Cn) is the set of oriented real k-planes in Cn. Put

G(ωc) = {ξ ∈ GR(k, Cn) : |ωc(ξ)| = ‖ωc‖∗} .

On Cn with the real inner product, a real subspace V ⊂ Cn is called an
isotropic subspace if iu ⊥ V for any u ∈ V . A real simple k-vector ξ on Cn

is called an isotropic k-vector if the real span of ξ, spanRξ, is an isotropic
subspace. Note that any system of vectors ε1, ε2, . . . , εk ∈ Cn is complex
orthonormal if and only if the system ε1, ε2, . . . , εk is real orthonormal
and spanR{ε1, ε2, . . . , εk} is an isotropic subspace of Cn.

Let V be a real subspace of Cn and ξ ∈ GR(k,Cn). The canonical form
of ξ with respect to V had been given by Harvey-Lawson [HL1-Lemma
II.7.5]. Now let V be a complex subspace of Cn and ξ ∈ GR(k, Cn), ξ is
isotropic. We obtain the following lemma.

Lemma 2.1. Let ξ ∈ GR(k, Cn) be an isotropic k-vector, V - a complex
subspace of Cn and V ⊥ - the orthogonal supplement of V with respect to the
Hermitian inner product in Cn. Then there exist two complex orthonormal
systems e1, . . . , er ∈ V and f1, . . . , fs ∈ V ⊥ and numbers 0 6= aα, bα ∈ C
satisfying |aα|2 + |bα|2 = 1, α = 1, . . . , p, such that

ξ = (a1e1 + b1f1) ∧ (a2e2 + b2f2) ∧ . . . ∧ (apep + bpfp) ∧ ep+1

∧ . . . ∧ er ∧ fp+1 ∧ . . . ∧ fs

where p ≤ r, s ≤ k and r + s− p = k.

Remark. For the case dimCV = q ≤ k we can take r = q and aα, bα ∈ C
satisfying |aα|2 + |bα|2 = 1 for α ≤ q such that

ξ = (a1e1 + b1f1) ∧ (a2e2 + b2f2) ∧ . . . ∧ (aqeq + bqfq) ∧ fq+1 ∧ . . . ∧ fk

If aα = 0 (or bα = 0), then eα (or fα) is only a formal symbol.

Proof. Let ξ ∈ GR(k,Cn) be an isotropic k-vector. Then ξ is of the form
ξ = v1 ∧ . . . ∧ vk, where v1, . . . , vk are complex orthonormal vectors. Let
π : Cn −→ V denote orthogonal projection with respect to the Hermitian
inner product on Cn. Consider the Hermitian form B on the complex span
of ξ, spanCξ = spanC{v1, . . . , vk}, defined by B(u, v) = 〈π(u), π(v)〉C .
Then the linear operator A defined by B(u, v) = 〈Au, v〉C is self-conjugate.
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Hence the eigenvalues λ1, . . . , λk of A are real numbers and there exists
a complex orthonormal system of eigenvectors ε1, . . . , εk corresponding
to λ1, . . . , λk. Therefore, ξ = eiθε1 ∧ . . . ∧ εk (0 ≤ θ ≤ 2π). Since
0 ≤ B(u, u) ≤ |u|2, we have 0 ≤ λα ≤ 1 for all α. Rearrange the indexes
so that 0 < λα < 1 for α = 1, . . . , p, λp+1 = . . . = λr = 1 and λr+1 =
. . . = λk = 0. Then εα = aαe′α + bαf ′α for α = 1, . . . , p, where e′α, f ′α
are unit vectors belonging to V and V ⊥, respectively, and aα, bα ∈ C,
|aα|2 + |bα|2 = 1. Since |aα|2 = |π(εα)|2 = B(εα, εα) = λα, aα, bα 6=
0. Set e′p+1 = εp+1, . . . , e′r = εr and f ′p+1 = εr+1, . . . , f ′s = εk. Since
B(εα, εβ) = 0 for α 6= β, π(εα) and π(εβ) are complex orthogonal for
α 6= β which proves that e′1, . . . , e′r is a complex orthonormal system in
V . Moreover,

〈εα − π(εα), εβ − π(εβ)〉C = 〈εα, εβ〉C −B(εα, εβ),

which vanishes for α 6= β. Therefore, f ′1, . . . , f ′s is a complex orthonormal
system in V ⊥. Replacing ei θ

k .e′α by eα for α = 1, . . . , r and ei θ
k .f ′α by fα

for α = 1, . . . , s, then e1, e2, . . . , er is also a complex orthonormal system
in V and f1, f2, . . . , fs is also a complex orthonormal system in V ⊥. We
have

ξ = (a1e1 + b1f1) ∧ (a2e2 + b2f2) ∧ . . . ∧ (apep + bpfp) ∧ ep+1

∧ . . . ∧ er ∧ fp+1 ∧ . . . ∧ fs.

Hence Lemma 2.1 is proved.

Lemma 2.2. Let ωc be the complex k-form on Cn induced by a k-form ω
on Rn and ξ ∈ G(ωc). Then ξ is an isotropic k-vector on Cn.

Proof. Since ωc is a skew symmetric complex polylinear form on the
complex space Cn ∼= R2n we have ωc(η) = 0 for any η ∈ GR(k, Cn) of the
form η = ε ∧ iε ∧ η′ where η′ ∈ GR(k − 2, Cn). Let ξ ∈ GR(k, Cn). By
[HL2-Proposition 2.1] there exists a real orthonormal basis ε1, ε2, . . . , εn,
iε1, iε2, . . . , iεn in Cn and angles 0 ≤ θi ≤ π

2
such that ξ takes the form

±ξ = ε1 ∧ (cos θ1iε1 + sin θ1ε2) ∧ ε3 ∧ (cos θ2iε3 + sin θ2ε4) ∧ ε5 ∧ . . . .

Therefore, using the above remark we have

|ωc(ξ)| = sin θ1 sin θ2 . . . |ωc(ε1 ∧ ε2 ∧ . . . ∧ εk)|.
Now let ξ ∈ G(ωc). From the above equality we get sin θ1 = sinθ2 = · · · =
1. Therefore, ξ = ±ε1 ∧ ε2 ∧ . . . ∧ εk is an isotropic k-vector in Cn. This
concludes the proof.
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Proposition 2.3. Let ωc be the complex k-form on Cn induced by a
k-form ω on Rn. Then

(1) ‖Reωc‖∗ = ‖ωc‖∗,
(2) G(Reωc) ⊂ G(ωc).

Proof. Let ξ ∈ G(ωc). Then there exists 0 ≤ θ ≤ 2π such that ωc(ξ) =
eθi‖ωc‖∗. By Lemma 2.2, ξ = ε1 ∧ . . . ∧ εk, where ε1, . . . , εk are complex
orthonormal vectors. Put ξ′ = (e−θiε1) ∧ . . . ∧ εk. We have

ωc(ξ′) = e−θieθi‖ωc‖∗ = ‖ωc‖∗.

Hence Reωc(ξ′) = ‖ωc‖∗. On the other hand, since ‖Reωc‖∗ ≤ ‖ωc‖∗, we
have ‖Reωc‖∗ = ‖ωc‖∗.

Next let ξ ∈ G(Reωc). Then

|ωc(ξ)| ≥ |Reωc(ξ)| = ‖Reωc‖∗ = ‖ωc‖∗ ≥ |ωc(ξ)|

therefore |ωc(ξ)| = ‖ωc‖∗, that is ξ ∈ G(ωc). Thus, G(Reωc) ⊂ G(ωc).
The proof is complete.

Consider forms ω = dxV ∧ω1 +ω2 on Rn, where dxV is the unit volume
form on a p-dimensional oriented subspace V ⊂ Rn (p ≥ 2) and ω1, ω2

are forms on V ⊥ (this class of forms has been investigated in [H] and the
author called them separable forms with respect to V ).

Now we consider the complex form ωc on Cn induced by a separable
form ω on Rn, that is

ωc = dzV c ∧ ωc
1 + ωc

2,

where dzV c is the complex form on V c = V ⊕ iV induced by the form dxV

and ωc
1, ω

c
2 are complex forms on (V c)⊥ (the orthogonal supplement of V c

with respect to the Hermitian inner product in Cn) induced by forms ω1,
ω2, respectively. We call such forms ωc complex separable forms. Applying
the above lemmas we obtain

Proposition 2.4. Let ωc = dzV c ∧ωc
1 +ωc

2 be the complex separable form
on Cn induced by a separable form ω = dxV ∧ ω1 + ω2 on Rn. Then

‖ωc‖∗ = max{‖ωc
1‖∗, ‖ωc

2‖∗}.

Proof. Using Lemma 2.2 for the form ωc we have

‖ωc‖∗ = max{|ωc(ξ)| : ξ ∈ GR(k,Cn)}
= max{|ωc(ξ)| : ξ ∈ GR(k,Cn) and ξ is isotropic}
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By Lemma 2.1 any isotropic k-vector ξ ∈ GR(k, Cn) is of the form

ξ = (a1ε1 + b1f1) ∧ (a2ε2 + b2f2) ∧ . . . ∧ (apεp + bpfp) ∧ fp+1 ∧ . . . ∧ fk,

where ε1, . . . , εp is a complex orthonormal basis of the complex space
V c, f1, . . . , fk is a complex orthonormal system of the complex space
(V c)⊥ and ai, bi ∈ C, |ai|2 + |bi|2 = 1, i = 1, . . . , p. Therefore

ωc(ξ) = a1 . . . apdzV c(ε1 ∧ . . . ∧ εp)ωc
1(fp+1 ∧ . . . ∧ fk)

+ b1 . . . bpω
c
2(f1 ∧ . . . ∧ fk).

Since |ai| ≤ 1, |bi| ≤ 1 for all i and |dzV c(ε1 ∧ . . . ∧ εp)| = 1 [HL1-
Proposition III.1.14], we have

|ωc(ξ)| ≤ (|a1||a2|+ |b1||b2|) max{‖ωc
1‖∗, ‖ωc

2‖∗}
≤ (|a1|2 + |b1|2)(|a2|2 + |b2|2)max{‖ωc

1‖∗, ‖ωc
2‖∗}

= max{‖ωc
1‖∗, ‖ωc

2‖∗}.

Notice that there exists ξ such that |ωc(ξ)| = max{‖ωc
1‖∗, ‖ωc

2‖∗}. Con-
sider two following cases:

Case ‖ωc
1‖∗ ≥ ‖ωc

2‖∗ . Take ξ = θ∧η, where dzV c(θ) = 1 and η ∈ G(ωc
1).

Then
|ωc(ξ)| = |ωc

1(η)| = ‖ωc
1‖∗ = max{‖ωc

1‖∗, ‖ωc
2‖∗}.

Case ‖ωc
1‖∗ < ‖ωc

2‖∗ . Take ξ ∈ G(ωc
2). Then

|ωc(ξ)| = |ωc
2(ξ)| = ‖ωc

2‖∗ = max{‖ωc
1‖∗, ‖ωc

2‖∗}.

Therefore
‖ωc‖∗ = max{‖ωc

1‖∗, ‖ωc
2‖∗}.

Hence Proposition 2.4 is proved.

Next we shall consider a special class of complex separable forms. Let
Rn = V1 ⊕ V2 ⊕ . . .⊕ Vk be an orthogonal decomposition of Rn. For any
multi-index I = (i1, . . . , iq) we denote by dxI the p-form dxVi1

∧. . .∧dxViq
,

where p = |I| = ∑
j∈I

dimVj and dxV is the unit volume form on V .

In [H] Hoang Xuan Huan has considered forms ω =
∑
I

aIdxI , where

dimVj ≥ 2 for all j ≤ k, called simply separable forms (with respect to
(V1, V2, . . . , Vk)) and he has proved that

‖ω‖∗ = max
I
{|aI |}.
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On Cn = V c
1 ⊕ V c

2 ⊕ . . . ⊕ V c
k each simply separable form ω =

∑
I

aIdxI

mentioned above induces a form ωc of the form

ωc =
∑

I

aIdzI , I = (i1, . . . , iq), dzI = dzV c
i1
∧ . . . ∧ dzV c

iq
.

Theorem 2.5. Let ωc =
∑
I

aIdzI be the complex form on Cn induced by

a simply separable form ω =
∑
I

aIdxI on Rn = V1 ⊕ V2 ⊕ . . .⊕ Vk. Then

‖Reωc‖∗ = ‖ω‖∗ = max
I
{|aI |}.

Proof. Using Proposition 2.4 and the equality ‖dzI‖∗ = 1 for complex
forms dzI (see [HL1-Proposition III.1.14]), we have ‖ωc‖∗ = max

I
{|aI |} by

induction on k. Combining the equalities ‖Reωc‖∗ = ‖ωc‖∗ (Proposition
2.3) and ‖ω‖∗ = max

I
{|aI |} ([H-Theorem 3.10]) we obtain the conclusion.

We have the following result concerning the relation between maximal
directions of forms ω and Reωc.

Theorem 2.6. Let Reωc be the real part of the complex form ωc on Cn

induced by a form ω on Rn such that ‖Reωc‖∗ = ‖ω‖∗. Then

⋃

ξ∈G(ω)

G(Redzξ) ⊂ G(Reωc),

where dzξ is the complex form induced by the unit volume form dxξ on the
oriented subspace spanξ ⊂ Rn. In particular, the above inclusion of sets
happens when ω is a simply separable form on Rn.

Proof. Let ξ = ε1 ∧ . . . ∧ εp ∈ G(ω), where ε1, . . . , εp is an orthonor-
mal system in Rn and let dx′α be the basis dual to an orthonormal basis
(εα), α = 1, . . . , n of Rn containing ε1, . . . , εp. Then ω can be expressed
as follows:

ω = ‖ω‖∗dx′1 ∧ . . . ∧ dx′p +
∑

J

aJdx′J ,

where dx′J = dx′i1 ∧ . . . ∧ dx′ip
, J = (i1, . . . , ip) 6= (1, . . . , p).

On Cn with the real orthonormal basis ε1, . . . , εn, iε1, . . . , iεn and the
dual basis dx′1, . . . , dx′n, dy′1, . . . , dy′n we have

ωc = ‖ω‖∗dz′1 ∧ . . . ∧ dz′p +
∑

J

aJdz′J ,



534 DAO TRONG THI AND NGUYEN DUY BINH

where dz′α = dx′α + idy′α , α = 1, . . . , n.
Let dzξ = dz′1 ∧ . . . ∧ dz′p be the complex form on Cn induced by

the form dxξ = dx′1 ∧ . . . ∧ dx′p on Rn and let η ∈ G(Redzξ). Then
spanRη ⊂ spanR{ε1, . . . , εp, iε1, . . . , iεp}, therefore aJdz′J(η) = 0 for all
J = (i1, . . . , ip) 6= (1, . . . , p). Hence

Reωc(η) = ‖ω‖∗ = ‖Reωc‖∗,

that is η ∈ G(Reωc). So G(Redzξ) ⊂ G(Reωc) for any ξ ∈ G(ω). The
theorem is proved.

3. Maximal directions of the real part
of powers of a complex symplectic form

In this section we describe the set of maximal directions of the form
Reωc on Cn induced by a particular simply separable form ω on Rn.

We consider Hn as a (left) quaternionic vector space and consider a

quaternionic inner product 〈., .〉H on Hn defined by 〈p, q〉H =
n∑

i=1

piqi.

Since H ≡ C ⊕ Cj, the identification Hn ≡ Cn ⊕ Cnj ∼= C2n provides
a complex linear isomorphism Hn ∼= C2n, where the left multiplication
by i ∈ H defines the complex structure on C2n. Then (q1, . . . , qn) ∈ Hn

is identified with (z1, . . . , zn, w1, . . . , wn) ∈ C2n, where qα = zα + wαj,
α = 1, . . . , n.

We consider the standard Hermitian inner product on Hn ∼= C2n given
by

〈(q1, . . . , qn), (q′1, . . . , q′n)〉C =
n∑
1

(zαz̄′α + wαw̄′α)

and consider the complex symplectic form σ on Hn ∼= C2n given by

σ
(
(q1, . . . , qn), (q′1, . . . , q′n)

)
=

n∑
1

(zαw′α − wαz′α)

where qα = zα + wαj, q′α = z′α + w′αj, α = 1, . . . , n.
Then the quaternionic inner product on Hn can be reexpressed as

〈., .〉H = 〈., .〉C − σ(., .)j.

Note that the canonical basis e1, . . . , en of Hn is orthonormal with respect
to the quaternionic inner product 〈., .〉H (quaternionic orthonormal) and
the basis e1, . . . , en, je1, . . . , jen of Hn ∼= C2n is orthonormal with respect
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to the Hermitian inner product 〈., .〉C . Let Sp(n) denote the group of H-
linear transformations on Hn preserving the quaternionic inner product
above. Then σ (and therefore all powers σs) is Sp(n)-invariant.

Let dz1, . . . , dzn, dw1 . . . , dwn be the complex basis dual to the complex
basis e1, . . . , en, je1, . . . , jen of Hn ∼= C2n. Then we have

σ = dz1 ∧ dw1 + dz2 ∧ dw2 + . . . + dzn ∧ dwn.

We see that σs is just the complex 2s-form on Hn ∼= C2n induced by the
simply separable 2s-form (dx1 ∧ dxn+1 + dx2 ∧ dxn+2 + · · ·+ dxn ∧ dx2n)s

on V , where V = spanR{e1, . . . , en, je1, . . . , jen} is the 2n-dimensional
Euclidean subspace of Hn ∼= R4n with the real inner product

〈., .〉R = Re〈., .〉C(= Re〈., .〉H),

and dx1, . . . , dxn, dxn+1 . . . , dx2n is the basis dual to the real orthonor-
mal basis e1, . . . , en, je1, . . . , jen of V . Applying Theorem 2.5 we have

‖Re
1
s!

σs‖∗ = 1.
Now we shall investigate the set of maximal directions of the form

Re
1
s!

σs (or Reσs) by using the quaternionic structure on Hn. Notice that
each real subspace V ⊂ Hn is a quaternionic subspace of Hn if and only
if V is simultaneously invariant with respect to the complex structures
defined by the unit imaginar quaternions i, j, k ∈ H.

Theorem 3.1. Let σ be the complex symplectic form on Hn ∼= C2n

mentioned above and ξ ∈ G(
1
s!

σs). Then spanRξ ⊂ V , where V is a s-
dimensional quaternionic subspace of Hn.

Proof. We prove by induction on s.
Case s = 1: Let ξ ∈ G(σ) and ξ = ε1 ∧ η, where ε1, η are orthonormal

vectors (with respect to the real inner product) in Hn ∼= R4n. Complete ε1

into a quaternionic orthonormal basis ε1, . . . , εn in Hn, that is 〈εα, εβ〉H =
δα
β , for α, β = 1, . . . , n. Let dz′1, . . . , dz′n, dw′1, . . . , dw′n be the complex

basis dual to the complex orthonormal basis ε1, . . . , εn, jε1, . . . , jεn of
Hn ∼= C2n. Since σ is Sp(n)-invariant, we also have

σ = dz′1 ∧ dw′1 + . . . + dz′n ∧ dw′n.

Because of dz′α(ε1) = 0 , dw′α(ε1) = 0 for α = 2, . . . , n, we get

|σ(ξ)| = |(dz′1 ∧ dw′1 + . . . + dz′n ∧ dw′n)(ξ)| = |dz′1 ∧ dw′1(ξ)| = 1
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this implies that there exists θ , 0 ≤ θ ≤ 2π such that dz′1 ∧ dw′1(ξ) = eiθ.
Since

dz′1 ∧ dw′1(ξ) = dz′1(ε1).dw′1(η)− dz′1(η).dw′1(ε1) = dw′1(η),

we have dw′1(η) = eiθ. Hence η = eiθ.jε1 ∈ spanH{ε1} (here eiθ =
cos θ + i sin θ, i ∈ H) and therefore spanRξ = spanR{ε1, η} ⊂ spanH{ε1}
(where spanH{ε1} is the quaternionic subspace spanned by ε1). So we
have proved the case s = 1.

Assume that the statement has been proved for s = t − 1. We will
show that the statement is true for s = t by induction on n with respect
to n ≥ t as follows.

If n = t, then

1
t!

σt = dz1 ∧ dw1 ∧ . . . ∧ dzt ∧ dwt.

Hence, the statement is immediate.
Assume that the statement has been proved for n = m − 1 ≥ t. We

have

1
t!

σt =
1
t!

(dz1 ∧ dw1 + . . . + dzm ∧ dwm)t

= dz1 ∧ dw1 ∧
[ 1
(t− 1)!

(dz2 ∧ dw2 + . . . + dzm ∧ dwm)t−1
]

+
1
t!

(dz2 ∧ dw2 + . . . + dzm ∧ dwm)t.

Put

σ1 =
1

(t− 1)!
(dz2 ∧ dw2 + . . . + dzm ∧ dwm)t−1,

σ2 =
1
t!

(dz2 ∧ dw2 + . . . + dzm ∧ dwm)t.

Then
1
t!

σt = dz1∧dw1∧σ1+σ2 is a complex separable form and σ1, σ2 are

forms induced from a complex symplectic form on Hm−1 ≡ spanH{e2, . . .
. . . , em}, where e1, e2, . . . , em is the canonical basis of Hm. Let ξ ∈
G(

1
t!

σt). It follows from Lemma 2.2 that ξ is isotropic and by Lemma 2.1

ξ = (a1ε1 + b1f1) ∧ (a2ε2 + b2f2) ∧ f3 ∧ . . . ∧ f2t
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where ε1, ε2 ∈ spanH{e1} and f1, f2, . . . , f2t ∈ spanH{e2, . . . , em} are
complex orthonomal vectors, and aα, bα ∈ C, |aα|2 + |bα|2 = 1, α = 1, 2.

We have

| 1
t!

σt(ξ)| = |a1a2dz1 ∧ dw1(ε1 ∧ ε2)σ1(f3 ∧ . . . ∧ f2t)

+ b1b2σ2(f1 ∧ f2 ∧ . . . ∧ f2t)|
≤ (|a1a2|+ |b1b2|). max(‖dz1 ∧ dw1‖∗.‖σ1‖∗, ‖σ2‖∗)
≤ (|a1|2 + |b1|2)(|a2|2 + |b2|2) = 1.

Since ξ ∈ G(
1
t!

σt), the above inequalities become equalities. We consider
ξ in the following cases:

Case |a1a2| = 0. Then a1, a2 = 0 and

ξ = b1b2f1 ∧ f2 ∧ . . . ∧ f2t,

where f1 ∧ f2 ∧ . . . ∧ f2t ∈ G(σ2).
By the induction hypothesis on n we have spanR{f1, f2, . . . , f2t} ⊂ W ,

where W is a t-dimensional quaternionic subspace of Hm−1 ≡ spanH{e2,
. . . , em} ⊂ Hm, therefore spanRξ ⊂ W .

Case |a1a2| = 1. Then b1, b2 = 0 and

ξ = a1a2ε1 ∧ ε2 ∧ f3 ∧ . . . ∧ f2t,

where ε1 ∧ ε2 ∈ G(dz1 ∧ dw1) and f3 ∧ . . . ∧ f2t ∈ G(σ1). By the in-
duction hypothesis on s we have spanR{f3, . . . , f2t} ⊂ V , where V is
a (t − 1)-dimensional quaternionic subspace of Hm−1 ≡ spanH{e2, . . .
. . . , em} ⊂ Hm. On the other hand, since spanR{ε1, ε2} ⊂ spanH{e1},
we have spanRξ ⊂ spanH{e1}⊕V , here spanH{e1}⊕V is a t-dimensional
quaternionic subspace of Hm.

Case 0 < |a1a2| < 1. Then

ξ = (a1ε1 + b1f1) ∧ (a2ε2 + b2f2) ∧ f3 ∧ . . . ∧ f2t

where ε1∧ε2 ∈ G(dz1∧dw1), f3∧ . . .∧f2t ∈ G(σ1) and f1∧f2∧ . . .∧f2t ∈
G(σ2).

According to the second case we have spanR{f3, . . . , f2t} ⊂ V , where
V is a (t− 1)-dimensional quaternionic subspace of Hm−1. Therefore

spanR{f3, . . . , f2t, if3, . . . , if2t} = V.
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According to the first case we have spanR{f1, f2, . . . , f2t} ⊂ W , where W
is a t-dimensional quaternionic subspace of Hm−1. Therefore

spanR{f1, f2, . . . , f2t, if1, if2, . . . , if2t} = W.

Let W = V ⊕ U be the orthogonal decomposition of W (with respect to
the quaternionic inner product 〈., .〉H and therefore also with respect to
the real inner product 〈., .〉R ), where U is a 1-dimensional quaternionic
subspace of Hm−1. Then from the orthogonal decomposition (with respect
to the real inner product) W = V ⊕ spanR{f1, f2, if1, if2} it follows that
U = spanR{f1, f2, if1, if2}.

Consider a quaternionic orthonormal basis e′α(α = 2, . . . ,m) in Hm−1

such that e′2 ∈ U and let dz′α, dw′α(α = 2, . . . ,m) be the complex basis
dual to the complex orthonormal basis e′2, . . . , e′m, je′2, . . . , je′m. Then

dz2 ∧ dw2 + . . . + dzm ∧ dwm = dz′2 ∧ dw′2 + . . . + dz′m ∧ dw′m.

We have

σ2(f1 ∧ . . . ∧ f2t) = dz′2 ∧ dw′2 ∧
[ 1
(t− 1)!

(dz′3 ∧ dw′3 + . . .

+ dz′m ∧ dw′m)t−1
]
(f1 ∧ . . . ∧ f2t)

+
1
t!

(dz′3 ∧ dw′3 + . . . + dz′m ∧ dw′m)t(f1 ∧ . . . ∧ f2t) =

= dz′2 ∧ dw′2(f1 ∧ f2).
1

(t− 1)!
(dz′3 ∧ dw′3 + . . .

+ dz′m ∧ dw′m)t−1(f3 ∧ . . . ∧ f2t)

= dz′2 ∧ dw′2(f1 ∧ f2).σ1(f3 ∧ . . . ∧ f2t)

(the last equality happens because of dz′2(fα) = 0, dw′2(fα) = 0 , for α =
3, . . . , 2t).
Therefore

1
t!

σt(ξ) = a1a2dz1 ∧ dw1(ε1 ∧ ε2)σ1(f3 ∧ . . . ∧ f2t)

+ b1b2dz′2 ∧ dw′2(f1 ∧ f2).σ1(f3 ∧ . . . ∧ f2t).

Hence

1 = | 1
t!

σt(ξ)|
= |a1a2dz1 ∧ dw1(ε1 ∧ ε2) + b1b2dz′2 ∧ dw′2(f1 ∧ f2)|
= |(dz1 ∧ dw1 + dz′2 ∧ dw′2)(η)|,
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where η = (a1ε1 + b1f1)∧ (a2ε2 + b2f2) ∈ GR(2, spanH{e1, e
′
2}). It follows

that
η ∈ G(dz1 ∧ dw1 + dz′2 ∧ dw′2)

where ω = dz1 ∧ dw1 + dz′2 ∧ dw′2 is a complex symplectic form on H2 ∼=
spanH{e1, e

′
2}.

Applying the theorem for the case s = 1 with respect to the form ω we
have spanRη ⊂ V1 where V1 is a 1-dimensional quaternionic subspace of
spanH{e1, e

′
2} ⊂ Hm. Consequently,

spanRξ = spanRη ⊕ spanR{f3 ∧ . . . ∧ f2t} ⊂ V1 ⊕ V.

Here the orthogonal sum V1 ⊕ V determines a t-dimensional quaternionic
subspace of Hm. Thus, the theorem is proved for the case s = t and
n = m. The proof of Theorem 3.1 is now complete.

Remark. We know that the special Lagrangian form Re(dz1∧ . . .∧dzp) on
a p-dimensional Hermitian space V have the set of maximal directions con-
sisting of all special Lagrangian subspaces (see [HL1-Theorem III.1.10]).
Next we see that if V0 ≡ Hs × {0} ⊂ Hn then

Re
1
s!

σs
∣∣
V0

= Re(dz1 ∧ dw1 ∧ . . . ∧ dzs ∧ dws)

is a special Lagrangian form on V0. Since σ is Sp(n)-invariant it follows

that Re
1
s!

σs
∣∣
V

is also a special Lagrangian form on any s-dimensional
quaternionic subspace V of Hn. Define

SLAG(V ) = {η ∈ GR(2s, V ) | Re
1
s!

σs(η) = 1}.

The following theorem is an expansion for an arbitrary s ≤ n of a result
given by Harvey and Bryant [HB, Theorem 2.38] for the case s = 2.

Theorem 3.2. Let σ be the complex symplectic form on Hn ∼= C2n

mentioned above. Then Re
1
s!

σs is a calibration (form of comass 1) and

G(Re
1
s!

σs) =
⋃

V ∈GH(s,Hn)

SLAG(V )

where GH(s,Hn) is the set of all s-dimensional quaternionic subspace of
Hn.
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Proof. By the above remark it is sufficient to prove that if η ∈ GR(2s,Hn)

satisfies Re
1
s!

σs(η) = 1 then spanRη ⊂ V with respect to a s-dimensional
quaternionic subspace V ⊂ Hn. But this follows from Proposition 2.3 and
Theorem 3.1.
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