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INVARIANCE OF THE GLOBAL MONODROMIES
IN FAMILIES OF POLYNOMIALS OF

TWO COMPLEX VARIABLES

HA HUY VUI AND PHAM TIEN SON

Dedicated to Hoang Tuy on the occasion of his seventieth birthday

Abstract. We consider global monodromy fibrations defined by a family
of polynomials of two complex variables. The main result gives certain
sufficient conditions for the conjugacy of global monodromies.

1. Introduction

1.1. Let f : Cn −→ C be a polynomial function. It is well-known that
there exists a finite set Af ⊂ C called the bifurcation set of f such that
the restriction:

f : Cn \ f−1(Af ) −→ C \Af

is a locally trivial C∞-fibration (see, for example, [P], [T], [V]). This fi-
bration allows us to introduce the global monodromy fibration which, for

r > max{|t| | t ∈ Af} and S1
r := {t ∈ C | |t| = r},

is the restriction

f : {z ∈ Cn | |f(z)| = r} −→ S1
r .

Fix t0 ∈ S1
r . The geometric monodromy associated with the path s −→

t0e
2πis, s ∈ [0, 1], is a diffeomorphism of f−1(t0) onto itself which induces

an isomorphism

h : Hn−1(f−1(t0),Z) −→ Hn−1(f−1(t0),Z)

that will be called the global monodromy of f .
We will give sufficient conditions for a family of polynomials of two
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variables fα(x, y), α ∈ [0, 1], such that the global monodromies of f0 and
f1 are conjugate.

1.2. Let us recall some facts on the topology of polynomials of two vari-
ables. We say that a value t0 ∈ C is regular at infinity if there exist a
small δ > 0 and a compact K ⊂ C2 such that the restriction

f : f−1(Dδ) \K −→ Dδ, Dδ := {t| |t− t0| < δ},

is a trivial C∞-fibration [N]. If t0 is not regular at infinity, it is called a
critical value at infinity of f . If we denote by Cf (resp., Af,∞) the set
of critical values (resp., the set of critical values at infinity) of f , then
Af = Cf ∪Af,∞ (see, for example, [HL]).

Let d be the degree of f(x, y) and fd(x, y) be the homogeneous part of
degree d of f . In CP 2 we consider the family of curves

Vt = {(x : y : z) | zdf(
x

z
,
y

z
)− tzd = 0}.

We see that Vt is the compactification of Vt = f−1(t). For any t, the
curves Vt intersect the line z = 0 at the points of {(x : y : z) | fd(x, y) =
0, z = 0} = {A1, . . . , As}. Let µVt

(Ai) be the Milnor number of Vt at Ai.
For t0 ∈ C put

λ(t0) =
s∑

i=1

[µV t0
(Ai)− µV t

(Ai)]

for t general enough.
It is proved in [HL] that t0 ∈ Af,∞ if and only if λ(t0) > 0. For every

polynomial f , let
λ(f) =

∑

t∈Af,∞

λ(t).

The total Milnor number of a polynomial f denoted by µ(f) is defined by

µ(f) := dimC
C[x, y]
(fx, fy)

·

Also, we put σ(f) := #Af,∞, and d(f) := deg f(x, y).
In this note, we always suppose that all fibers of polynomials are re-

ducible. In particular, this implies that the polynomials are primitive
([A],[S]).

1.3. In the next section we will prove the following
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Theorem. Let fα(x, y) be a family of polynomials of two variables whose
coefficients are smooth complex-valued functions of α ∈ I := [0, 1]. Sup-
pose that the numbers µ(fα), λ(fα), σ(fα) and d(fα) are independent of α.
Then the global monodromies of the polynomials f0 and f1 are conjugate.

The above result can be considered as a global analogue of the Lê-
Ramanujam theorem [LR]. In [HZ] a stronger result is proved for families
of M-tame polynomials of n variables (n 6= 3). Note that for M-tame
polynomials f , λ(f) = σ(f) = 0.

2. Proof of Theorem 1.3

2.1. Let f ∈ C[x, y]. Suppose that Af ⊂ Dr := {t ∈ C | |t| < r}. Let

S1
r = ∂Dr,

BR = {(x, y) ∈ C2 | ‖(x, y)‖ ≤ R},
◦
BR = {(x, y) ∈ C2 | ‖(x, y)‖ < R},
S3

R = ∂BR.

First of all we show that there exists R0 À 1 such that the fibrations

f : f−1(S1
r ) −→ S1

r ,(1)

f : f−1(S1
r ) ∩

◦
BR0 −→ S1

r ,(2)

f : f−1(S1
r ) ∩

◦
BR −→ S1

r ,(3)

are isomorphic for R ≥ R0. To this end we need the following.

Lemma. For r > max{|t| | t ∈ Af}, there exists R0 À 1 such that all
fibres f−1(t), t ∈ S1

r , are transversal to all spheres S3
R with R ≥ R0.

Proof. We first recall some characterizations of the values of Af,∞.
Suppose t0 ∈ C. For δ > 0, R À 1, put

ϕδ,t0(R) = inf
‖z‖=R, f(z)∈Dδ

‖gradf(z)‖ .

The Lojasiewicz number at infinity of the curve f−1(t0) is defined by

L∞,t0(f) = lim
δ→0

lim
R→∞

ln ϕδ,t0(R)
ln R

·
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It is proved in [H1, H3] that t0 ∈ Af,∞ if and only if L∞,t0(f) < 0.
In particular, t0 ∈ Af,∞ if there is a sequence {zn} ⊂ C2 such that
‖zn‖ → ∞, ‖gradf(zn)‖ → 0, and f(zn) → t0 as n →∞.

For a polynimial f let

gradf =
(∂f

∂x
,
∂f

∂y

)
·

Assume for the contrary that there exist zn ∈ C2, λn ∈ C such that
‖zn‖ → ∞ as n → ∞, and gradf(zn) = λnzn. By a version at infinity of
the Curve Selection Lemma, there exists a real meromorphic curve

ψ : (0, ε] −→ C2

τ 7→ z(τ)

such that f(z(τ)) ∈ S1
r , gradf(z(τ)) = λ(τ)z(τ), and ‖z(τ)‖ → ∞ as

τ → 0. Since |f(z(τ))| = r, f(z(τ)) = t0 + a1τ
ρ + · · · for some t0 ∈ S1

r

and ρ > 0. We have

df(z(τ))
dτ

=
〈dz

dτ
, gradf(z(τ))

〉
= λ(τ)

〈dz

dτ
, z(τ)

〉
.

Then
1

λ(τ)
df(z(τ))

dτ
+

1
λ(τ)

df(z(τ))
dτ

=
d

dτ
‖z(τ)‖2.

It follows that

|λ(τ)| ≤ 2

∣∣df(z(τ))
dτ

∣∣
d‖z(τ)‖2

dτ

·

Let ‖z(τ)‖ = b1τ
β + · · · , β < 0, then |λ(τ)| ≤ c

|τ |ρ−1

|τ |2β−1
= c|τ |ρ−2β for

some c > 0. We have

‖gradf(z(τ))‖ = |λ(τ)|.‖z(τ)‖ ≤ c|τ |ρ−β .

Since ρ > 0 and β < 0, ‖gradf(z(τ))‖ → 0 as τ → 0. Thus, according to
the result mentioned above, t0 ∈ Af,∞, which is a contradiction and the
lemma is proved.

Now, using this lemma we can construct a vector field tangent to
f−1(S1

r ) and pointing to the infinity. In fact, there exists a smooth vector
field v(z) such that
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(i) 〈v(z), gradf(z)〉 = 0,
(ii) 〈v(z), z〉 > 0.

(By the Lemma, we can construct such a vector field locally, then extend
it over f−1(S1

r ) by a smooth partition of unity). Put

w(z) =
v(z)

2〈v(z), z〉 (‖z‖
4 + 1).

This vector field is completely integrable, and let pz0(τ) be its integral

curve with pz0(0) = z0. By condition (i), if z0 ∈ f−1(t) ∩
◦
BR0 , then

pz0(τ) ∈ f−1(t). Moreover,

d‖pz0(τ)‖2
dτ

= 〈dpz0(τ)
dτ

, pz0(τ)〉+ 〈pz0(τ),
dpz0(τ)

dτ
〉

= 2Re〈dpz0(τ)
dτ

, pz0(τ)〉
= 2Re〈w(pz0(τ)), pz0(τ)〉
= ‖pz0(τ)‖4 + 1.

Hence
arctan ‖pz0(τ)‖2 − arctan ‖z0‖2 = τ,

or
‖pz0(τ)‖2 = tan(τ + arctan ‖z0‖2).

Let τ0 =
π

2
− arctan R2

0. Then pz0(τ0) → ∞ as ‖z0‖ → R0. Thus, the
mapping

f−1(S1
r ) ∩

◦
BR0 3 z0 7→ pz0(τ0) ∈ f−1(S1

r )

is an isomorphism between two fibrations.

2.2. In this step of the proof, we show that the conditions

µ(fα) = const,

σ(fα) = const,

λ(fα) = const,

d(fα) = const

imply the existence of a number r > 0 such that Afα ⊂ Dr for all α ∈ I.
We will show that there exists r such that Cfα ⊂ Dr. Let Σfα be

the set of all critical points of fα. It is enough to show that there exists
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R À 1 such that Σfα
⊂ BR for all α ∈ I. In fact, if we choose R0 such

that Σf0 ⊂
◦
BR0 and put

ϕ0,R :=
gradf0

‖gradf0‖ : S3
R −→ S3

1 ,

then µ(f0) is the degree of ϕ0,R : µ(f0) = d(ϕ0,R), R > R0. Consider the
mapping

ϕα,R :=
gradfα

‖gradfα‖ : S3
R −→ S3

1 .

Then, for all sufficiently small α, d(ϕα,R) = d(ϕ0,R) = µ(f0). Suppose
that there exists z(α) ∈ Σfα such that ‖z(α)‖ → ∞ as α → 0. Take α1

sufficiently small with ‖z(α1)‖ > R and R1 > ‖z(α1)‖. We have

d(ϕα1,R1) > d(ϕα1,R) = d(ϕ0,R) = µ(f0).

On the other hand, µ(fα1) ≥ d(ϕα1,R1). These inequalities give a contra-
diction to the condition µ(fα) = const.

We now show that there exists r such that Afα,∞ ⊂ Dr, for all α ∈ I.
Without loss of generality, we can suppose that for t ∈ C, and α sufficiently
close to 0, the map

πα,t := π|
f
−1
α (t)

: f−1
α (t) −→ C

(x, y) 7→ x

is proper. Considering fα(x, y) − t as a polynomial in C[x, t][y], we put
∆(α, x, t) = discy(fα(x, y)− t). Let

∆(α, x, t) = q0(α, t)xm(α) + q1(α, t)xm(α)−1 + · · · .

We first claim that the degree m(α) in x of ∆(α, x, t) is constant. In
fact, m(α) can be computed in terms of d(fα), µ(fα), λ(fα) as follows.

For generic systems of coodinates, πα,t has only simple critical points
and the number of these points is exactly equal to m(α). Let

(x1(α, t), y1(α, t)), . . . , (xm(α)(α, t), ym(α)(α, t))

be critical points of πα,t. In the plane of x’s, choose x0 6= xi(α, t), i =
1, . . . ,m(α). We connect x0 with xi(α, t) by paths Ti such that each Ti

has no points of self-intersection, and that Ti ∩ Tj = {x0} (i 6= j). Put

Oα,t = π−1
α,t(

m(α)⋃

i=1

Ti) .



INVARIANCE OF THE GLOBAL MONODROMIES 521

Then, Oα,t is a deformation retract of f−1
α (t) (see [H2]). Hence,

χ(f−1
α (t)) = χ(Oα,t) .

The set Oα,t can be identified with an 1−dimensional graph of d(fα) +
m(α) vertices and 2m(α) edges. Thus

χ(Oα,t) = d(fα) + m(α)− 2m(α) = d(fα)−m(α).

Since fα is primitive, by [B] we have

χ(f−1
α (t)) = 1− µ(fα)− λ(fα).

These equalities imply

m(α) = d(fα) + µ(fα) + λ(fα)− 1 = const.

This means that for any α ∈ I, q0(α, t) is the non-zero polynomial in t (pos-
sibly of degree 0). Since the coefficients of q0(α, t) are smooth complex-
valued functions of α ∈ I,

#{t | q0(α, t) = 0} ≥ #{t | q0(0, t) = 0}.

Here, we have a strict inequality iff there exists t(α) ∈ C such that
q0(α, t(α)) = 0, t(α) → ∞ as α → 0. On the other hand, according to
a result of [H2],

Afα,∞ = {t(α) ∈ C |q0(t(α)) = 0}.

It follows from the condition σ(α) = const that there exists r > 0 such
that Afα,∞ ⊂ Dr.

Now, we can repeat the proof of [L].

2.3. Lemma. Suppose that r is chosen as in 2.2. Then there exist
R0 À 1 and α0 > 0 such that for any α ∈ [0, α0], the maps

(4) fα : f−1
α (S1

r ) ∩BR0 −→ S1
r

are C∞ locally trivial fibrations. Moreover, the fibrations defined by f0

and fα0 are differentiably isomorphic.

Proof. By Lemma 2.1, there exists R0 À 1 such that for all t ∈ S1
r , the

fibres f−1
0 (t) are transversal to S3

R0
. We claim that there exists α0 > 0 such

that if α ∈ [0, α0], all fibres f−1
α (t) with t ∈ S1

r are transversal to S3
R0

. In
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fact, if it is not so, there exist z(α) ∈ S3
R, λ(α) ∈ C, t(α) = fα(z(α)) ∈ S1

r ,
and gradfα(z(α)) = λ(α)z(α). By the Curve Selection Lemma, we may
assume that z(α), λ(α), t(α) are real analytic functions of α. Letting
α → 0, we see that there exist z(0) ∈ S3

R0
, λ(0) ∈ C, t0 ∈ S1

r such that
gradf0(z(0)) = λ(0)z(0), f0(z(0)) = t0. This means that the fibre f−1

0 (t0)
is not transversal to S3

R0
. Hence we obtain a contradiction.

Now, suppose R0, α0 as above. Let I1 := [0, α0]. Consider the map

Φ : C2 × I1 −→ C× I1 : (x, y, α) 7→ (fα(x, y), α) .

Let
Σ0 = Φ−1(S1

r × {0}) ∩ (BR0 × {0}),
Σ1 = Φ−1(S1

r × {α0}) ∩ (BR0 × {α0}),
ϕ0 : Σ0 −→

(x,y,0)7→f0(x,y)
S1

r ,

ϕ1 : Σ1 −→
(x,y,α0) 7→fα0 (x,y)

S1
r .

Since rankΦ = 2 over Φ−1(S1
r × I1), by Lemma 2.1, Σ0 (resp. Σ1) is a

compact manifold with boundary. Furthermore the map ϕ0 (resp. ϕ1)
has no critical point in the interior of Σ0 (resp. Σ1), and its restriction
to the boundary has maximal rank. Thus, by a version of the Ehresmann
lemma for the case of manifolds with boundary, ϕ0 and ϕ1 are locally
trivial fibrations. To see that these fibrations are isomorphic we suppose
that Ω and V are open neighborhoods of I1 and S1

r , respectively. By the
choice of R0 the restriction

Φ : Φ−1(V × Ω) ∩ (S3
R0
× Ω) −→ V × Ω

is a submersion over V × Ω. Let v be a vector field on V × Ω defined
by v(t, α) = (0, α0). Then we can construct in Φ−1(V × Ω) ∩ (S3

R0
× Ω)

a vector field v1 which is tangent to S3
R0
× Ω such that for every z ∈

Φ−1(V × Ω) ∩ (S3
R0
× Ω),

DzΦ.v1(z) = v(Φ(z)) = (0, α0) .

Let zi ∈ Φ−1(V × Ω) ∩ (S3
R0
× Ω). There exist a neighborhood Ui of zi in

Φ−1(V × Ω) and a diffeomorphism

θi : Ui −→ [Ui ∩ (S3
R0
× Ω)]× (R1, R2) , 0 < R1 < R0 < R2,
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such that for every R ∈ (R1, R2),

θi(Ui ∩ (S3
R × Ω)) = [Ui ∩ (S3

R0
× Ω)]× {R} ,

and Φθ−1
i has maximum rank on [Ui ∩ (S3

R0
×Ω)]× {R}. This is possible

because for R sufficiently close to R0, the restriction of Φ to Φ−1(V ×Ω)∩
(S3

R ×Ω) induces a submersion over V ×Ω. Thus, we can define a vector
field wi on Ui such that for every z ∈ Ui ∩ (S3

R0
× Ω), wi(z) = v1(z) and

for every z ∈ Ui ∩ (S3
R × Ω), R ∈ (R1, R2), the following hold.

(i) wi(z) is tangent to (S3
R × Ω),

(ii) DzΦ.wi(z) = (0, α0).
Let i1, i2, . . . , in be indices such that (Uij )1≤j≤n is a covering of Φ−1(S1

r ×
I1)∩(S3

R0
×I1). Let U be a compact neighborhood of Φ−1(S1

r×I1)∩(S3
R0
×

I1) contained in ∪n
i=1Uij . In U2 := Φ−1(V ×Ω)∩(BR0×Ω)\U we consider

a vector field v2 such that for every z ∈ U2, DzΦ.v2(z) = (0, α0). This
is possible because Φ induces a submersion of U2 on V × Ω.

Let {ψi1 , · · · , ψin
, ψ2} be a partition of unity associated with Ui1 , · · ·

Uin , U2. Then the vector field w defined by

w =
n∑

j=1

ψij
wij + ψ2.v2

is differentiable with compact support. For every z ∈ Φ−1(S1
r × I1) ∩

(S3
R0
× I1) we have

(i) w(z) is tangent to S3
R0
× I1,

(ii) DzΦ.w(z) = (0, α0).

Moreover, for every z ∈ Φ−1(S1
r × I1) ∩ (

◦
BR0 × I1), DzΦ.w(z) = (0, α0).
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This vector field is completely integrable and, if pz : R −→ Φ−1(V ×Ω)∩
(BR0 × Ω) is an integral curve with pz(0) = z, then for z ∈ Σ0 we have
pz(1) ∈ Σ1.

Thus, we obtain a diffeomorphism Ψ from Σ0 onto Σ1 which makes the
following diagram

Σ0@ > h >> Σ1

@V ϕ0V V @V ϕ1V V

S1
r@ > id >> S1

r

commutative. Thus, ϕ0 and ϕ1 are isomorphic. The proof of Lemma 2.3
is now complete.

2.4. Now we prove that the monodromies of f0 and f1 are conjugate.
First, we will show that their fibrations are of the same fibre homotopy.

Indeed, by Lemma 2.3, the fibrations

(5) f0 : f−1
0 (S1

r ) ∩BR0 −→ S1
r

and

(6) fα0 : f−1
α0

(S1
r ) ∩BR0 −→ S1

r

are isomorphic. By Lemma 2.1, there exists R1 À 1 such that the fibration

(7) fα0 : f−1
α0

(S1
r ) ∩BR1 −→ S1

r

is isomorphic to the global monodromy fibration of f1. If R1 ≤ R0, ev-
erything is clear. Suppose that R0 < R1. The fibration (6) is contained
in the fibration (7). Hence we have to prove that the inclusion of (6) in
(7) is a fibre homotopy equivalence. To prove this, by a result of [D] it is
sufficient to show that the inclusion of the fiber F = f−1

α0
(t) ∩ BR0 of (6)

in the fiber F̃ = f−1
α0

(t) ∩ BR1 of (7) is a homotopy equivalence for every
t ∈ S1

r . We claim that the inclusion F in F̃ gives an isomorphism η of
homology groups H1(F ) and H1(F̃ ). In fact, the function ‖z‖2|

F̃

is Morse

and the index at each critical point is 0 or 1 [AF]. Thus F̃ is obtained from
F , up to homotopy type, by attaching cells of dimension ≤ 1. It follows
that the group H1(F̃ , F ) is free. In the sequence

0 −→ H1(F ) −→ H1(F̃ ) −→ H1(F̃ , F ) −→ 0,

we have by [B]

rankH1(F ) = µ(f0) + λ(f0) = µ(fα0) + λ(fα0) = rank H1(F̃ ).
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Thus H1(F̃ , F ) = 0, and the inclusion of F in F̃ is an isomorphism of
homology groups. Since F̃ is connected, the inclusion of F in F̃ is a
homotopy equivalence.

Put
X = f−1

α0
(S1

r ) ∩BR0 ,

X̃ = f−1
α0

(S1
r ) ∩BR1 .

Consider the Wang diagram

0@ >>> H2(X̃)@ >>> H1(F̃ )@ > h̃− id >> H1(F̃ )@ >>> H1(X̃)@ >>> 0

@.@AAA@AηAA@AηAA@AAA

0@ >>> H2(X)@ >>> H1(F )@ > h− id >> H1(F )@ >>> H1(X)@ >>> 0,

where the vertical arrows are the inclusions and h, h̃ are associated with the
monodromy maps ϕ1 and ϕ̃1. By the Five-Lemma, the inclusion X ⊂ X̃
induces isomorphisms

H2(X) ∼−→ H2(X̃) ,

H1(X) ∼−→ H1(X̃) .

These imply
η(h− id)η−1 = h̃− id .

Hence η ◦ h ◦ η−1 = h̃. Thus, Theorem 1.4 is proved.
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