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SOME RESULTS ON REDUCTION PRINCIPLES,
BIFURCATION AND HOPF BIFURCATION OF

EQUATIONS CONCERNING LIPSCHITZ
CONTINUOUS MAPPINGS

KLAUSS SCHNEIDER AND NGUYEN XUAN TAN

Dedicated to Hoang Tuy on the occasion of his seventieth birthday

Abstract. Some reduction principles of equations independing or de-
pending on a parameter and concerning Lipschitz continuous mappings
are introduced and then are applied to consider the existence of nontriv-
ial solutions and nontrivial periodic solutions with a small norm and the
existence of bifurcation and Hopf bifurcation points of equations concern-
ing Lipschitz continuous mappings in Banach spaces, investigating the
definition and nonvanishing of the topological degree of mappings or the
existence of regular nonzero solutions of algebraic equations in a finite-
dimensional space. Some well-known results of other authors are general-
ized.

Introduction

Throughout of this paper, by X, Y we denote real or complex Banach
spaces with the dual X∗ and Y ∗, respectively. Without misunderstanding,
the same symbols || · ||, 〈., .〉 stand for the norm in X, Y , X∗, Y ∗ and
the paring between elements of X, X∗ and of Y, Y ∗, respectively. They
should be understood in the concrete context. Let Rn stand for the n-
dimensional Euclidean space. It is customary to simplify the notation for
R1 by dropping the superscript, R1 = R. We also use the same symbol
| · | to indicate the norm of Rn for all n = 1, 2, . . . . Let D be an open
bounded subset in X with the closure D. It is well-known that there
are many problems in physics, biochemistry, mechanics and specially, in
applied mathematics which can be formulated as operator equations of
the form

Received April 5, 1996
1991 Mathematics Subject Classification. 34620, 58F10, 47H15.
Key words. Reduction principles, Bifurcation, Hopf bifurcation, Fredholm mapping,
nontrivial solutions, periodic solutions, Lipschitz continuous mappings.
The second author is supported by the Institute of Applied Analysis and Statistics in
Berlin, Germany.



428 K. SCHNEIDER AND N. X. TAN

(1) F (x) = 0, x ∈ D,

where F is, in general, a nonlinear mapping from D into Y . If we can
describe the solution set of this equation in some neighborhood of a known
solution we can solve our problems. We assume that by some manner
we already know a solution x0 of (1) i.e. F (x0) = 0. Without loss of
generality we take x0 = 0 and hence the set D is supposed to be an
open bounded neighborhood of the origin in X. In the case when the
mapping F is continuously Fréchet (or Hadamar) differentiable at x0 = 0
and its derivative Fx(0) is a one-to-one mapping from X onto Y , using
the Implicit Function Theorem, one can show that x0 = 0 is an isolated
solution of this equation. In the case the derivative Fx(0) is not one-to-
one or, in general, the mapping F is not differentiable, some methods,
for instance, Lyapunov-Schmidt procedure (see, for example, [16]), Center
manifold method (see, for example, [3], [12], [15]), alternative method (see,
for example, [4]) etc. are used to describe the solution set of the equation
(1) in a neighborhood of a given solution. The main idea of these methods
is as follows: If X and Y are finite dimensional spaces, one reduces the
above equation to two equations on lower dimensional spaces which are
simpler to be solved and better geometric insight. If the spaces X and Y
are infinite dimensional Banach spaces, one reduces this equation to two
equations, one equation is in an infinite space which can be easily solved by
some well-known methods as the Implicit Function Theorem, the Banach
Contraction Principle, the topological methods etc., the other equation
is in a finite dimensional space. The reduction also forms a qualitative
simplification. It then follows that if we have described the solution set
of the reduced equations, then we can also describe the solution set of
the original equation. These methods have been studied in many different
settings and by many authors.

The purpose of this paper is to describe some reduction principles for
equations independing or depending on a parameter and concerning Lip-
schitz continuous mappings and to use these principles to consider the
existence of nontrivial solutions of stationary equations, nontrivial peri-
odic solutions of dynamic systems, the existence of bifurcation and Hopf
bifurcation points of equation depending on a parameter. The plan of the
paper is as follows. In Section 1 we introduce the reduction principles to
describe the solution set of the equation

T (u) + H(u) + K(u) = 0, u ∈ D,
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in a neighborhood of the solution x0 = 0, the periodic solution set of the
dynamic system

u̇ + T (u) + H(u) + K(u) = 0, u ∈ D,

with T being a linear continuous mapping and H,K being Lipschitz con-
tinuous mappings. Further, we consider the cases of equations depending
on a parameter. First, we investigate equation of the form

T (u) + L(λ, u) + H(λ, u) + K(λ, u) = 0, (λ, u) ∈ Λ×D,

where Λ is an open subset of a normed space, for any λ ∈ Λ, T, L(λ, .) are
linear continuous mappings and H(λ, .),K(λ, .) are Lipschitz continuous
mappings with H(λ, 0) = K(λ, 0) = 0.

This problem leads to bifurcation problems. We describe the solution
set of this equation in a neighborhood (λ, 0), where λ ∈ Λ satisfies some
sufficient conditions to be imposed later. In the end of this section we
introduce the reduction principle for dynamic systems depending on a
parameter of the form

u̇ + T (u) + L(λ, u) + H(λ, u) + K(λ, u) = 0, (λ, u) ∈ Λ×D,

with T, L,H, K as above. We want to describe the periodic solution set
of this dynamic system in a neighborhood of a given solution (λ, 0) with
λ satisfying some sufficient conditions below. This problem leads to Hopf
bifurcation problems.

Section 2 is devoted to the existence of nontrivial solutions of equation
independing on a parameter. In this section we assume that the linear
part of considered equations is a Fredholm mapping with nullity n and
index zero. Using the reduction principles introduced in Section 1, we
reduce each of these equations to two equations, one equation is in a
infinite dimensional space which is easily solved by the Banach Contraction
Principle, the other equation is in a finite dimensional Euclidean space
defined by the null space of the linear part. The solving of the last one
can be reduced to the problem of finding conditions on the definition and
nonvanishing of the topological degree of the mappings or on the existence
of regular nonzero solutions of algebraic equations in a finite dimensional
Euclidean space.

Section 3 is devoted to bifurcation problems concerning Lipschitz con-
tinuous mappings. We assume that λ ∈ Λ is a characteristic value of the
pair (T,L) (i.e. T (v)+L(λ, v) = 0 for some v 6= 0) such that the mapping
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T + L(λ, .) is Fredholm with nullity p and index zero. Using the result
obtained in Section 1, we reduce the bifurcation problem of the equation

T (u) + L(λ, u) + H(λ, u) + K(λ, u) = 0, (λ, u) ∈ Λ×D,

to the bifurcation equation in a finite dimensional Euclidean space. To
solve this bifurcation equation, we find some sufficient conditions on the
definition and nonvanishing of the topological degree of mappings or, on
the existence of regular nonzero solutions of algebraic equations in a fi-
nite dimensional Euclidean space. The results in this section generalize
some well-known results obtained by McLeod and Sattinger [11], Buchner,
Marsden and Schecter [1] and by Crandall and Rabinowits [5] in the case
of simple characteristic values.

In Section 4, we consider the existence of Hopf bifurcation points of
periodic solutions of the equation

u̇ + T (u) + L(λ, u) + H(λ, u) + K(λ, u) = 0

with T,L, H,K as above. It is well-known that in the year 1942, Hopf [7]
proved the existence of the bifurcation of periodic solutions of the equation
u̇ = F (λ, u) at a critical λ under the conditions:

a) The eigenvalue σ(λ) of Fx(λ, 0) crosses the imaginary axis for critical
λ = λ with Reσ′(λ) 6= 0, where σ′ denotes the derivative of σ with respect
to λ.

b) The purely imaginary eigenvalue σ(λ) = ±iµ0 is simple.

c) Fx(λ, 0) has no eigenvalue of the form ±kµ0, k = 0, 2, ....

There are several generalizations of Hopf’s result (see the papers of
Ize [9], Chafee [2], Schmidt [13], Kielhöfer [10, etc.). In [10], Kielhöfer
investigated the Hopf bifurcation of the equation

u̇ + Au + B(λ)u = F (λ, u)

in a Hilbert space with mappings B, F depending analytically in λ and
B(0) = 0. The mapping A is assumed to have a purely imaginary eigen-
value ±iµ0 with multiplicity r ≥ 1. Then, he studied the bifurcation
of periodic solutions at λ = 0, using the method of Lyapunov-Schmidt
for evolution equations, following Iudovich [8]. This reduces the above
problem to the bifurcation equation in R2r of the form

Dv + B̃(λ)v + G(µ), v) = 0.
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The parameter µ corresponds to the unknown period of the bifurcating
solution. The vector v belongs to R2r−1 and the linear operators D and
B̃(λ) as well as the nonlinear operator G(µ, λ, .) map R2r−1 into R2r. He
then found some necessary and sufficient conditions for the Hopf bifurca-
tion of the above system, showing that the positive number of branches
which bifurcate at λ = 0 depends on the number of nontrivial solutions of
four algebraic equations in R2r.

Let λ ∈ Λ be such that the mapping T + L(λ, .) is Fredholm and has
±iβ0, β0 6= 0 as eigenvalue with multiplicity p ≥ 0. We use Theorem 4
in Section 1 to reduce the above equation to the bifurcation equation in
R2p. We shall find some sufficient conditions on the existence of the Hopf
bifurcation, by studying the definition and nonvanishing of the topological
degree of four mappings in R2p, or the existence of regular nonzero solu-
tions of four algebraic equations in R2p. Our four algebraic equations in
R2p are different from the ones defined by Keilhöfer in [10]. At the end of
this section we consider the special case when p = 1. Our results generalize
Hopf’s bifurcation theorem. The results in this section are also true when
the mapping T + L(λ, .) has ±inβ0 (for a finite number of n = 0, 2, ...) as
eigenvalues with a finite multiplicity.

1. The reduction principles

In what follows we shall describe the solution set of the equation (1)
in a neighborhood of a given solution with F of several forms. We first
consider the equation

(2) T (u) + H(u) + K(u) = 0, u ∈ D,

where T is a linear continuous mapping from X into Y , H and K are
nonlinear mappings from D into Y with H(0) = K(0) = 0. Further we
make the following hypotheses on these mappings and the spaces X,Y .

Hypothesis 1. There exist two finite dimensional spaces X0 ⊂ X and
Y0 ⊂ Y with dim X0= dim Y0 = n and two continuous projections PX :
X → X0 and PY : Y → Y0 such that

TPX(x) = PY T (x) for all x ∈ X,

and if we set QX = I − PX , QY = I − PY

X1 = QX(X), Y1 = QY (Y )

with I denoting the identity mapping, then the following hold
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(i) Ker T = {x ∈ X / T (x) = 0} ⊂ X0,

(ii) the linear problem

T (v) = f, f ∈ Y1

has a unique solution v = Π(f) ∈ X1, where the operator Π : Y1 → X1 is
continuous.

Hypothesis 2. There exists a real number a > 1, a constant k1 > 0 and
a real increasing continuous function ρ : R → R with lim

δ→0
ρ(δ) = 0 such

that

(i) H(tu) = taH(u) holds for all t ∈ [0, 1], u ∈ D,

(ii) ||QY H(u)−QY H(v)|| ≤ k1||u− v|| holds for all u, v ∈ D,

(iii) |α|−a||K(αu)|| → 0 as α → 0 uniformly in u ∈ D,

(iv) ||QY K(u)−QY K(v)|| ≤ ρ(||u− v||)||u− v|| holds for all u, v ∈ D.

Now, by choosing D′ ⊂ D smaller if necessary we may suppose that
D = D(0, r), the open ball with the center at the origin and the radius
r > 0 in X. Also, we assume that D0 = PX(D) and D1 = QX(D) are
open balls in X0 and X1, respectively, say D1 = D1(0, r1). Further, let
{v1, ..., vn} be a basis of the space X0. Let

U1 =
{

x = (x1, ..., xn) ∈ Rn /

n∑

j=1

xjv
j ∈ D0

}
.

Without loss of generality we also assume that U1 = U(0, r0), the open
ball with the center at the zero in Rn and the radius r0 > 0.

Theorem 1. Under Hypotheses 1 and 2 there exists a number t0 ∈ (0, 1]
such that for any x ∈ t0U1 one can find a unique ψ(x) ∈ t0D1 with the
following properties:

(i)
n∑

j=1

xjv
j + ψ(x), x = (x1, ..., xn), is a solution of the equation

QY

(
T (u) + H(u) + K(u)

)
= 0.

(ii) There exists a constant k2 > 0 such that for any x1, x2 ∈ t0U1 we
have

||ψ(x1)− ψ(x2)|| ≤ k2|x1 − x2|

(iii) ||ψ(|α|x)|| = o(|α|) as α → 0 uniformly in x ∈ U1, ψ(0) = 0.
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(iv) If x ∈ t0U1, x = (x1, ..., xn) is a solution of the equation

PY (T (
n∑

j=1

xjv
j + ψ(x)) + H(

n∑

j=1

xjv
j + ψ(x)) + K(

n∑

j=1

xjv
j + ψ(x)) = 0,

then
n∑

j=1

xjv
j + ψ(x) is a solution of the equation (2).

(v) If u ∈ t0D is a solution of the equation (2), then there exists a
unique x ∈ t0U1 such that

PX(u) =
n∑

j=1

xjv
j

and
QX(u) = ψ(x).

Proof. Let U1, D1 be as mentioned above. For any t ∈ (0, 1] we set
U(t) = tU1 and D(t) = tD1 and define the mapping G : U1×D1 → X1 by

G(x,w) = ΠQY

(
H

( n∑

j=1

xjv
j + w

)
+ K

( n∑

j=1

xjv
j + w

))
,

(x,w) ∈ U1 ×D1.

Now, for x ∈ U(t), w1, w2 ∈ D(t) we can write x = tx′, wi = twi, with
x′ ∈ U1, w

i ∈ D1, i = 1, 2. Therefore, we have

||G(x,w1)−G(x,w2)|| ≤ ||ΠQY ||{k1|t|a−1||w1 − w2||
+ ρ(t||w1 − w2||)||w1 − w2||}

≤ ||ΠQY ||(k1|t|a−t + ρ(2r1t)||w1 − w2||
= C1(t)||w1 − w2||,

where
C1(t) = ||ΠQY ||(k1|t|a−1 + ρ(2r1t)).

And for w ∈ D(t), w = tw′, we have

||G(x,w)|| ≤ ||ΠQY ||(k1|t|a(r0 + r1) + tρ(2r1t)r1)

= C2(t).t,
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where
C2(t) = ||ΠQY ||(k1|t|a−1(r0 + r1) + ρ(2r1t)r1).

Since C1(t), C2(t) → 0 as t → 0, we conclude that there exists a number
t0 ∈ (0, 1] with 0 ≤ C1(t0) < 1 and 0 < C2(t0) < r1. It then follows that
for any x ∈ U(t0) the mapping G(x, .) is a contraction mapping and maps
D(t0) into itself. Applying the Banach Contraction Principle, we deduce
that there exists a unique point ψ(x) ∈ D(t0) satisfying

ψ(x) = G(x, ψ(x)).

This implies

QY

(
T (ψ(x)) + H

( n∑

j=1

xjv
j + ψ(x)

)
+ K

( n∑

j=1

xjv
j + ψ(x)

))
= 0.

Together with the fact T
( n∑

j=1

xjv
j
)

= 0 we obtain the proof of (i).

Now, let x1, x2 ∈ t0U1, x
i = t0x

i, i = 1, 2. We have

||ψ(x1)− ψ(x2)|| = ||G(x1, ψ(x1))−G(x2, ψ(x2))||
≤ ||ΠQY ||{k1|t0|a−1(|x1 − x2|+ ||ψ(x1)− ψ(x2)||

+ ρ(2(r0 + r1)t0)(|x1 − x2|+ ||ψ(x1)− ψ(x2)||}.

It follows

(3) ||ψ(x1)− ψ(x2)|| ≤ C3(t0)
1− C3(t0)

||x1 − x2||,

with
C3(t0) = ||ΠQY ||(k1|t0|a−1 + ρ(2(r0 + r1)t0)).

By choosing t′0 < t0 if necessary we also assume that C3(t0) < 1. There-

fore, to complete the proof of (ii) it remains to set k2 =
C3(t0)

1− C3(t0)
.

Now, we prove (iii). Since H(0) = K(0) = 0, we then have G(0, 0) = 0,
and hence ψ(0) = 0. Therefore, it implies from (3) that for x ∈ U(t0) and
α ∈ (−1, 1) we have ∣∣∣

∣∣∣ψ(|α|x)
α

∣∣∣
∣∣∣ ≤ k2.
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Further, we can see that
∣∣∣
∣∣∣ψ(|α|x)

α

∣∣∣
∣∣∣ ≤ ||ΠQY ||(k1|α|a−1

(
|x|+

∣∣∣
∣∣∣ψ(|α|x)

α

∣∣∣
∣∣∣
)

+ ρ
(
|α|

(
|x|+

∣∣∣
∣∣∣ψ(|α|x)

α

∣∣∣
∣∣∣
)(
|x|+

∣∣∣
∣∣∣ψ(|α|x)

|α|
∣∣∣
∣∣∣
))

≤ ||ΠQY ||(k1|α|a−1(r0 + k2) + ρ(|α|(r0 + k2)(r0 + k2))

holds for all α ∈ (−1, 1) small enough. It follows

lim
|α|→0

||ψ(|α|x)
|α| || = 0,

or ||ψ(|α|x|)|| = o(|α|) as |α| → 0. This proves (iii).

(iv) is obvious. Finally, we need only prove (v). Let u ∈ t0D be a
solution of the equation (2). We have PX(u) ∈ t0D0. It follows that there

exists x ∈ t0U1 such that PX(u) =
n∑

j=1

xjv
j and QX(u) is a fixed point

of the mapping G(x, .). Since ψ(x) is a unique fixed point of G(x, .), we
conclude QX(u) = ψ(x).

This completes the proof of the theorem.

Next, we consider the dynamic system of the form

(4) u̇ + T (u) + H(u) + K(u) = 0, u ∈ D,

where T , H and K satisfy the same hypotheses as above. The Banach
space X is continuously embedded in Y . By a solution of (4) we mean
a continuously differentiable mapping x : R → X such that the following
properties hold

(a) x(t) ∈ X for all t ∈ I,

(b) ẋ(t) + T (x(t)) + H(x(t)) + K(x(t)) = 0 for all t ∈ R.

Let X = C2π(R,X) be the space of all 2π-periodic continuous differ-
entiable mappings u : R → X. Let Y = C0([0, 2π], Y ) be the space of all
2π-periodic continuous mappings h : [0, 2π] → Y . One can easily verify
that X and X ∗ = C2π(R, X∗), Y and Y∗ = C0([0, 2π], Y ∗) is a pair of
dual spaces, respectively. The inner products between X and X ∗, Y and
Y∗ are denoted by the same symbol 〈, 〉 and defined by

〈u, v〉 =

2π∫

0

(u(t), v(t))dt
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for (u, v) ∈ X ×X ∗ or (u, v) ∈ Y×Y∗. The norm in X (Y) is defined by the
sup-norm ||u|| = supt∈R ||u(t)||. It is clear that u0 = 0 is a solution of (4).
Now, to given ε > 0 we want to find a solution uε of (4) with 0 < ||uε|| < ε
and uε is a Tε-periodic mapping with |Tε − 2π| < ε. We say that uε is a
nontrivial periodic solution with small norm. Setting t = (1 + ρ)τ in the
equation (4) we obtain the equation

(5) u̇ + (1 + ρ){T (u) + H(u) + K(u)} = 0,

(ρ, u) ∈ I1 ×D, I1 = (−1, 1),

and D = {u ∈ C2π(R, X) / u(t) ∈ D for all t ∈ R}.
Now we make the following assumptions on these mappings and the

spaces X ,Y.

Hypothesis 3. There exist two finite dimensional spaces X0 ⊂ X and
Y0 ⊂ Y with dimX0 = dimY0 = n and two continuous projections PX :
X → X0 and PY : Y → Y0 such that

( d

dt
+ T

)
PX (x) = PY

( d

dt
+ T

)
(x) for all x ∈ X,

and if we set

QX = I − Px, QY = I − PY
X1 = QX (X ), Y1 = QY(Y),

then the following hold

(i) Ker
( d

dt
+ T

)
=

{
x ∈ X /

dx

dt
+ T (x) = 0

}
⊂ X0,

(ii) the linear problem

dv

dt
+ T (v) = f, f ∈ Y1

has a unique solution v = Π(f) ∈ X1, where the operator Π : Y1 → X1 is
continuous.

Hypothesis 4. Hypothesis 2 is satisfied with D replaced by D and the
norm ||.|| is replaced by the sup-norm.

Further, as before we assume D = D(0, r),D1 = QX (D) = D1(0, r1).
Let {φ1, ..., φn} be a basis of the space X0. We also assume

U1 =
{

x = (x1, ..., xn) ∈ Rn /

n∑

j=1

xjφ
j ∈ D0

}
= U1(0, r0).
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We have

Theorem 2. Under Hypotheses 3 and 4 there exists a number t0 ∈ (0, 1]
such that for any α ∈ t0I1, x ∈ t0U1 one can find a unique ψ(α, x) ∈ t0D1

with the following properties

(i) (α,
n∑

j=1

xjφ
j +ψ(α, x)), x = (x1, ..., xn), is a solution of the equation

QY(u̇ + (1 + ρ){T (u) + H(u) + K(u)}) = 0.
(ii) There exists a constant k3 > 0 independent of α such that for

x1, x2 ∈ t0U1 α ∈ t0I1 we have

||ψ(α, x1)− ψ(α, x2)|| ≤ k3|x1 − x2|.

(iii) ||ψ(|α|d, |α|x)|| = o(|α|) as α → 0 uniformly in x ∈ t0U1 for
d = a, a− 1 and ψ(α, 0) = 0 for all α ∈ t0I1.

(iv) If x ∈ t0U1, x = (x1, ..., xn), is a solution of the equation

PY
(d

( n∑
j=1

xjφ
j + ψ(α, x)

)

dt

)
+ (1 + α)

{
T

( n∑

j=1

xjφj + ψ(α, x)
)
+

H
( n∑

j=1

xjφ
j + ψ(α, x)

)
+ K

( n∑

j=1

xjφ
j + ψ(α, x)

)}
= 0

with α ∈ t0I1, then
(
α,

n∑
j=1

xjφ
j+ψ(α, x)

)
is a solution of the equation (5).

(v) If (α, u) ∈ t0I1 × t0D is a solution of the equation (5), then there
exists a unique x ∈ t0U1 such that

PX (u) =
n∑

j=1

xjφ
j

and
QX (u) = ψ(α, x).
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Proof. The proof of this theorem proceeds exactly as the one of Theorem
1 with the mapping G : U1 × D1 → X1 replaced by the mapping G :
I1 × U1 ×D1 → X1 defined by

G(α, x,w) = ΠQY(αT
( n∑

j=1

xjφ
j + w

)

+ H
( n∑

j=1

xjφ
j + w

)
+ K

( n∑

j=1

xjφ
j + w)

)
.

Further, we consider the following equation depending on a parameter

(6) T (u) + L(λ, u) + H(λ, u) + K(λ, u) = 0, (λ, u) ∈ Λ×D,

where D is as above, Λ is an open subset of a normed space. For any
fixed λ ∈ Λ, T, L(λ, .) are continuous linear mappings from X into Y ,
H(λ, .),K(λ, .) are nonlinear mappings from D into Y and H(λ, 0) =
K(λ, 0) = 0.

Let λ ∈ Λ be given. We make the following hypotheses on these map-
pings and spaces.

Hypothesis 5. Hypothesis 1 is satisfied with T replaced by T + L(λ, .)
everywhere.

Hypothesis 6. There exists a real number b such that αL(λ, v) =
L(αbλ, v) holds for all α ∈ [0, 1], v ∈ D.

Hypothesis 7. There exist a real number a > 1, a constant k1 and a
continuous increasing real function ρ : R → R with limδ→0 ρ(δ) = 0 such
that

(i) H(λ, tu) = taH(λ, u) holds for all t ∈ [0, 1], u ∈ D,λ ∈ Λ,

(ii)
∣∣∣
∣∣∣QY H

( λ

(1 + α)b
, u

)
−QY H

( λ

(1 + α)b
, v

)∣∣∣
∣∣∣ ≤ k1||u− v|| holds for

all α ∈
(
−1

2
,
1
2

)
, u, v ∈ D,

(iii)
∣∣∣
∣∣∣ |α|−aK

( λ

(1 + α)b
, αu

)∣∣∣
∣∣∣ → 0 as α → 0 uniformly in u ∈ D,

(iv)
∣∣∣
∣∣∣QY K

( λ

(1 + α)b
, u

)
−QY K

( λ

(1 + α)b
, v

)∣∣∣
∣∣∣ ≤ ρ(||u− v||)||u− v||

holds for all α ∈ (−1
2
,
1
2
), u, v ∈ D, where b is from Hypothesis 6.
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Let us take I1 ⊂
(
− 1

2
,
1
2

)
such that

λ

1 + α
∈ Λ holds for all α ∈ I1.

Let D0, D1, U1, {v1, ..., vn} be as above. We have

Theorem 3. Under Hypotheses 5, 6 and 7 there exists a point t0 ∈ (0, 1]
such that for any α ∈ t0I1, x ∈ t0U1 one can find a unique ψ(α, x) ∈ t0D1

with the following properties

(i)
n∑

j=1

xjv
j + ψ(α, x), x = (x1, ..., xn), is a solution of the equation

QY

(
T (u) + L

( λ

(1 + α)b
, u

)
+ H

( λ

(1 + α)b
, u

)
+ K

( λ

(1 + α)b
, u

))
= 0,

(α, u) ∈ I ×D.

(ii) There exists a constant k2 > 0 such that for any α ∈ t0I1, x
1, x2 ∈

t0U1 we have
||ψ(α, x1)− ψ(α, x2)|| ≤ k|x1 − x2|

(iii) ||ψ(|α|a−1, |α|x)|| = 0(|α|) as |α| → 0 uniformly in x ∈ t0U1,
ψ(α, 0) = 0 for any α ∈ t0I1.

(iv) If x ∈ t0U1, x = (x1, ..., xn), is a solution of the equation

PY

(
T

( n∑

j=1

xjv
j + ψ(α, x)

)
+ L

( λ

(1 + α)b
,

n∑

j=1

xjv
j + ψ(α, x)

)
+

H
( λ

(1 + α)b
,

n∑

j=1

xjv
j +ψ(α, x)

)
+K

( λ

(1 + α)b
,

n∑

j=1

xjv
j +ψ(α, x)

))
= 0,

α ∈ t0I1,

then
n∑

j=1

xjv
j +ψ(α, x) is a solution of the equation (6) with λ =

λ

(1 + α)b
.

(v) If u ∈ t0D is a solution of the equation (6) with λ =
λ

(1 + α)b
, α ∈

t0I1, then there exists a point x ∈ t0U1 such that PX(u) =
n∑

j=1

xjv
j and

QX(u) = ψ(α, x).

Proof. The proof of this theorem proceeds exactly as the one of Theorem
1 with the mapping G : U1 × D1 → X1 replaced by the mapping G :
I1 × U1 ×D1 → X1 defined by
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G = (α, x,w) = ΠQY

(
α
(
T

n∑

j=1

xjv
j + w

)
+

(1+α)bH
( λ

(1 + α)b
,

n∑

j=1

xjv
j +w

)
+(1+α)bK

( λ

(1 + α)b
,

n∑

j=1

xjv
j +w

))
.

Next, we consider the following dynamic system depending on a pa-
rameter

(7) u̇ + T (u) + L(λ, u) + H(λ, u) + K(λ, u) = 0, (λ, u) ∈ Λ×D,

where Λ, D are as above, T, L,H and K are as in the equation (6). Let
λ ∈ Λ be given. To any ε > 0 we want to seek a solution (λε, uε) of (7)
with |λε − λ| < ε, 0 < ||uε|| < ε and uε is a Tε-periodic mapping with
|Tε−2π| < ε. As before, setting t = (t+ρ)τ in the equation (7) we obtain

u̇ + (1 + ρ){T (u) + L(λ, u) + H(λ, u) + K(λ, u)} = 0,

(8) (ρ, λ, u) ∈ I1 × Λ×D.

Now, let X ,Y,D be defined as above and λ ∈ Λ be given. We make the
following hypotheses on these mappings and spaces.

Hypothesis 8. Hypothesis 3 is satisfied with the mapping T replaced by
the mapping T + L(λ, .) everywhere.

Hypothesis 9. Hypothesis 6 is satisfied with D replaced by D.

Hypothesis 10. Hypothesis 7 is satisfied with D replaced by D and the
norm ||.|| is replaced by the sup-norm.

We have

Theorem 4. Under Hypotheses 8, 9 and 10 there exists a point t0 ∈ (0, 1]
such that for any ρ ∈ t0I1, α ∈ t0I1, x ∈ t0U1 one can find a unique
ψ(ρ, α, x) ∈ t0D1 with the following properties

(i)
n∑

j=1

xjφ
j + ψ(ρ, α, x), x = (x1, ..., xn), is a solution of the equation

QY
{

u̇ + (1 + ρ)
{

T (u) + K
( λ

(1 + α)b
, u

)
+

H
( λ

(1 + α)b
, u

)
+ K

( λ

(1 + α)b
, u

)}}
= 0.
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(ii) There exists a constant k2 > 0 such that for any ρ, α ∈ t0I1, x1,
x2 ∈ t0U1 we have

||ψ(ρ, α, x1)− ψ(ρ, α, x2)|| ≤ k2|x1 − x2|.

(iii) ||ψ(|α|c, |α|d, |α|x)|| = o(|α|) as |α| → 0 for all c, d = a, a − 1,
ψ(ρ, α, 0) = 0 for all ρ, α ∈ t0I1.

(iv) If x ∈ t0U1 is a solution of the equation

PY
{d

( n∑

j=1

xjφ
j + ψ(ρ, α, x)

)

dτ
+ (1 + ρ)

(
T

n∑

j=1

xjφ
j + ψ(ρ, α, x)

)
+

L
( λ

(1 + α)b
,

n∑

j=1

xjφ
j + ψ(ρ, α, x)

)
+ H

( λ

(1 + α)b
,

n∑

j=1

xjφ
j + ψ(ρ, α, x)

)

+K
( λ

(1 + α)b
,

n∑

j=1

xjφ
j + ψ(ρ, α, x)

)}
= 0

then
(
ρ, α,

n∑
j=1

xjφ
j+ψ(ρ, α, x)

)
satisfies the equation (8) with λ =

λ

(1 + α)b
·

(v) If u ∈ t0D is a solution of the equation (8) with ρ ∈ t0I1, λ =
λ

(1 + α)b
, α ∈ t0I1, then there exists a point x ∈ t0U1 such that PX (u) =

n∑
j=1

xjφ
j and QX (u) = ψ(ρ, α, x).

Proof. The proof of this theorem proceeds exactly as the one of Theorem
1 with the mapping G : U1 × D1 → X1 replaced by the mapping G :
I1 × I1 × U1 ×D1 → X1 defined by

G(ρ, α, x, w) = ΠQY
(α− ρ

1 + ρ

d
( n∑

j=1

xjφ
j + w

)

dτ
+ αT

( n∑

j=1

xjφ
j + w

)

+(1+α)bH
( λ

(1 + α)b
,

n∑

j=1

xjφ
j +w

)
+(1+α)bK

( λ

(1 + α)b

n∑

j=1

xjφ
j +w

))

(ρ, α, x, w) ∈ I1 × I1 × U1 ×D1.
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2. The existence of nontrivial solutions

First, we consider the existence of nontrivial solutions of the equation
(2) in a neighborhood of the origin. We assume that the mapping T is
Fredholm with nullity p and index zero. By T ∗ we denote the adjoint
mapping of the mapping T . Let

kerT = [v1, ..., vp],

kerT ∗ = [ψ1, ..., ψp].

By the Haln-Banach Theorem there exist p functionals on X and p
elements in Y such that 〈vj , fk〉 = δjk, 〈ψn, zm〉 = δnm, j, k, m, n =
1, ..., p. We set

X0 = [v1, ..., vp],

X1 = {y ∈ X / 〈y, fk〉 = 0, k = 1, ..., p}
Y0 = [z1, ..., zp]

Y1 = {y ∈ Y / 〈y, ψk〉 = 0, k = 1, ..., p}.

The projectors PX : X → X0, PY : Y → Y0 are defined by

PX(x) =
p∑

k=1

〈x, fk〉vk, PY (y) =
p∑

k=1

〈y, ψk〉zk.

QX and QY are defined as in Hypothesis 1. One can easily verify that
Hypothesis 1 is satisfied. In what follows we assume that the mappings H
and K satisfy Hypothesis 2. Therefore, the mapping H can be considered
to be defined in whole X. Indeed, for any x ∈ X there exists a number

α > 0 such that αx ∈ D. We put H(x) =
1
αa

H(α, x). Further, we define

the mapping A : Rp → Rp, A = (A1, ..., Ap), by

Ak(x) =
〈
H

( p∑

j=1

xjv
j
)
, ψk

〉
, x = (x1, ..., xp) ∈ Rp.

We impose the following hypothesis on this mapping

Hypothesis 11. There exists an open bounded subset Ω ⊂ Rp such that
the topological degree, deg (A, Ω, 0), of the mapping A with respect to Ω
and the origin is defined and different from zero.
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We have

Theorem 5. Let H and K satisfy Hypothesis 2 and let Hypothesis 11 be
satisfied. Let t0, ψ exist by Theorem 1. Then there exists a neighborhood
I0 ⊂ t0I1 such that for any α ∈ I0 one can find x(α) ∈ Ω such that

u(α) =
p∑

j=1

|α|xj(α)vj+ψ(|α|x(α)), x(α) = (x1(α), ..., xp(α)), is a solution

of the equation (2). Moreover, u(α) 6= 0 for α 6= 0 if x(α) 6= 0.

Proof. Since Ω is bounded, we can take a neighborhood I2 of zero in R,
I2 ⊂ t0I1 such that αΩ ⊂ t0U1 holds for all α ∈ I2. We define the mapping
E : I2 × Ω → Rp, E = (E1, ..., Ep), by

Ek(α, x) =





〈
H

( p∑

j=1

xjv
j +

ψ(|α|x)
|α

)
+

+|α|−aK
( p∑

j=1

|α|xjv
j +

ψ(α|x)
|α|

)
, ψk

〉
for α 6= 0,

〈
H

( p∑

j=1

xjv
j
)
, ψk

〉
, for α = 0.

Using the assertion (iii) of Theorem 1 and the continuity of the mappings
H and K we conclude that E is a continuous mapping. We claim that there
exists a neighborhood I0 ⊂ I2 such that E(t, α, x) 6= 0 for all α ∈ I0, t ∈
[0, 1] and x ∈ ∂Ω. Indeed, by contrary we assume that this claim is not

true. It then follows that for any n there exist αn ∈ In ⊂ 1
n

I2, tn ∈ [0, 1]

and xn ∈ ∂Ω such that E(tnαn, xn) = 0. Since the topological degree deg
(A, Ω, 0) is defined, we deduce that tnαn 6= 0. Without loss of generality
we may assume tn → t, xn → x ∈ ∂Ω, αn → 0. Hence, ||ψ(|tnαn|xn)|| → 0
as n → +∞. Letting n → +∞ we obtain E(0, x) = 0, or A(x) = 0 with
x ∈ ∂Ω and we have a contradiction. This proves the claim. Consequently,
for any α ∈ I0, the topological degree deg(E(α, .), Ω, 0) is defined and

deg(E(α, .), Ω, 0) = deg(A,Ω, 0) 6= 0.

Therefore, for any α ∈ I0 there exists x(α) ∈ Ω such that E(α, x(α)) = 0.
Multiplying both sides of this equality with |α|a, α 6= 0, we obtain

〈
H

( p∑

j=1

|α|xjv
j + ψ(|α|x(α))

)
+ K

( p∑

j=1

|α|xjv
j + ψ(|α|x(α))

)
, ψk

〉
= 0.
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Together with the fact
〈
T

( p∑
j=1

|α|xjv
j +ψ(|α|x(α))

)
, ψk

〉
= 0 we conclude

PY

(
T

( p∑

j=1

|α|xjv
j + ψ(|α|x(α))

)
+ H

( p∑

j=1

|α|xjv
j + ψ(|α|x(α))

)
+

K
( p∑

j=1

|α|xjv
j + ψ(|α|x(α))

))
= 0.

Applying the assertion (iv) of Theorem 1, we verify that
p∑

j=1

|α|xjv
j +

ψ(|α|x(α)) is a solution of the equation (2).

Now, we assume that
p∑

j=1

|α|xjv
j + ψ(|α|x(α)) = 0 for α 6= 0. It then

follows
p∑

j=1

xjv
j =

−ψ(|α|x(α))
|α| ∈ X0 ∩X1 = {0} and hence xj(α) = 0 for

all j = 1, ..., p, or x(α) = 0. This completes the proof of the theorem.

Remark 1. If Ω does not contain zero, then x(α) 6= 0 for all α ∈ I0, α 6= 0.

Next, we prove some sufficient conditions to show the existence of non-
trivial periodic solutions of small norm of the equation (4). We assume
that the linear mapping T is Fredholm and has ±iβ0 as eigenvalues with
multiplicity p. For the sake of simplicity of notation we also suppose that
T has no eigenvalue of the form ±niβ0, n = 0, 2, ... (the following theorem
are also valid for the case when the mapping T has a finite number of
eigenvalues of the form ±niβ0). Without loss of generality we set β0 = 1.
Let

Ker(T + iI) = [v1, ..., vp],

Ker(T + iI)∗ = [γ1, ..., γp].

It then follows

Ker(
d

dt
+ T ) = [φ1, ..., φ2p],

Ker(
d

dt
+ T )∗ = [ψ1, ..., ψ2p],

with

φ2k−1(t) = Re(eitvk), φ2k(t) = Im(eitvk),

ψ2k−1(t) = Re(eitγk), ψ2k(t) = Im(eitγk), k = 1, ..., p.
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Let X ,Y be defined as in the equation (4). By the Hahn Banach
Theorem one can find 2p functionals f1, ..., f2p on X and 2p elements
z1, ..., z2p on Y with 〈φj , fk〉 = δjk; 〈zj , ψk〉 = δjk, j, k = 1, ..., 2p. We
put

X0 = [φ1, ..., φ2p],X1 = {x ∈ X / 〈x, fk〉 = 0, k = 1, ..., 2p},
Y0 = [z1, ..., z2p],Y1 = {x ∈ Y / 〈y, ψk〉 = 0, k = 1, ..., 2p}.

The projection PX : X → X0, PY : Y → Y0 are defined by

PX (x) =
2p∑

k=1

〈x, fk〉φk; PY(y) =
2p∑

k=1

〈y, ψk〉zi,

and the projection QX : X → X1; QY : Y → Y1 are defined as in Hypoth-
esis 3. It then easily verifies that Hypothesis 3 is satisfied.

Further in the sequel for σ = 1 or σ = −1 we define the following
mappings A : R2p → R2p, Bσ : R2p → R2p, A = (A1, ..., A2p), Bσ =
(Bσ

1 , ..., Bσ
2p), by

Ak(x) =
〈
H

( 2p∑

j=1

xjφ
j
)
, ψk

〉
,

Bσ
k (x) = σ

〈
T

( 2p∑

j=1

xjφ
j
)
, ψk

〉
+ Ak(x), k = 1, ..., 2p.

We make the following hypotheses on these mappings.

Hypothesis 12. There exists a point x∗ ∈ R2p and a neighborhood U∗ of
x∗ in R2p such that the topological degree, deg(A,U∗, 0), of the mapping
A with respect to U∗ and zero is defined and different from zero.

Hypothesis 13. Hypothesis 12 is satisfied with x∗, U∗ and A replaced
by x∗σ, U∗σ and Bσ, respectively.

We have

Theorem 6. Let Hypothesis 4 be satisfied. Let t0, ψ be from Theorem 2.
In addition, assume that either (a) Hypothesis 12 is satisfied or (b) Hypoth-
esis 13 is satisfied. Then there exists a neighborhood I0 ⊂ t0I1 such that for
any α ∈ I0 one can find xσ(α) = (xσ

i (α), ..., xσ
2p(α)) ∈ U∗σ (U∗σ = U∗

for the case (a)) for which (ρσ(α), uσ(α)) satisfies the equation (5), where

ρσ(α) = σ|α|a,
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uσ(α) =
2p∑

j=1

|α|xσ
j (α)φj + ψ(|α|axσ(α)) for the case (a)

and

uσ(α) =
2p∑

j=1

|α|xσ
j (α)φj + ψ(|α|a−1xσ(α)) for the case (b).

Moreover, ρσ(α), uσ(α) → 0, uσ(α) 6= 0 if xσ(α) 6= 0 and the mapping

uσ(α)(t) = uσ(α)(
t

(1 + ρσ(α)
) is a (1 + ρσ(α))2π-periodic mapping.

Proof. The proof of this theorem is similar to the one of Theorem 5
with Ω, E replaced by U∗σ and Fσ respectively, where Fσ : I2 × Uσ

1 →
R2p, F σ = (F σ

1 , ..., F σ
2p) and

F σ
k (α, x) =





〈
σT

( 2p∑

j=1

|α|xjφ
j + ψ(|α|a, |α|x)

)
+

+(1 + σ|α|a|)H
( 2p∑

j=1

αxjφ
j +

ψ(|α|a, |α|x)
α

)

+(1 + σ|α|a|)|α|−aK
( 2p∑

j=1

|α|xjφ
j

+ψ(|α|a, |α|x)
)
, ψk

〉
for α 6= 0,

Ak(x), for α = 0,

for the case (a) and

F σ
k (α, x) =





〈
σT

( 2p∑

j=1

xjφ
j +

ψ(|α|a−1, |α|x)
α

)
+

+(1 + σ|α|a−1)H
( 2p∑

j=1

αxjφ
j +

ψ(|α|a−1, |α|x)
α

)

+(1 + σ|α|a−1)|α|−aK
( 2p∑

j=1

|α|xjφ
j

+ψ(|α|a−1, |α|x)
)
, ψk

〉
for α 6= 0,

Bσ
k (x), for α = 0

for the case (b).
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This completes the proof of the theorem.

Remark 2. If U∗σ does not contain zero, then xσ(α) 6= 0 for all α 6= 0. It
follows uα(x) 6= 0 for all α 6= 0.

3. Bifurcation problem

In this section we consider bifurcation points of the equation (6) with
T,L, H and K given as above. Any point (λ, 0) is called a trivial solution.
A point (λ, 0) is called a bifurcation point if for any given ε > 0 one can find
(λε, uε) satisfying the equation (6) with |λε − λ|A < ε and 0 < ||uε|| < ε.
In what follows we shall find sufficient conditions for the existence of such
a point.

Now, let λ ∈ Λ be such that the mapping T + L(λ, .) is Fredholm with
nullity p and index zero. Let

Ker (T + L(λ, .)) = [v1, ..., vp],

Ker (T + L(λ, .))∗ = [ψ1, ...ψp].

Further, let Xj , Yj , j = 0, 1, PX , PY , QX , QY be defined as in Section 2.
It follows that Hypothesis 5 is satisfied.

In addition, we assume that the mappings L(λ, .),H, K satisfy Hy-
potheses 6 and 7, respectively. We define the mappings C,Dσ : Rp → Rp,
C = (C1, ..., Cp), Dσ = (Dσ

1 , ..., Dσ
p ), by

Ck(x) =
〈
H

( p∑

j=1

xjv
j
)
, ψk

〉
,

Dσ
k (x) = σ

〈
(T

p∑

j=1

xjv
j), ψk

〉
+ Ck(x), k = 1, ..., p,

and impose the hypotheses on these mapping as follows:

Hypothesis 14. There exists a point x∗ ∈ Rp and an open bounded
neighborhood U∗ of x∗ in Rp not containing the origin such that the
topological degree, deg(C,U∗, 0), of C with respect to U∗ and the origin
is defined and different from zero.

Hypothesis 15. Hypotheses 14 is satisfied with x∗, U∗, C replaced by
x∗σ, U∗σ and Dσ, respectively.

The following theorem generalizes the result obtained by the second
author (see [14, Theorem 1]), which is proved for the case the mappings
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H and K are Lipschitz in both variables. This also extends some well-
known results due to McLeod and Saffinger [11], Buchner, Marsden and
Schecter [1], etc.

Theorem 7. Let Hypotheses 6 and 7 be satisfied. Let t0, ψ be from The-
orem 3. In addition, assume that either (a) Hypothesis 14 is satisfied, or
(b) Hypothesis 15 is satisfied. Then (λ, 0) is a bifurcation point of the
equation (6). More precisely, there is a neighborhood I0 ⊂ t0I1 such that
for any α ∈ I0 one can find xσ(α) = (xσ

1 (α), ..., xσ
p (α)) ∈ U∗σ (U∗σ = U∗

for (a)) for which (λσ(α), vσ(α)) satisfies the equation (6), where

λσ(α) =
λ

(1 + σ|α|a)b
,

and

vσ(α) =
p∑

j=1

|α|xσ
j (α)vj + ψ(|α|a, |α|xσ(α))

for the case (a) and

λσ(α) =
λ

(1 + σ|α|a−1)b
,

vσ(α) =
p∑

j=1

|α|xσ
j (α)vj + ψ(|α|a−1, |α|xσ(α)), for the case (b),

λσ(α) → λ, vσ(α) → 0 as α → 0 and vσ(α) 6= 0 for α 6= 0.

Proof. The proof of this theorem proceeds exactly as the one of Theorem
5 with Ω, E replaced by U∗σ and Mσ respectively, where

Mσ
k (α, x) =





〈
σT

( p∑

j=1

|α|xjv
j + ψ(|α|a, |α|x)

+(1 + σ|α|a)a
)
H

( λ

(1 + σ|α|a)b
,

p∑

j=1

|α|xjv
j +

ψ(α|ax)
|α|

+(1 + σ|α|a)|α|−aK
( λ

(1 + σ|α|a)b
,

p∑

j=1

|α|xjv
j

+ψ(|α|a, |α|x)
)
, ψk

〉
for α 6= 0,

Ck(x), for α = 0,
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for the case (a)

Mσ
k (α, x) =





〈
σT

( p∑

j=1

|α|xjv
j +

ψ(|α|a, |α|x)
|α|

)

+(1 + σ|α|a)H
( λ

(1 + σ|α|a−1)b
,

p∑

j=1

xjv
j +

ψ(α|a−1x)
|α|

+(1 + σ|α|a−1)|α|−aK
( λ

(1 + σ|α|a−1)
,

p∑

j=1

|α|xjv
j

+ψ(|α|a−1, |α|x)
)
, ψk

〉
for α 6= 0,

Dσ
k (x), for α = 0,

for the case (b).
This completes the proof of the theorem.

Remark 3. If x∗jσ, U∗jσ, j = 1, 2, satisfy Hypothesis 14 or 15 with U∗1σ ∩
U∗2σ = ∅, we then conclude that (λ1σ(α), v1σ(α)) 6= (λ2σ(α), v2σ(α)) for
all α ∈ I1

0 ∩ I2
0 where Ij

0 , (λjσ(α), vjσ(α)) exist by Theorem 7.

Next, we consider the equation (6) in the case λ is a simple char-
acteristic value of the pair (T, L), i.e. the case when p = 1, and Ker
(T − L(λ, .)) = [v1], Ker (T − L(λ, .))∗ = [ψ1]. In addition we assume
〈T (v1), ψ1〉 6= 0. The following theorem is an extension of the result ob-
tained by the second author (see [14, Theorem 7]) and the result obtained
by Crandall and Rabinowitz in [5].

Theorem 8. Let λ, v1, ψ1 be as above. Let Hypotheses 6 and 7 be satisfied
and t0, ψ be from Theorem 3. Then (λ, 0) is a bifurcation point of the
equation (6). More precisely, there is a neighborhood I0 ⊂ t0I1 such that
for any α ∈ I0 we can find βσ(α) for which (λσ(α), vσ(α)) with

λσ(α) =
λ

(1 + |α|a−1βσ(α))b
,

and
v(α) = |α|v1 + ψ(|α|a−1βσ(α), |α|)

satisfies the equation (6). λσ(α) → 0, v(α) → 0 as α → 0, v(α) 6= 0 for
α 6= 0.

Proof. We put β = 〈H(λ, v1), ψ1〉 / 〈T (v1), ψ1〉 and take an open bounded
neighborhood U∗ of β in R. We define the mapping Nσ : t0I1 × U∗ → R
by
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Nσ(α, β) =





〈
σβT

(
v1 +

ψ(|α|a−1β|α|)
|α|

)

+(1 + σ|α|a−1β)H
( λ

(1 + σ|α|a−1βσ(α)b
,

v1 +
ψ(|α|a−1β|α|)

|α|
)

+(1 + |α|a−1β)|α|−aK
( λ

(1 + σ|α|a−1β)b
, β|α|v1+

ψ(|α|a−1β|α|)
)
, ψ1

〉
, for α 6= 0,

〈σβT (v1) + H(λ, v1), ψ1〉 for α = 0.

By the same arguments as in the proof of Theorem 5 we conclude that
Nσ is a continuous mapping and there exists a neighborhood I0 ⊂ t0I1

such that Nσ(tα, β) 6= 0 for all α ∈ I0; t ∈ [0, 1] and β ∈ ∂U∗. Thus, the
topological degree, deg(Nσ(tα, .), U∗, 0), of Nσ(tα, .) with respect to U∗

and zero is defined and hence

deg(Nσ(α, .), U∗, 0) = deg(Nσ(0, .), U∗, 0)

= deg(〈σβT (v1) + H(λ, v1), ψ1〉, U∗, 0) 6= 0.

It then follows that for any α ∈ I0 there exists βσ(α) ∈ U∗ with Nσ(α, βσ(α))
= 0. Multiplying both sides of this equality with |α|a we obtain

〈σ|α|a−1βσ(α)T (|α|v1 + ψ(|α|a−1β(α), |α|))+

(1 + σ|α|a−1(α))H
( λ

(1 + σ|α|a−1βσ(α))b
, |α|v1 + ψ(|α|a−1βσ(α), α)

)
+

(1+σ|α|a−1(α))K
( λ

(1 + σ|α|a−1βσ(α))b
, (|α|v1+ψ(|α|a−1βσ(α), |α|)

)
, ψ1〉 = 0

Together with the fact

〈T (|α|v1+ψ(|α|a−1βσ(α), |α|))+L(λ, |α|v1+ψ(|α|a−1βσ(α), |α|)), ψ1〉 = 0

we obtain

PY (T (vσ(α))+L(λσ(α), vσ(α))+H(λσ(α), vσ(α))+K(λσ(α), vσ(α))) = 0



SOME RESULTS ON REDUCTION PRINCIPLES 451

with

λσ(α) =
λ

(1 + σ|α|a−1βσ(α))b
,

and
vσ(α) = |α|v1 + ψ(|α|a−1βσ(α), |α|).

Consequently, to complete the proof of the theorem it remains to apply
the assertion (iv) of Theorem 3.

4. Hopf bifurcation problem

In this section we consider the existence of Hopf bifurcation points of
the equation (7) with X ,Y,D defined as in Section 1. Let λ ∈ Λ be such
that the linear mapping T+L(λ, .) is Fredholm and has±iβ0 as eigenvalues
with multiplicity p ≥ 1. For the sake of simplicity of writting we only
restrict our consideration to the case when T + L(λ, .) has no eigenvalue
of the form ±niβ0 with n = 0, 2, 3, .... Without loss of generality we also
assume that β0 = 1. Let

Ker (T + L(λ, .) + iI) = [v1, ..., vp],

Ker (T + L(λ, .) + iI)∗ = [γ1, ..., γp],

and

Ker
( d

dτ
+ T + L(λ, .)

)
= [φ1, ..., φ2p],

Ker
( d

dτ
+ T + L(λ, .)

)∗ = [ψ1, ..., γ2p],

with
φ2k−1(t) = Re (eitvk), φ2k(t) = Im (eitvk),

ψ2k−1(t) = Re (eitγk), ψ2k(t) = Im (eitγk).

Further, let Xk,Yk, k = 0, 1, PX , PY , QX , QY be the same as in Section
2. For σ = 1 or σ = −1 we define the following mappings A, Bσ, Cσ,
Dσ : R2p → R2p, A = (A1, ...,A2p), Bσ = (Bσ

1 , ...,Bσ
2p), Cσ = (Cσ

1 , ..., Cσ
2p),

Dσ = (Dσ
1 , ...,Dσ

2p), by

Ak(x) =
〈
H

( 2p∑

j=1

xjφ
j
)
, ψk

〉
,
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Bσ
k (x) = −σ

〈d
( 2p∑

j=1

xjφ
j
)

dε
, ψk

〉
+Ak(x),

Cσ
k (x) = σ

〈
T

( 2p∑

j=1

xjφ
j
)
, ψk

〉
+Ak(x),

Dσ
k (x) = −σ

〈
L(λ,

2p∑

j=1

xjφ
j), ψk

〉
+Ak(x),

k = 1, ..., 2p, x = (x1, ..., x2p)

and make the following hypotheses on there mappings.

Hypothesis 16. There exists an open subset Ω of R2p with 0 /∈ Ω such
that the topological degree, deg(A,Ω, 0), of the mapping A with respect
to Ω and the origin is defined and different from zero.

Hypothesis 17. Hypothesis 16 with Ω and A replaced by Ωσ and Bσ,
respectively.

Hypothesis 18. Hypothesis 16 with Ω and A replaced by Ωσ and Cσ,
respectively.

Hypothesis 19. Hypothesis 16 with Ω and A replaced by Ωσ and Dσ,
respectively.

As in Section 2 we have seen that Hypothesis 8 is satisfied.

We have

Theorem 9. Let Hypotheses 9 and 10 be satisfied and t0, ψ exist by
Theorem 4. In addition, assume that one of the following is satisfied: (a)
Hypothesis 16; (b) Hypothesis 17; (c) Hypothesis 18; (d) Hypothesis 19.
Then (λ, 0) is a Hopf bifurcation point of periodic solutions of the equation
(7). More precisely, there exists a neighborhood I0 of zero in R, I0 ⊂ t0I1

such that for any α ∈ I0 one can find xσ(α) = (xσ(α)1, ..., xσ(α)2p)) ∈ Ωσ

(for the case (a) Ωσ = Ω) such that (ρσ(α), λσ(α), vσ(α)) satisfies the
equation (8) where

ρσ(α) = σ|α|c,

λσ(α) =
λ

(1 + σ|α|d)b
,

and

vσ(α) =
2p∑

j=1

|α|xσ
j (α)φj + ψ(σ|α|c, σ|α|d, |α|xσ(α))
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with c = d = a for the case (a); c = a − 1, d = a for the case (b);
c = a− 1, d = a− 1 for the case (c) and c = a, d = a− 1 for the case (d).
Moreover, we have ρσ(α) → 0, λσ(α) → λ, vσ(α) → 0 as α → 0, v(α) 6= 0

for α 6= 0 and the mapping uσ(α)(t) = vσ(α)
( t

1 + ρσ(α)
)

is (1+ρσ(α))2π

- periodic.

Proof. Applying the assertion (iv) of Theorem 4 we need to verify that
(σ|α|c, σ|α|d, vσ(|α|)) as above satisfies the equation

PY
{d

( 2p∑
j=1

xjφ
j + ψ(ρ, β, x)

)

dτ
+ (1 + ρ)

(
T

( 2p∑

j=1

xjφ
j + ψ(ρ, β, x)

)
+

L
( λ

(1 + β)b
,
∑

xjφ
j + ψ(ρ, β, x)

)
+ H

( λ

(1 + β)b
,

2p∑

j=1

xjφ
j + ψ(ρ, β, x)

)

(9) +K
( λ

(1 + β)b
,

2p∑

j=1

xjφ
j + ψ(ρ, β, x)

))}
= 0,

for all α belonging to some neighborhood I0 ⊂ t0I1. Indeed, for σ = 1 or
σ = −1, c, d = a, a − 1, we define the mapping Sσcd : t0I1 × t0U1 → R2p,
Sσcd = (Sσcd

1 ..., Sσcd
2p ), by

Sσcd
k (α, x)

=





〈
(σ|α|d−a+1 − |α|c−a+1)

d
( 2p∑

j=1

xjφ
j + ψ(σ|α|c, σ|α|d, |α|x)

)

dτ

+(σ|α|d−a−1 + |α|(c+d)−a−1)T
( 2p∑

j=1

xjφ
j +

ψ(σ|α|c, σ|α|d, |α|x)
|α|

)

+(1 + σ|α|d)(1 + σ|α|c)
(
H

( λ

(1 + σ|α|d)b

2p∑

j=1

xjφ
j

+
ψ(σ|α|c, σ|α|d, |α|x)

|α|
)

+ |α|−aK
( λ

(1 + σ|α|d)b
,

2p∑

j=1

xjφ
j

+ψ(σ|α|c, σ|α|d, |α|x)
))

, ψk
〉

for α 6= 0,

Fσcd
k (x), for α = 0,
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where

Fσaa
k (x) = Ak(x) (for the case (a)),

Fσ(a−1)a
k (x) = Bσ

k (x) (for the case (b)),

Fσ(a−−1)(a−1)
k (x) = Cσ

k (x) (for the case (c)),

Fσa(a−1)
k (x) = Dσ

k (x) (for the case (d)), k = 1, ..., 2p.

By the same arguments as in the proof of Theorem 5 we conclude that
Sσcd is a continuous mapping and there exists a neighborhood I0 ⊂ t0I1

such that Sσcd(tα, x) 6= 0 for all α ∈ I0, t ∈ [0, 1] and x ∈ ∂Ωσ. Thus
the topological degree, deg(Sσcd, Ωσ, o) is defined for c, d corresponding
to the case (a) (c = d = a), the case (b) (c = a − 1, d = a), the case (c)
(c = a−1, d = a−1), the case (d) (c = a, d = a−1) provided one of these
case is satisfied. It then follows that for any fixed α ∈ I0 we have in any
case

deg(Sσcd(α, .), Ωσ, 0) = deg(Fσcd, Ωσ, 0) 6= 0.

Therefore, for any α ∈ I0 there exists xσ(α) ∈ Ωσ such that Sσcd(α, xσ(α)) =
0. Multiplying both sides of this equality with |α|−a, α 6= 0, we obtain

〈
σ(|α|d − |α|c)d(vσ(α))

dτ
+ (σ|α|d + |α|c+d)T (vσ(α))

(1 + σ|α|d)(1 + |α|c|(H(λσ(α), vσ(α))+

K(λσ(α), vσ(α))), ψk
〉

= 0, k = 1, ..., 2p,

with

λσ(α) =
λ

(1 + σ|α|d)b
,

and

vσ(α) =
2p∑

j=1

|α|xjφj + ψ(σ|α|c, σ|α|d, |α|x)).

Together with the fact

〈d(vσ(α))
dτ

+ T (vσ(α)) + L(λ, vσ(α)), ψk
〉

= 0, k = 1, ..., 2p,

we obtain

〈
(1 + σ|α|d)d(vσ(α))

dτ
+ (1 + σ|α|d)((1 + σ|α|c)T (vσ(α))
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+(1 + σ|α|c)L(λ, vσ(α))(1 + σ|α|d)(1 + σ|α|c)(H(λσ(α), vσ(α))

+K(λσ(α), vσ(α))), ψk
〉

= 0,

or 〈vσ(α))
dε

+ (1 + σ|α|c){T (vσ(α)) + L(λσ(α), vσ(α))

+H(λσ(α), vσ(α)) + K(λσ(α))}, ψk
〉

= 0, k = 1, ..., 2p.

This implies

PY
{d(vσ(α))

dε
+ (1 + ρσ(α))(T (vσ(α) + L(λσ(α), vσ(α))+

H(λσ(α), vσ(α) + K(λσ(α), vσ(α)))
}

= 0

with ρσ(α) = σ|α|c.
This means that (ρσ(α), λσ(α), vσ(α)), α ∈ I0, satisfies the equation (9)

in any case (a), (b), (c) and (d). It is obvious that ρσ(α) → 0, λσ(α) → λ,
vσ(α) → 0 and vσ(α) 6= 0 if α 6= 0. Consequently, to complete the proof
of the theorem it remains to apply the assertion (iv) of Theorem 4.

Remark 4. As in Remark 3, if Ωj
σ, j = 1, 2, satisfy one of Hypotheses 16-19

with Ω1
σ∩Ω2

σ = ∅ then (ρ1σ(α), λ1σ(α), v1σ(α)) 6= (ρ1σ(α), λ2σ(α), v2σ(α))
for all I1

0 ∩ I2
0 , where Ij

0 , (ρjσ(α), λjσ(α), vjσ(α)) exist by Theorem 9.

Remark 5. We assume that if there exists a point xσ ∈ Ωσ with Fσcd(xσ) =
0 and

(10) β = det
(∂Fσcd

k

∂xj
(xσ)

)
k,j=1,...,2p

6= 0,

then one of Hypotheses 16-19 for (a) c = d = a, (b) c = a − 1, d = a,
(c) c = a − 1, d = a − 1, (d) c = a, d = a − 1, respectively is satisfied.
Indeed, the condition (10) implies that there exists a neighborhood Ωσ of
the point xσ such that

Sign det
(∂Fσcd

k

∂xj
(xσ)

)
k,j=1,...,2p

= Signβ,

and hence

deg(Fσcd, Ωσ, c) =
{

1 if β > 0,

−1 if β < 0.
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To the conclusion of this section we consider the equation (2) in the case
when Λ = R and λ ∈ Λ is such that the mapping T + L(λ, .) is Fredholm
and has only ±i as a simple eigenvalues, i.e. p = 1. Let φj , ψj , j = 1, 2,
PY , QY etc. be defined as above. In addition, we assume that the mapping
L(., u) for any fixed u ∈ D, is a C`-mapping with ` ≥ 2 and the mapping
H(λ, .) is an a-linear form with an odd number (for the sake of simplicity
of writing, we take a = 3), the mappings H and K satisfy Hypothesis 10.
In this case the equation (8) can be rewritten as

u̇ + (1 + ρ)
{

T (u) + L(λ, u) +
r∑

j=1

1
j!

Lλ...λ(λ, 0)(λ− λ)j(u)+

O(|λ− λ|r+1) + H(λ, u) + K(λ, u)
}

= 0,(11)

where r is some integer less than `; Lλ...λ(λ, 0) (λ...λ − j times) denotes
the j-th partial derivative of L with respect to λ. Setting α = λ − λ, we
obtain

u̇+(1 + ρ)
{

T (u) + L(λ, u) +
r∑

j=1

αj

j!
Lλ...λ(λ, 0)(u)+

O(|α|r+1) + H(λ + α, u) + K(λ + α, u)
}

= 0.

By the same method as in the proof of Theorem 4, we conclude that there
exists a point t0 ∈ (0, 1] such that for any ρ, α ∈ t0I1, x ∈ t0U1 one can
find a unique ψ(ρ, α, x) ∈ t0D1 satisfying

QY
{d

( 2∑
j=1

xjφ
j + ψ(ρ, α, x)

)

dτ
+ (1 + ρ)

(
T

( 2∑

j=1

xjφ
j + ψ(ρ, α, x)

)
+

L
(
λ,

2∑

j=1

xjφ
j + ψ(ρ, α, x)

)
+

r∑

k=1

αk

k!
Lλ...λ

( 2∑

j=1

xjφ
j+

ψ(ρ, α, x)) +O(|α|r+1
)

+ H
(
λ + α,

2∑

j=1

xjφ
j + ψ(ρ, α, x)

)

+ K
(
λ + α,

2∑

j=1

xjφ
j + ψ(ρ, α, x)

))}
= 0

(12)
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with ψ(ρ, α, x) = 0 and
||ψ(zρ, zα, z(1, β0))||

|z| → 0 as z → 0, for any fixed

β0 6= 0.

Taking fixed β0 6= 0 and setting I2 = t0I1 we define the mapping
h : I2 × I2 × I2 × I2 → R2, h = (h1, h2), by

hk(ρ, α, z)

=





〈− ρ
d(φ1 + βφ2)

dτ
+ (1 + zρ)

{ r∑

j=1

αjzj−1

j!
Lλ...λ(λ, 0)(φ1 + β0φ

2)

+zH(λ + zα, φ1 + βφ2) + h.o.t
}

, ψk
〉
, k = 1, 2, z 6= 0,

〈− ρ
d(φ1 + β0φ

2)
dτ

+ αLλ(λ, φ1 + βφ2), ψk
〉
, z = 0.

Further, put

a = 〈H(λ, φ1), ψ1〉,
b = 〈H(λ, φ2), ψ1〉,

θj = 〈Lλ...λ(λ, φ1), ψ1〉,
ηj = 〈Lλ...λ(λ, φ2), ψ1〉.

A simple calculation shows

h1(ρ, α, z) =





−ρβ0 + (1 + 2ρ)
{ r∑

j=1

αjzj−1

j!
(θj + β0ηj)+

z(a− β0b + β2
0a− bβ3

0) + h.o.t
}

, for z 6= 0,

−ρβ0 + α(θ1 + β0η1), for z = 0,

h2(ρ, α, z) =





ρβ0 + (1 + 2ρ)
{ r∑

j=1

αjzj−1

j!
(ηj + β0θj)+

z(b + β0a + β2
0b + bβ3

0b) + h.o.t
}

, for z 6= 0,

ρ + α(−a(η1 + β0θ1), for z = 0,

It is clear that h(0, 0, 0) = 0 and

∂h

∂(ρ, α)
(0, 0, 0) =

(−β0, θ1 + β0η1

1,−η1 + β0θ1

)
.
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Hence
det(∂(ρ, α)(0, 0, 0) = −θ1(1 + β2

0).

Therefore, if θ1 6= 0 then there exists an open subset Ω in R2 not contain-
ing zero such that the topological degree deg(h(., ., 0),Ω, 0), with respect
to Ω and zero is defined and deg(h(., ., 0),Ω) 6= 0. We have

Theorem 10. If θ1 6= 0, then (λ, 0) is a Hopf bifurcation point of periodic
solutions of the equation (8). More precisely, to given β0 6= 0, there exists
a neighbourhood I0 of zero in R such that for any z ∈ I0 one can find
(ρ(z), α(z)) ∈ Ω for which (zρ(z), λ(z), v(z))) with

λ(z) = λ + zα(z),

v(z) = zφ1 + zβφ2 + ψ(zρ(z), zα(z), z(1, β0)),

satisfies the equation (11), λ(z) → λ, zρ(z) → 0, v(z) → 0 as z → 0,

v(z) 6= 0 for z 6= 0 and the mapping u(z)(t) =
t

1 + zρ(z)
is (1 + zρ(z))2π-

periodic.

Proof. Since θ1 6= 0, there exists a neighborhood Ω as above such that
deg(h(., ., Ω),Ω, 0) 6= 0. By the same manner as in the proof of Theorem 5
there exist a neighborhood I0 of zero in R, I0 ⊂ I2 such that h(ρ, α, tz) 6= 0
for all (ρ, α) ∈ ∂Ω, t ∈ [0, 1], z ∈ I0. It follows that the topological degree
h(., ., tz) is defined and

deg(h(., ., z),Ω, 0) = deg(h(., ., 0), Ω, 0) 6= 0.

Therefore for any z ∈ I0 there is (ρ(z), α(z)) ∈ Ω with h(ρ(z), α(z), z) = 0.
Multiplying both sides of this equality with z2 we obtain

〈− zρ(z)
d(v(z))

dτ
+ (1 + zρ(z))

{ r∑

j=1

(zα(z))j

j!
Lλ...λ(λ, 0)(v(z))

+H(λ(z), v(z)) + K(λ(z), v(z))
}

, ψk
〉

= 0, k = 1, 2,

with v(z) = zφ1 + zβ0φ
2 + ψ(zρ(z), zα(z), (z, β0z)), λ(z) = λ + zα(z).

Together with the fact that

(1 + zρ(z))
〈 d(v(z))

dτ
+ T (v(z)) + L(λ, v(z)), ψk

〉
= 0, k = 1, 2,
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〈d(v(z))
dτ

+ (1 + zρ(z)){T (v(z)) + L(λ, v(z))+

H(λ(z), v(z)) + K(λ(z), v(z))}, ψk
〉

= 0.(13)

A combination of (12) and (13) yields

d(v(z))
dτ

+ (1 + zρ(z)){T (v(z)) + L(λ, v(z))+

H(λ(z), v(z)) + K(λ(z), v(z))} = 0.

Obviously, we have λ(z) → λ, zρ(z) → 0, v(z) → 0 and v(z) 6= 0 for z 6= 0
and the mapping u(z) defined as above is (1 + zρ(z))2π-periodic. This
completes the proof of the theorem.

Next, we consider the case θ1 = 0, η1 6= 0. In this case the matrix
∂h

∂(ρ, α)
(0, 0, 0) has the form

B =
∂h

∂(ρ, α)
(0, 0, 0) =

(−β0, β0η1

1,−η1

)
,

which is singular and we can not use the above proof.

We set

(14)

R0 = {y ∈ R2 / By = 0} =
[(η1

1

)]
= [ϕ],

R1 = {y ∈ R2 / (y, ϕ) = 0} =
[( 1
−η1

)]
= [ξ],

R∗0 = {y ∈ R2 / By∗ = 0} =
[( 1

β0

)]
= [ϕ∗],

R∗1 = {y ∈ R2 / (y, ϕ∗) = 0} =
[(−β0

1

)]
= [ξ∗].

One can easily verify that R2 = R0⊕R1 = R∗0⊕R∗1, the linear mapping B
maps R0 into R∗0 and R1 onto R∗1. Let P0, Q0, P ∗0 , Q∗0 be the projectors
of R2 onto R0, R1, R∗0, R∗1, respectively. Then the totality of solutions of
the equation

h(ρ, α, z) = 0
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can be reduced to solving two equations

Q0h(ρ, α, z) = 0,

P0h(ρ, α, z) = 0.

A simple calculation yields

Q0h(ρ, α, z)

=





−(β0 + η1)ρ + (1 + zρ)
{ r∑

j=1

αjzj−1

j!
((β0 + η1)ηj + θj(1− β0η1))

+z(1 + β2
0)(a(1− β0η1)− b(β0 + η1)) + h.o.t

}
for z 6= 0,

−(β0 + η1)ρ + α(β0 + η1)η1, for z = 0.

P0h(ρ, α, z)

=





(1− β0η1)ρ + (1 + zρ)
{ r∑

j=1

αjzj−1

j!
((β0 + η1) + θj − (1− β0η1)ηj)

+z(1 + β2
0)(a(η1 + β0) + b(1− β0η1)) + h.o.t

}
for z 6= 0,

(1− β0η1)ρ− α(1− β0η1)η1, for z = 0.

By the same arguments as in the proof of Theorem 1, there exists a point
t ∈ (0, 1] such that for any α, z ∈ tI2 one can find ρ(α, z) ∈ tI2, ρ(0, 0) = 0
satisfying

(15) Q0h(ρ(α, z), α, z) = 0 and lim
z→0

|ρ(αz, z)
z

| = 0.

Further, we define the mapping ` : tI2 × tI2 → R by

`(α, z) =





(1− β0η1)
ρ(αz,z)

z +

(1 + zρ(αz, z))
{ r∑

j=1

αjz2(j−1)((β0 + η1)θj − (1− β0η1)ηj)

+(1 + β2
0)(a(η1 + β0) + b(1− β0η1)) + h.o.t

}
for z 6= 0,

−α(1− β0η1)η1, for z = 0.

We have `(α, 0) = −α(1 − β0η1)η1. Take β0 6= 1
η1

we have
∂`

∂α
(0, 0) =

−(1 − β0η1) 6= 0. It then follows that there exists a neighborhood I of
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zero in R such that the topological degree, deg(`(., 0), I, 0), of `(., 0) with
respect to I and zero is defined. By the definition of the topological degree
we have

deg(`(., 0), I, 0) 6= 0.

By the same proof as in Theorem 5, we conclude that there exists a neigh-
borhood I0 of zero such that for any z ∈ I0 one can find α(z) ∈ I with
`(α(z), z) = 0. Multiplying both sides of this equality with z we obtain

(1− β0η1)(ρ(α(z)z, z) + (1 + zρ(zα(z), z)
{ r∑

j=1

(zα(z))jzj−1

j!
((β0 + η1)θj

−(1− β0η1)ηj) + z(1 + β2
0)(a(η1 + β0) + b(1− β0η1)) + h.o.t

}
= 0,

or

(16) P0h(ρ(zα(z), z), α(z), z)) = 0.

A combination of (15) and (16) yields

h(ρ(zα(z), z), α(z), z) = 0.

Therefore, we have

Theorem 11. If η1 6= 0, then (λ, 0) is a Hopf bifurcation point of periodic
solutions of the equation (8). More precisely, to given β0 6= 1/η1 there
exists a neighborhood I0 of zero in R such that for any z ∈ I0 one can find
(α(z), ρ(zα(z), z) for which zρ(zα(z), α(z), z), λ(z), v(z) with

λ(z) = λ + zα(z),

v(z) = zφ1 + zβ0φ
2 + ψ(zρ(zα(z)), α(z), zα(z), (z, zβ0)),

satisfies the equation (11), λ(z) → λ, zρ(zα(z)) → 0, v(z) → 0 as z → 0,

v(z) 6= 0 for z 6= 0, and the mapping u(z) = v(z)
( t

1 + zρ(zα(z), z)
)

is

(1 + zρ(zα(z), z))2π-periodic.

Proof. The proof of this theorem follows from (15) and the proof of The-
orem 10.
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Next, we consider the case θ1 = η1 = 0. We assume that c > 1 is the
smallest integer such that θc 6= 0. We define the mapping f : I2×I2×I2 →
R2, f = (f1, f2), by




〈− ρd(φ1+β0φ2)
dτ + (1 + zρ)

{ r∑
j=1

αjzj−1

j!
Lλ...λ(λ, 0)(φ1 + β0φ

2)

+zc−1H(λ + zα, φ1 + β0φ
2) + h.o.t}, ψ〉

, for z 6= 0,

〈− ρ
d(φ1 + β0φ

2)
dτ

+ αL1(λ, 0)(φ1 + βφ2), ψk
〉

>, for z = 0, k = 1, 2.

A simple calculation yields

f1(ρ, α, z) =





−ρβ0 + (1 + zρ)
{ r∑

j=c

αjzj−1

j!
(θj + β0ηj)+

+zc−1(a− β0b + β2
0a− β3

0b) + h.o.t
}

, for z 6= 0,

−ρβ0, for z = 0.

f2(ρ, α, z) =





ρ + (1 + zρ)
{ r∑

j=c

αjzj−1

j!
(−ηj + β0θj)+

+zc−1(b + β0a + β2
0b + β3

0b) + h.o.t
}

, for z 6= 0,

ρ, for z = 0.

We have
f(ρ, α, 0) = (−ρβ0, ρ),

and

C =
( ∂fk

∂(ρ, α)
(0, 0, 0)

)
k=1,2

=
(−β0, 0

1, 0

)
.

Let R0, R1, R
∗
0, R

∗
1 be defined as in (14) with η1 = 0.

By the same arguments as in the proof of Theorem 1, there is a point
t ∈ (0, 1] such that for any α, z ∈ tI2 one can find ρ(α, z) ∈ tI2, ρ(0, 0) = 0
satisfying

(17) Q∗
0f(ρ(α, z), α, z) = 0.

Further, we have

P ∗0 f(ρ, α, z) =





(1 + zρ)(1 + β2
0)

{ r∑
j=c

αjzj−1j!θj+

+a(1 + β2
0)zc−1 + h.o.t

}
, for z 6= 0,

(1 + β2
0)θcα

c, for z = 0.
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We define the mapping q : tI2 × tI2 → R by

q(α, z) =





(1 + zρ(α, z))(1 + β2
0)

{ r∑
j=1

αjzj−1

j!
θj+

+a(1 + β2
0) + h.o.t

}
, for z 6= 0,

(1 + β2
0){θcα

c + a(1 + β2
0)}, for z = 0.

It then follows that if c is an odd integer, there exists a neighborhood Ω of
the point α = c

√
−a(1 + β2

0)/θc such that deg(q(., 0), Ω, 0) is defined and
different from zero. Therefore, we have

Theorem 12. If θc 6= 0 with c being an odd number, then (λ, 0) is a Hopf
bifurcation point of periodic solutions of the equation (8). More precisely,
to given β0 there exists a neighborhood I0 of zero in R such that for z ∈ I0

one can find α(z) ∈ Ω for which (zρ(α(z), z)), λ(z), v(z)) with

λ(z) = λ + zα(z),

v(z) = zc/2φ1 + zc/2β0φ
2 + ψ(zρ(α(z), z), zα(z), zc/2(1, β0)),

satisfies the equation (11), λ(z) → λ, zρ(α(z), z) → 0, v(z) → 0 as z → 0,

v(z) 6= 0 for z 6= 0 and the mapping u(z)(t) = v(z)
( t

1 + zρ(α(z), z)
) is

(1 + zρ(α(z), z))2π-periodic.

Proof. By the same arguments as in the proof of Theorem 5 we conclude
that there exists a neighborhood I0 of zero in R, I0 ⊂ tI2 such that for
z ∈ I0 one can find α(z) ∈ Ω with q(α(z), z) = 0. Multiplying both sides
of this equality with zc−1 we obtain P ∗0 f(ρ(α(z), z), α(z), z) = 0. Together
with (17) we obtain f(ρ(α(z), z), α(z), z) = 0. Again, multiplying both
sides of this equality with zc/2+1 we conclude

〈− ρ(α(z), z)
d(zc/2φ1 + zc/2φ2)

dτ
+

(1 + zρ(α(z), z)
{ r∑

j=1

(zα(z))j

j!
Lλ...λ(λ, 0)(zc/2φ1 + zc/2β0t

2)

+H(λzα(z), zc/2φ1 + zc/2β0φ
2) + h.o.t

}
, ψk

〉
= 0,

for k = 1, 2. Together with (16) we obtain

v̇(z) + (1 + zρ(α(z), z)){T (u(z)) + L(λ, v(z))+
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r∑

j=1

(zα(z))j

j!
Lλ...λ(λ, 0)(v(z)) +O(z|α(z)|r+1)

+H(λ(z), v(z)) + K(λ(z), v(z))} = 0

with
λ(z) = λ + zα(z),

v(z) = zc/2φ1 + zc/2β0φ
2 + ψ(zρ(α(z), z), zα(z), zc/2(1, β0)).

This completes the proof of the theorem.

Further, if a 6= 0 and c is an even number and aθ0 < 0, we conclude
that there exists a neighborhood Ω± of the point α± = ± c

√
−(1 + β2

0)a/θc

such that the topological degree, deg(q(., 0),Ω±, 0), of q(., 0) with respect
to Ω± and zero is defined and different from zero is defined and different
from zero. Therefore, we have

Theorem 13. If c is an even number and aθc < 0, then (λ, 0) is a Hopf
bifurcation point of periodic solutions of the equation (8). More precisely,
to given β0 there exists a neighborhood I0 of zero in R such that for z ∈ I0

one can find α±(z) ∈ Ω±, α±(0) = ± c
√
−(1 + β2

0)a/θc , for which the same
conclusions of Theorem 12 continue to hold with (zρ(α(z), z), λ(z), v(z))
replaced by (zρ(α±(z), z), λ±(z), v±(z)) with

λ±(z) = λ + zα±(z),

v±(z) = zc/2φ1 + zc/2β0φ
2 + ψ(zρ(α±(z), z), zα±(z), zc/2(1, β0)).

Proof. The proof of this theorem proceeds exactly as the one of Theorem
12.
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