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ON AN EXPANSION OF
THE SPECIAL LAGRANGIAN FORM
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Dedicated to Hoang Tuy on the occasion of his seventieth birthday

ABSTRACT. In this paper we present a class of k-forms on C™ induced by
k-forms on R" and investigate their comass and set of maximal directions.
In particular, the set of maximal directions of the real part of powers of
the complex symplectic form on H" is described completely.

1. INTRODUCTION

The problem of calculating the comass of a covector and determining
the set of its maximal directions plays an important role in the theory of
calibrated geometries (for a survey on calibrated geometries see [HL1]) and
has been dealt with by many authors [D], [HL1|, [HL2|, [H], [M]. Among
forms of constant coefficients on C™ = R?™ (which can be identified with
covectors on C™ 2 R?") the special Lagrangian form Re(dz1 A...Adz,) is
the one which have been investigated most (see [HL1], [HL2],...). In this
paper we shall study a class of forms on C™ = R?" induced by forms on
R™. This class contains the special Lagrangian form. The forms mentioned
below are forms of constant coefficients.

Let R™ be the n-dimensional Euclidean space with the standard inner
product given by (a,b) = > a;b; where a = (a;), b = (b;). Let C™ be the
n-dimensional Hermitian space with the Hermitian inner product given by
(z,w)c = > zw; where z = (2;),w = (w;). Note that C" = R" + iR" &
R?" can be considered as the 2n-dimensional Euclidean space with the
real inner product given by (z,w)r = Re(z,w)c = Re ) z;w; and R" =
{(w;) € C™ : w; € R} with the standard inner product is as its Euclidean
subspace. Below we call orthonormal (orthogonal) vectors with respect to
the real inner product and with respect to the Hermitian inner product
in C™ real orthonormal (orthogonal) vectors and complex orthonormal
(orthogonal) vectors, respectively.
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Now let w be a k-form on R", we shall define a complex k-form on C”
as follows.

Let e1,...,e, be an orthonormal basis of R™. Then eq,..., e,,
ie1,... ,iep is a real orthonormal basis of C™ = R?". Let dz1,...,dx,,
dyi,...,dy, denote the basis dual to the basis eq,... ,e,, ie1,... ,ie,.
For the basis ey, ... ,e,, w can be expressed as follows:

w = Zajd:nj,
J = (il,’ig,... ,ik), 1<ii<ig<...<ip <n,dxy :dl‘il /\d.CL’Z'2 VANRRAAN
dz;,, a5 € R.
Set

w’ = E aydz

where dz, = dz, + idy, and dzy = dz;, Ndzi, N... Ndz;, .
We see that the complex k-form w® defined above does not depend on

choosing any orthonormal basis eq,... ,e, of R™ (the matrix of transfor-
mation between systems of forms dzq,...,dx, and dzi,...,dz] is just
the matrix of transformation between systems of forms dzq,... ,dz, and
dzi,...,dz]). We call w® the complex form induced by w.

Consider the form Rew® on C™ which is the real part of w®. In the
case k = n,w = dxr1 A ... A\ dx, is the unit volume form on R"™ and
Rew® = Re(dz; A ... Adz,) is just the special Lagrangian form on C™.
For investigating the relation between the comass, maximal directions of
w and those of Rew®, we show that ||Rew®||* = ||w|* for w being an
arbitrary simple separable form (Theorem 2.5). Moreover, we also obtain
a complete description for the set of maximal directions of some forms
belonging to the above class (Theorem 3.2).

2. COMPLEX SEPARABLE FORMS

In this section we consider forms w® induced by separable forms w on
R"™. First we recall some necessary notions.

Let w be a k-form (of constant coefficients) on the Euclidean space R™.
The comass ||w||* of w is given by

lw]* = max{w(£) : € € G(k, R")},

where the Grassmannian G(k, R™) consists of all oriented k-planes in R™
and can be identified with the collection of all unit simple k-vectors in R™.
The set G(w) of maximal directions of w is given by

Gw) ={€ e Gk, R") s w(&) = |wl"}-
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The comass of the form w® on O™ = R?" is given by
Jwe]]" = max{|w(£)| : § € Gr(k,C")},
where Gr(k,C™) is the set of oriented real k-planes in C™. Put
G(w) = {6 € Gr(k, C") : [w ()] = lo®["}-
On C™ with the real inner product, a real subspace V' C C" is called an

isotropic subspace if iu L V for any u € V. A real simple k-vector £ on C"
is called an isotropic k-vector if the real span of &, spang€, is an isotropic

subspace. Note that any system of vectors €1,¢e9,... ,ex € C™ is complex
orthonormal if and only if the system e1,¢e5,... e is real orthonormal
and spang{ey,e9,... ,€} is an isotropic subspace of C".

Let V be a real subspace of C™ and £ € Gr(k,C"™). The canonical form
of £ with respect to V' had been given by Harvey-Lawson [HL1-Lemma
I1.7.5]. Now let V' be a complex subspace of C™ and £ € Gr(k,C™), & is
isotropic. We obtain the following lemma.

Lemma 2.1. Let £ € Gr(k,C™) be an isotropic k-vector, V' - a complex
subspace of C™ and V* - the orthogonal supplement of V with respect to the
Hermitian inner product in C™. Then there exist two complex orthonormal
systems ey, ..., e, €V and fi,...,fs € VL and numbers 0 # ay, by € C
satisfying |aa|® + |bal®> =1, a=1,...,p, such that

f = ((1161 + blfl) N (CLQBQ + bgfg) VAN (apep + bpfp) VAN €p+1
Ao Ner A fpra Ao A fs

where p<r,s<kandr+s—p==k.

Remark. For the case dim¢V = q < k we can take r = ¢ and a,, b, € C
satisfying |aq|? + |ba|? = 1 for a < ¢ such that

f = (CL1€1 + blfl) N (CL262 + beQ) VANPAN (aqeq + bqfq) A fq_|_1 VANRAY fk

If a, =0 (or b, = 0), then e, (or f,) is only a formal symbol.

Proof. Let £ € Gr(k,C™) be an isotropic k-vector. Then ¢ is of the form
& =wvy AN... \v, where vq,... ,v, are complex orthonormal vectors. Let
m: C" — V denote orthogonal projection with respect to the Hermitian
inner product on C'". Consider the Hermitian form B on the complex span
of &, spancé = spanc{vi,...,v;}, defined by B(u,v) = (n(u),n(v))c.
Then the linear operator A defined by B(u,v) = (Au,v)¢ is self-conjugate.
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Hence the eigenvalues Aq,..., A\ of A are real numbers and there exists
a complex orthonormal system of eigenvectors €1, ..., corresponding
to A1,...,Ax. Therefore, ¢ = e A ... Aep (0 < 6 < 27). Since
0 < B(u,u) < |ul?, we have 0 < A\, < 1 for all a. Rearrange the indexes
sothat 0 < Ay <lfora=1,...,p, Apy1=...=A =1land A\ =
... = Ay = 0. Then e, = aq€, + by f., for « = 1,... ,p, where e, f]
are unit vectors belonging to V and V=, respectively, and an,b, € C,
laa|? + [ba]? = 1. Since |a|* = |7(ca)]? = B(a,ea) = Ao, Ga,ba #
0. Set e,,1 = €py1,---,€. = & and f.1 = &41,..., f; = ek Since
B(eq,e5) = 0 for a # (3, m(eq) and mw(eg) are complex orthogonal for
a # 3 which proves that €),... el is a complex orthonormal system in
V. Moreover,

(€a —m(ea) 5 — m(ep))c = (€asep)c — B(ea,€p),

which vanishes for o # 3. Therefore, fi,..., f. is a complex orthonormal
system in V+. Replacing e’%.e’a by eo for a =1,... ,r and e’%.fc’y by fa
fora=1,...,s, then ej,eq,... e, is also a complex orthonormal system
in V and fi, fo,..., fs is also a complex orthonormal system in V+. We
have

&= (a161 + blfl) N (a262 + bzfg) VAP (apep + bpfp) Nepi
/\.../\er/\prrl/\.../\fS.

Hence Lemma 2.1 is proved.

Lemma 2.2. Let w® be the complex k-form on C™ induced by a k-form w
on R" and £ € G(w®). Then & is an isotropic k-vector on C™.

Proof. Since w® is a skew symmetric complex polylinear form on the

complex space C™ = R*" we have w’(n) = 0 for any n € Gg(k,C™) of the
form n = e Aie A where ' € Ggr(k —2,C™). Let £ € Gr(k,C™). By
[HL2-Proposition 2.1] there exists a real orthonormal basis €1, &9, ... ,&p,

1€1,1€9, ... ,ie, in C™ and angles 0 < 6; < g such that ¢ takes the form

=1 A (COS 01ie1 + sin 9182) Nesg N (COS Osies + sin 9254) Nes/N....
Therefore, using the above remark we have
|we(&)| =sinbysinby ... |w% (e Aea AL Aeg)l.

Now let £ € G(w®). From the above equality we get sinf; = sinfy = --- =
1. Therefore, £ = +e1 Aeg A ... A€y is an isotropic k-vector in C™. This
concludes the proof.
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Proposition 2.3. Let w® be the complex k-form on C™ induced by a
k-form w on R™. Then

(1) fRew|[* = flwefl,
(2) G(Rew®) C G(w°).
Proof. Let £ € G(w®). Then there exists 0 < 6 < 27 such that w®(§) =

et ||lwe||*. By Lemma 2.2, £ =1 A ... Acg, where €1,... &) are complex
orthonormal vectors. Put ¢ = (e %) A... Aep. We have

WC(é-/) — 6_9i€0i“wc“* — chH*
Hence Rew®({’) = [|w®||*. On the other hand, since ||Rew®||* < [Jw®||*, we
have ||[Rew®||* = [|w°||*.

Next let £ € G(Rew®). Then
W& = [Rew®(§)] = [[Rew’[|" = [w|[" = [w(£)]

therefore |w®(§)| = [|w®||*, that is £ € G(w®). Thus, G(Rew®) C G(w°).
The proof is complete.

Consider forms w = dxy Awy +ws on R™, where dzy is the unit volume
form on a p-dimensional oriented subspace V' C R" (p > 2) and wy,ws
are forms on V- (this class of forms has been investigated in [H] and the
author called them separable forms with respect to V).

Now we consider the complex form w® on C™ induced by a separable
form w on R", that is

w® =dzye Awi + w3,

where dzy . is the complex form on V¢ =V @4V induced by the form dxy
and w§, wS are complex forms on (V¢)* (the orthogonal supplement of V¢
with respect to the Hermitian inner product in C™) induced by forms wy,
wa, respectively. We call such forms w® complex separable forms. Applying
the above lemmas we obtain

Proposition 2.4. Let w® = dzye Aw§ +w§ be the complex separable form
on C™ induced by a separable form w = dxry Awi + ws on R™. Then

lwf)l™ = max{lwi]]" flws]”}-

Proof. Using Lemma 2.2 for the form w® we have

[wf[]* = max{|w(£)| : € € Gr(k,C")}
= max{|w°(§)| : £ € Gr(k,C") and & is isotropic}
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By Lemma 2.1 any isotropic k-vector £ € Gr(k,C™) is of the form

&= (a151 + blfl) A\ (a282 + bgfg) VANIRVAN (Clpf‘fp + bpfp) A fp_|_1 AN fr,

where €1,... ,ep is a complex orthonormal basis of the complex space
Ve, fi,..., fr is a complex orthonormal system of the complex space
(VL and a;,b; € C,|a;|®> + [b;|> =1,i=1,... ,p. Therefore

wc(g) =a... adeVC(gl VANPIRAAN €p)wf(fp+1 FANIRAN fk)
+b1...bpw§(f1 /\'--/\fk)~

Since |a;| < 1, |b;] < 1 for all i and |dzye(e1 A ... Agp)| = 1 [HL1-
Proposition III.1.14], we have

W] < (laraz| 4 [b1]b2]) max{[lw][”, [lwg]™ }
(laa|* + [b1]*) (laz|* + [b2|*) max{ [lwf[|", llws]|*}

= max{[|w[|", [Jwz[|"}-

<
<

Notice that there exists £ such that |w®(&)| = max{||w§|*, ||ws]*}. Con-
sider two following cases:

Case ||w§[|* > ||w§||* . Take & = OAn, where dzy<(0) = 1 and n € G(wf).
Then

W] = lwi(m] = llwill” = max{[lwi]|", [lws]|"}-
Case ||w§||* < ||ws||* . Take & € G(w§). Then
W) = [ws(E)| = llws]]" = max{{lwi|", llws]"}-
Therefore
Jwf " = max{|wi[]" flws]|"}-

Hence Proposition 2.4 is proved.

Next we shall consider a special class of complex separable forms. Let
R =V, & V,&...8® Vi be an orthogonal decomposition of R™. For any

multi-index I = (i1,. .. ,iq) we denote by dz; the p-form dzv; A...Adzv, ,
where p = |I| = ) dimVj and dzy is the unit volume form on V.
Jjel
In [H] Hoang Xuan Huan has considered forms w = Y  ardxy, where

T
dimV; > 2 for all j < k, called simply separable forms (with respect to

(V1,Va,..., V%)) and he has proved that

] = max{|ar}.
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On C" =VFf@ Vs ...d VS each simply separable form w = ) ardx;
T

mentioned above induces a form w® of the form

w’ = Za]dZ], 1= (’il,... ,iq),dZ] :dZVch /\.../\dZViCq.
1

Theorem 2.5. Let w® =) asdz; be the complex form on C™ induced by
T

a simply separable form w = > aydxy on R" =V, & Vo ® ... & V. Then
T

[Rew?[|” = Jlwl[* = max{|ar]}.

Proof. Using Proposition 2.4 and the equality ||dz||* = 1 for complex
forms dz; (see [HL1-Proposition I11.1.14]), we have ||w®||* = m}‘ix{\aﬂ} by

induction on k. Combining the equalities ||Rew®||* = ||w®||* (Proposition
2.3) and ||w||* = m?x{|a1|} ([H-Theorem 3.10]) we obtain the conclusion.

We have the following result concerning the relation between maximal
directions of forms w and Rew®.

Theorem 2.6. Let Rew® be the real part of the complex form w® on C™"
induced by a form w on R™ such that ||Rew®||* = ||w||*. Then

) G(Redz) c GRew),
£€G(w)

where dz¢ is the complex form induced by the unit volume form dx¢ on the
oriented subspace span§ C R™. In particular, the above inclusion of sets
happens when w is a simply separable form on R™.

Proof. Let £ = e1 AN...Nep € G(w), where €1,... ,gp is an orthonor-
mal system in R™ and let dz/, be the basis dual to an orthonormal basis
(€a),a=1,... ,n of R" containing ¢1,...,&,. Then w can be expressed
as follows:

w = [lw|*dzy A... Adx, + ZaJd:cf],
J

where dzly = dz; Ao Adzg T = (i, dp) # (L., p).
On C™ with the real orthonormal basis 1, ... ,&,, i€1,... ,ic, and the
dual basis dzi, ... ,dx}, dyy,... ,dy), we have

we = |lw[["dz] A ... Adz, + Zajdzf],
J
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where dz/, = dx!, +idy,, , a=1,... n.

Let dze = dzj A ... A dz, be the complex form on C" induced by
the form dre = dr}y A ... Adr, on R" and let n € G(Redz). Then
spangn C spang{ei,...,&p,€1,... ,icp}, therefore aydz’;(n) = 0 for all
J = (i1,...,1p) # (1,...,p). Hence

Rew®(n) = [|lw[|” = [[Rew [,

that is 7 € G(Rew®). So G(Redz¢) C G(Rew®) for any £ € G(w). The

theorem is proved.

3. MAXIMAL DIRECTIONS OF THE REAL PART
OF POWERS OF A COMPLEX SYMPLECTIC FORM

In this section we describe the set of maximal directions of the form
Rew® on C™ induced by a particular simply separable form w on R".
We consider H™ as a (left) quaternionic vector space and consider a
n
quaternionic inner product (.,.)y on H™ defined by (p,q)pg = >_ p:q;-
i=1
Since H = C @ Cj, the identification H" = C™ & C"j = C?" provides
a complex linear isomorphism H" = C?", where the left multiplication

by i € H defines the complex structure on C?*. Then (q1,...,q,) € H"
is identified with (z1,...,2n, W1,... ,w,) € C? where qo = 24 + Waj,
a=1,... ,n.

We consider the standard Hermitian inner product on H" = C?" given

by

n

<(QI7 st 7qn)7 (qi7 A 7Q;L)>C - Z(ZO(ZIQ + waw;)
1

and consider the complex symplectic form o on H" = C?" given by

n

o((qrs-- ), (dhs-- @) =D (2atwh — wazl)

1

. / / ! 5
where g, = 2o + WaJ, ¢, = 2 + W, J, a=1,...,n.
Then the quaternionic inner product on H™ can be reexpressed as

G = (e — ol )i

Note that the canonical basis e, ... , e, of H" is orthonormal with respect
to the quaternionic inner product (.,.)y (quaternionic orthonormal) and
the basis eq, ... ,ep, je1,... ,je, of H® = C?" is orthonormal with respect
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to the Hermitian inner product (.,.)c. Let Sp(n) denote the group of H-
linear transformations on H™ preserving the quaternionic inner product
above. Then o (and therefore all powers ¢*) is Sp(n)-invariant.

Let dzy,... ,dz,,dw; ... ,dw, be the complex basis dual to the complex
basis e1,... ,en,j€1,...,je, of H® 2 C?". Then we have

o =dz; Ndwy +dz Ndwa + ...+ dz, N\ dw,.

We see that o® is just the complex 2s-form on H™ = C?" induced by the
simply separable 2s-form (dz1 A dxp41 +dxe Adxpio + -+ -+ dzy, Adxey,)®
on V, where V' = spang{es,... ,en,je1,...,je,} is the 2n-dimensional
Euclidean subspace of H™ = R*" with the real inner product

(., 9r =Re(,)o(=Re(, )H),

and dxq,...,dT,,dT,41 ... ,dxo, is the basis dual to the real orthonor-
mal basis e1,...,ey,,je1,...,je, of V. Applying Theorem 2.5 we have
||Re$as||* ~1

Now we shall investigate the set of maximal directions of the form
Rel'as (or Reo?®) by using the quaternionic structure on H™. Notice that

each real subspace V C H" is a quaternionic subspace of H" if and only
if V' is simultaneously invariant with respect to the complex structures
defined by the unit imaginar quaternions i, j, k € H.

Theorem 3.1. Let o be the complex symplectic form on H™ = C?"

1

mentioned above and § € G(—'as). Then spangé C V', where V is a s-
s!

dimensional quaternionic subspace of H".

Proof. We prove by induction on s.

Case s = 1: Let £ € G(0) and £ = &1 A n, where €1, 1 are orthonormal
vectors (with respect to the real inner product) in H™ = R*". Complete ¢,

into a quaternionic orthonormal basis €1, ... ,&, in H", that is (¢4, e8) g =
65, for o, B =1,...,n. Let dzj,... ,dz,,dwi,... ,dw, be the complex
basis dual to the complex orthonormal basis €1,...,&,,j€1,...,76n of

H™ = C?". Since o is Sp(n)-invariant, we also have
o=dz{ Ndw| + ...+ dz], Adw),.
Because of dz/, (e1) = 0,dw!,(¢1) =0 for « = 2,... ,n, we get

o) = [(dzy Adwy + ...+ dz, Adwy) ()] = |dzy Adw(§)] =1
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this implies that there exists 6,0 < 6 < 27 such that dz} A dw}(¢) = €.
Since

42} A duw) (€) = d2} (e1).duw () — d2} (n).dw) (1) = duw) (),
we have dw)(n) = €. Hence n = ¢*.je; € spang{e;} (here e
cosf +isinf,i € H) and therefore spanrf = spang{e1,n} C spang{e1}
(where spang{e1} is the quaternionic subspace spanned by £1). So we
have proved the case s = 1.

Assume that the statement has been proved for s = ¢t — 1. We will
show that the statement is true for s = ¢ by induction on n with respect
to n >t as follows.

If n = ¢, then

0 _

1
—ot =dzy ANdwy A ... Ndz A dwy.

t!
Hence, the statement is immediate.
Assume that the statement has been proved for n = m — 1 > t. We

have

1

1
gat = ﬁ(dzl Adwy + ...+ dzm Adwy,)t

= dz Aduwy A [ (dzo A dws + ... + dzp A dwy,) ™!

1
(t—1)!

1
+ H(dzg Adws + ...+ dzp A dw,y,)'

Put

1

T (dzo Ndwg + ...+ dzpm A dwm)t_l,

o1 —

1
oy = —(dzo Adwy + ... + dzy A dwp,)".

!

1 .
Then —o' = dz; Adwi Aoy + 03 is a complex separable form and o1, o5 are

t!
forms induced from a complex symplectic form on H™~! = spang {es, ...
. ,em}, where ey, ea, ... e, is the canonical basis of H™. Let £ €

1
G (Hat). It follows from Lemma 2.2 that £ is isotropic and by Lemma 2.1

§ = (a1e1 + b1 f1) A (agea +bafa) N fs Ao A foy
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where 1,69 € spang{ei} and fi, fa,..., for € spang{ea,... e} are
complex orthonomal vectors, and aq, by € C, |aa]? + [bal®> =1, a = 1,2.
We have

1
th(€)| = |a1a2d21 VAN dw1(81 VAN 82)0'1(f3 VANPIAN fgt)
+b1booa(fi A fa Ao A far)]
< (larazg| + |b1b2|). max([[dzy A dwy[[*lov ||, [lo2]|")
< (lax? + [ba]*) (|az]* + [b2]*) = 1.

1
Since £ € G(gat), the above inequalities become equalities. We consider

¢ in the following cases:
Case |ajaz| = 0. Then ay,as = 0 and

E=bibafi N fa N A fo,

where fi A fa A... A for € G(02).
By the induction hypothesis on n we have spang{ fi, f2,... , far} C W,
where W is a t-dimensional quaternionic subspace of H™~1 = spang {es,
.y em} C H™, therefore spangf C W.
Case |ajaz| = 1. Then by, bs = 0 and

§=aiager Nea A fa Ao A for,

where €1 A ey € G(dzy AN dwy) and f3 A ... A fop € G(o1). By the in-
duction hypothesis on s we have spang{fs,..., fo:} C V, where V is
a (t — 1)-dimensional quaternionic subspace of H™ ! = spang{es,...
.yem} C H™. On the other hand, since spang{ei,e2} C spang{e;},
we have spang{ C spang{e;} @V, here spang{e;} &V is a t-dimensional
quaternionic subspace of H™.
Case 0 < |ajaz| < 1. Then

§ = (a1e1 +b1f1) A (agea +bafo) A fs Ao A for

where e1 Aeg € G(dzy Adwy), f3N...Afor € G(oy) and fiAfaA... A for €
G(O’Q).

According to the second case we have spang{fs,..., for} C V, where
V is a (t — 1)-dimensional quaternionic subspace of H™~!. Therefore

spang{fs, ..., for,if3, ... yifar} = V.
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According to the first case we have spang{f1, fo, ..., for} C W, where W
is a t-dimensional quaternionic subspace of H™~!. Therefore

SpanR{f17f27'~' 7f2t7if17if27"' ?Z.th} - W

Let W =V @ U be the orthogonal decomposition of W (with respect to
the quaternionic inner product (.,.)y and therefore also with respect to
the real inner product (.,.)g ), where U is a 1-dimensional quaternionic
subspace of H™~1. Then from the orthogonal decomposition (with respect
to the real inner product) W =V @ spang{ fi, f2,if1,if2} it follows that

U = spang{ f1, f2,if1,if2}.

Consider a quaternionic orthonormal basis e/, (o = 2,... ,m) in H™~!
such that e, € U and let dz/, dw! (o = 2,...,m) be the complex basis
dual to the complex orthonormal basis €, ... ,el ,jeb, ..., jel . Then

dzo AN dws + ...+ dzm A dw,y, = dziy Adwhy + ... + dz), A dw),.

We have

oa(fi Ao A for) = dzh Adwh A [ F(dzy A dwy + ..

1
(t—1)
+dely, Adwl) T (AL A A far)

1
—|—ﬁ(dzg/\dwg—f—...—i—dz?'n/\dw;n)t(fl/\.../\fgt):

= dzy A dwi(f1 A f2). dzy A dws + ...

1
(t — 1)!(
+dzl, Adw!) T (fs AL A far)
= dzy ANdwy(f1 A f2).01(fs Ao A far)

(the last equality happens because of dz}(f.) = 0,dw5(fs) = 0, for a =

3,... ,Qt).
Therefore

1

FO't(f) = ajasdz; N\ dwl(sl A 52)0’1(f3 VANPIAN fgt)

+ blbgdzé A dwé(fl N fg).O’l(fg FANRRAN fgt).
Hence
]‘ t
1= 2ot

= layasdzy A dwy(e1 A ez) + bibadzy A dwsy(f1 A f2)]
= |(dz1 A dwy + dz5 A dwsy)(n)],
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where n = (a161 + b1 f1) A (azea +bafo) € Gr(2,spang{e, e5}). It follows
that
n € G(dz A dwy + dzy A dw))

where w = dz; A dwy + dzb A dwl, is a complex symplectic form on H? =
spang{e1, e5}.

Applying the theorem for the case s = 1 with respect to the form w we
have spangn C Vi where V; is a 1-dimensional quaternionic subspace of
spang{ey, es} C H™. Consequently,

spangé = spangn @ spang{f3 A ... A for} C V1 V.

Here the orthogonal sum V; @ V' determines a t-dimensional quaternionic
subspace of H™. Thus, the theorem is proved for the case s = t and
n = m. The proof of Theorem 3.1 is now complete.

Remark. We know that the special Lagrangian form Re(dz; A...Adz,) on
a p-dimensional Hermitian space V' have the set of maximal directions con-
sisting of all special Lagrangian subspaces (see [HL1-Theorem III.1.10]).
Next we see that if Vo = H* x {0} C H" then
R Lol = Re(d d d d
e ’Vo = Re(dz1 Ndwy A ... Ndzg A dwy)

is a special Lagrangian form on V{. Since o is Sp(n)-invariant it follows

1
that Re

s!
quaternionic subspace V of H™. Define

as}v is also a special Lagrangian form on any s-dimensional

SLAG (V) = {5 € Gr(25,V) | Re%as(n) ~ 1.

The following theorem is an expansion for an arbitrary s < n of a result
given by Harvey and Bryant [HB, Theorem 2.38] for the case s = 2.

Theorem 3.2. Let o be the complex symplectic form on H™ = C?"

mentioned above. Then Re—o?®

10° is a calibration (form of comass 1) and
s!

]' S
G(Re0*) = J SLAG(V)
VeGu(s,H™)

where Gy (s, H™) is the set of all s-dimensional quaternionic subspace of
H".
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Proof. By the above remark it is sufficient to prove that if n € Gr(2s, H™)
1

satisfies Re—'as(n) = 1 then spangn C V with respect to a s-dimensional
s!

quaternionic subspace V' C H™. But this follows from Proposition 2.3 and

Theorem 3.1.
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