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RECONSTRUCTION OF IMAGES
IN MAGNETIC RESONANCE IMAGING

DINH DUNG AND WALTER SCHEMPP

Dedicated to Hoang Tuy on the occasion of his seventieth birthday

1. Introduction

One of the most delicate applications of coherent wavelets is spatially
localized nuclear magnetic resonance imaging (MRI) based on harmonic
analysis of the Heisenberg nilpotent Lie group (cf. [3]). A local assem-
bly of magnetic dipoles can be interpreted as a gyromagnetic spin system
that can be excited to upper states and returned to the ground state by
a pulse of RF power. Then, the nuclear magnetic resonance spectrum of
the undamped two-level system constitutes an one-dimensional profile of
nuclear density. More precisely, what is being imaged by the MRI method
is a spatial representation of the nuclear resonance signal. MRI admits
ray tracing fan postprocessors like massively parallel quantum holographic
computers which are useful for three-dimensional visulization of stacks of
individual tomographic planar slices. Because of the capability to deter-
mine distinct chemical signatures of different tissue types and multifocal
lesions, MRI scanners are a real progress in radiological diagnosis, far
better than X-ray computer tomography scanners for many applications.
Plannar imaging spatial encoding of time-domain signals by symplectic
spinors in two-dimensional local coorodinate frames, whereas plannar vi-
sualization is performed by the spatial decoding of symplectic spinors in
a local laboratory coordinate frame. Based on a phase coherent reference
wave, phase coherent wavelets allow to create a link between time-domain
local differential phase encoding and spatial encoding in such a way that
local differential phase and spatial position in the selectively excited plan-
nar tomographic slice form essentially synonymous concepts which can be
spatially decoded by an application of the symplectic Fourier transform
(see [4]). Thus, the problem of reconstruction of two-dimensional pictures
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from the hologram echo, their symplectic Fourier transform naturally
arises.

A two-dimensional image can be considered as a function f in L2(R2)
which “almost” vanishes outside the square [−T, T ]2 for some T > 0.
Then, its symplectic function f̆ is in L2(R2), too. We are interested in
the minimal number of information about f̆ in the form of the values at
linear functionals, needed for reconstructing f from these values with a
preassigned precision. Let {`m}M

m=1 be a family of linear continuous func-
tionals in L2(R2) and {ψm}M

m=1 a family of functions in L2(R2). Then,
the function f can be reconstructed in [−T, T ]2 by a linear combination

(1)
M∑

m=1

`m(f̆)ψm.

Real images are mostly not bandlimited and have small smoothness. Thus,
we shall assume that f belongs to the unit ball S of the space Bα,β

2 of the
common mixed smoothness (α, β) with 0 < α ≤ 1 and 0 < β ≤ 1 (see the
definition in Section 3). Given a precision ε > 0, we let M(ε, T ) denote
the minimum of such number M that there exists {lm}M

m=1 and {ψm}M
m=1

satisfying the inequality

‖f −
M∑

m=1

`m(f̆)ψm‖L2([−T,T ]2) ≤ ε

for all f ∈ S.
In this paper we shall give the exact degree of M(ε, T ) for T large

enough and corresponding optimal reconstruction formulae for functions
from S (Section 3). To construct such a formula, we apply an approxima-
tion by truncation sums of a modified sampling series (Section 2).

2. Reconstruction by truncation sampling series

We recall that if f ∈ L1(R2), then the symplectic Fourier transform f̆
of f is defined by

f̆(u, v) :=
∫

R2

f(x, y)e2πi det
( x u

y v

)
dxdy.

Obviously,
f̆(u, v) = f̂(−v, u)
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where
f̂(u, v) :=

∫

R2

f(x, y)e−2πi(xu+yv)dxdy

is the Fourier transform of f . Therefore, one can easily verify that all
facts from the theory of Fourier transforms are valid in the corresponding
modified form for the symplectic Fourier transform. In particular, the
symplectic Fourier transform f̆ can be defined for f in L2(R2). Moreover,
for f ∈ L2(R2) the Parseval equality

(2) ‖f̆‖L2(R2) = ‖f‖L2(R2)

holds. The symplectic Fourier transform is self-inverse, i.e.

(f̆)˘= f.

A function f ∈ L2(R2) is called symplectically bandlimited to

Qσ,σ′ := {(x, y) ∈ R2 : |x| ≤ σ, |y| ≤ σ′}

iff supp f̆ ⊂ Qσ,σ′ . We now formulate a modification of the Whittaker-
Kotelnikov-Shannon sampling theorem for symplectically bandlimitted func-
tions, which can be proved in a way similar to the proof of Theorem 1 in
[1].

Let ν > 1 be a fixed natural number. For σ, σ′ > 0, the function Φ is
defined by

(3) Φ(x, y) := ϕ(σ, x)ϕ(σ′, y),

where

(4) ϕ(σ, t) := sinc(4πσt){sinc(2πσt/ν)}ν

and sinc(.) is the sinc-functions defined by

sinc(t) :=
{

t−1 sin t for t 6= 0
1 for t = 0.

Put h = 1/4σ, h′ = 1/4σ′.

Theorem 1. Every function f ∈ L2(R2)∩C(R2) symplectically bandlim-
ited to Qσ,σ′ , can be represented by the series
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(5) f(x, y) =
∑

(k,s)∈Z2

f(h′s, hk)Φ(y − hk, x− h′s)

converging uniformly on R2.
The representation (5) is satisfactory for approximation in the square

[−T, T ]2 of symplectically bandlimited functions by the following trunca-
tion sum

(6) (FM,M ′f)(x, y) :=
∑

|k|≤M,|s|≤M ′
f(h′s, hk)Φ(y − hk, x− h′s).

For the error of this approximation we have the following estimate.

Lemma 1. Let f ∈ L2(R2) ∩ C(R2) be symplectically bandlimited to
Qσ,σ′ . Then, for any M > T/h and M ′ ≥ T/h′ we have

‖f − FM,M ′f‖L2([−T,T ]2) ≤ cν‖f‖2T 1/2{σ1−ν(Mh− T )−ν−1/2

+ σ′1−ν(M ′h′ − T )−ν−1/2}.

This lemma can be proved analogously to the proof of Theorem 3 in
[1].

3. Reconstruction of images with small smoothness

We first define a mixed small smoothness (α, β) with 0 < α ≤ 1, 0 <
β ≤ 1 for functions f in L2(R2), with the aid of the second moduli of
smoothness. For u, v ≥ 0, we let the mixed second modulus ω2(f ; u, v) be
defined by

(7) ω2(f ;u, v) := sup
|u′|≤u,|v′|≤v

( ∫

R2

|∆2
u′,v′f(x, y)|2dxdy

)1/2

,

where
∆2

uvf(x, y) := ∆2
u ◦∆2

vf(x, y),

∆2
uf(x, y) := f(x + 2u, y)− 2f(x + u, y) + f(x, y),

∆2
vf(x, y) := f(x, y + 2v)− 2f(x, y + v) + f(x, y).
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The partial second moduli of smoothness ω2
x(f ;u) and ω2

y(f ; v) are defined
by replacing ∆2

uv in the right part of (7) by ∆2
u and ∆2

v, respectively. We
let Bα,β

2 denote the space of all functions f in L2(R2) for which the norm

‖f‖Bα,β
2

:= |f |α,β + |f |α + |f |β + ‖f‖L2(R2)

is finite where

|f |α,β :=
( ∞∫

0

∞∫

0

{
u−αv−βω2(f ;u, v)

}2

dudv/uv
)1/2

,

|f |α :=
( ∞∫

0

{
u−αω2

x(f ; u)
}2

du/u
)1/2

,

|f |β :=
( ∞∫

0

{
u−βω2

y(f ; v)
}2

dv/v
)1/2

.

The set Bα,β
2 consists of all functions in L2(R2) with the common small

mixed smoothness (α, β). In what follows, without the loss of generality we
shall assume that α ≤ β. For (k, s) ∈ Z2

+ := {(m,n) ∈ Z2 : m ≥ 0, n ≥ 0},
define

(γksf)(x, y) =
∫

∆ks

f(u, v)e2πi det
( u x

v y

)
dudv,

where ∆ks := {(x, y) ∈ R2 : [2k−1] ≤ |x| < 2k, [2s−1] ≤ |y| < 2s} (here [t]
denotes the integer part of t ∈ R). The following norms equivalence

(8) ‖f‖Bα,β
2

≈
( ∑

(k,s)∈Z2
+

{2αs+βk‖γksf̆‖L2(R2)}2
)1/2

can be proved by the common method for establishing norms equivalence
of Besov spaces (see [2]). We need this equivalence for estimating the error
of reconstruction of functions of the unit ball

S := {f ∈ Bα,β
2 : ‖f‖Bα,β

2
≤ 1}.

For any ξ > 0, we let

(9) Gξ := {(k, s) ∈ Z2
+ : βk + αs ≤ ξ}.
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Let f be an arbitrary function of S. We shall reconstruct f in the
square [−T, T ]2 from linear continuous functionals of f̆ by the following
truncation sum

(10) Kξ f̆ =
∑

(k,s)∈Gξ

FMkM ′
s

γksf̆ ,

where Mk = [2kT ]−2,M ′
s = [2sT ]−2 and the operators FMkM ′

s
are defined

by (3),(4),(6) with σ = ρ = 2k, σ′ = ρ′ = 2s and M = Mk, M ′ = M ′
s. We

note that Kξ f̆ can be easily rewritten in the form (1). The number of
functionals in Kξ f̆ is determined by the size T and parameter ξ. For any
preassigned precission ε > 0, we shall search ξ := ξ(ε) such that

(11) J := ‖f −Kξ f̆‖L2([−T,T ])2 ≤ ε

for T large enough. We have

(12) J ≤ J1 + J2,

where

J1 := ‖f −
∑

(k,s)∈Gξ

γksf̆‖L2(R2),

J2 :=
∑

(k,s)∈Gξ

‖γksf̆ − FMkM ′
s
γksf̆‖L2([−T,T ]2).

By (8)-(9) and the Parseval equality (2), we obtain the following estimate
for J1: f

(13) J1 ≤ C12−ξ

with some constant C1 not depending on f̆ , ξ and T . Since the functions
γksf̆ ∈ L2(R2)∩C(R2) are symplectically bandlimited to Q2k,2s , applying
Lemma 1 to γksf̆ , (k, s) ∈ Gξ, and the Parseval equality (2), we have

J2 ≤ C2

∑

(k,s)∈Gξ

‖γksf̆‖L2(R2)T
−ν

∑

(k,s)∈Gξ

{2(1−ν)k + 2(1−ν)s}

≤ C3‖f̆‖L2(R2)T
−ν

∑

(k,s)∈Gξ

{2(1−ν)k + 2(1−ν)s} ≤ C4ξT
−ν ,(14)
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with some constants C2, C3, C4 not depending on f̆ , ξ and T . We now use
the preliminary estimates (13)-(14) for determining ξ. Taking

(15) ξ = ξ(ε) := log(2C5/ε),

we get J1 ≤ ε/2. Moreover, for all T satisfying the inequality

T ≥ T0(ε) :=
(
2C5/log(2C4/ε)

)1/ν

,

we have J2 ≤ ε/2. Thus, from (12)-(14) we can conclude that if ξ is
defined by (15), then for all f ∈ S and all T ≥ T0(ε) the inequality (11)
holds.

We note that M(ε, T ) does not exceed the number of functionals of f̆

in Kξ f̆ . Thus,

M(ε, T ) ≤
∑

(k,s)∈Gξ

(2Mk + 1)(2M ′
s + 1) ≤ 4T

∑

βk+αs≤ξ

2k+s.

The sum in the right part of the last inequality can be estimated by

∑

βk+αs≤ξ

2k+s ≤ C72ξ/αξr

with some constant C7 not depending on ξ, where r = 1 for α = β and
r = 0 for α < β. Hence, we obtain for all T ≥ T0(ε)

M(ε, T ) ≤ C7Tε1/ε logr 1/ε.

The inverse inequality is also true. Namely, we proved that for all T ≥
T0(ε)

M(ε, T ) ≥ C8Tε1/ε logr 1/ε.

Thus, we have the following

Theorem 2. Let ε > 0 be a preassigned precision, the following estimates

C ≤ M(ε, T )/Tε1/α logr 1/ε ≤ C ′

hold for any T satisfying the inequality

T ≥ C ′′/ log1/ν 1/ε
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with some constants C, C ′, C ′′ not depending on ε and T ,where r = 1 for
α = β and r = 0 for α < β. Moreover, the reconstruction formula (10) is
asymptically optimal for M(ε, T ).

Remark. It is not difficult to see that one can study the same reconstruc-
tion problem for odinary Fourier transforms and that completely similar
results can be obtained.
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