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BOUNDARY VALUE PROBLEMS IN C AN Cn

HEINRICH BEGEHR

Boundary value problems which are unconditionally solvable for one
complex variable are in general not solvable for several complex variables.
This phenomenon will be explained in the case of the Schwarz problem for
polydiscs. Besides analytic functions, inhomogeneous Cauchy-Riemann
systems are investigated. These systems in several complex variables are
overdetermined.

Another overdetermined system in two complex variables is considered
by introducing a proper hypercomplex variable and solved under Riemann-
Hilbert boundary conditions on some submanifold of the boundary under
consideration.

The theory of bianalytic functions is used to reduce the stress boundary
value problem in orthotropic elasticity to boundary value problems for
analytic functions in plane domains.

This paper is the improved version of [17] in which formula (16) was
incorrect. As for the Poisson equation (n = 1) the solution should contain
fundamental solutions (Green functions) in the kernels of the integrals.

1. Schwarz problem in C and Cn

Let D := {|z| < 1} be the unit disc in C, Dn := {z = (z1, . . . , zn) :
|zk| < 1} the polydisc in Cn(1 ≤ n), and ∂Dn := {z = (z1, . . . , zn) : |zk| =
1} the distinguished boundary of Dn.

Schwarz problem. Given a real-valued function γ on ∂Dn, find an
analytic function w in Dn such that Re w = γ on ∂Dn.

For n = 1, a solution to this problem is given by the Schwarz integral

(1) Sγ(z) :=
1

2πi

∫

|ζ|=1

γ(ζ)
ζ + z

ζ − z

dζ

ζ
, |z| < 1.

The general solution is Sγ + ic with arbitrary real constant c. Its real part
is the Poisson integral
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(2) Pγ(z) :=
1

2πi

∫

|ζ|=1

γ(ζ)
1− |z|2
|ζ − z|2

dζ

ζ
, |z| < 1,

giving the unique solution to the Dirichlet problem for harmonic functions.
For references see e.g. [12, 15, 2].

The Schwarz integral is a simple conclusion from the Cauchy formula.
The latter w analytic in D and continuous on D states for

w(z) =
1

2πi

∫

|ζ|=1

w(ζ)
dζ

ζ − z
, |z| < 1.

Note that

0 =
1

2πi

∫

|ζ|=1

w(ζ)
zdζ

1− z ζ
, |z| < 1.

Adding the complex conjugate of the second to the first equation gives the
representation formula

(3) w(z) =
1

2πi

∫

|ζ|=1

Re w(ζ)
ζ + z

ζ − z

dζ

ζ
+

1
2π

∫

|ζ|=1

Im w(ζ)
dζ

ζ
, |z| < 1.

Repeating this for analytic functions in Dn gives

(4) w(z) =
1

(2πi)n

∫

∂Dn

Re w(ζ)
[
2

ζ

ζ − z
− 1

]dζ

ζ
+ i Im w(0), z ∈ Dn,

where
ζ

ζ − z
:=

n∏

k=1

ζk

ζk − zk
,

dζ

ζ
:=

n∏

k=1

dζk

ζk
,

see [14, 4, 6]. The question arises whether (4) represents an analytic
function satisfying the Schwarz condition Re w = γ on ∂Dn when Re w(ζ)
is replaced by any continuous real-valued function γ(ζ) . As can be seen,
this is the case if and only if
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1
(2πi)n

∫

∂Dn

γ(ζ)Re
[
2

ζ

ζ − z
− 1

]dζ

ζ

=
1

(2πi)n

∫

∂Dn

γ(ζ)
[ ζ

ζ − z
+

ζ

ζ − z
− 1

]dζ

ζ

=
1

(2πi)n

∫

∂Dn

γ(ζ)
n∏

k=1

[ ζk

ζk − zk
+

ζk

ζk − zk

− 1
]dζk

ζk

=
1

(2πi)n

∫

∂Dn

γ(ζ)
n∏

k=1

1− |zk|2
|ζk − zk|2

dζk

ζk
·

A necessary and sufficient condition for this relation is

n−1∑

k=1

1
(2πi)n

∫

∂Dn

γ(ζ)
[( k∏

ν=1

ζν

ζν − zν
− 1

) zk+1

ζk+1 − zk+1

+
( k∏

ν=1

ζν

ζν − zν

− 1
) zk+1

ζk+1 − zk+1

]

×
n∏

ν=k+2

( ζν

ζν − zν
+

ζν

ζν − zν

− 1
) n∏

ν=1

dζν

ζν
= 0,(5)

see [4]. Obviously, there is no condition (5) for n = 1.

Theorem 1. Let γ be real-valued continuous on ∂Dn and satisfy (5) in
Dn. Then for any real c,

(6) ϕ(z) :=
1

(2πi)n

∫

∂Dn

γ(ζ)
[
2

ζ

ζ − z
− 1

]dζ

ζ
+ ic

is analytic in Dn with

Re ϕ = γ on ∂Dn.

A particular solution to the inhomogeneous Cauchy-Riemann equation
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wz = f in plane domains D with f ∈ Lp(D), 1 ≤ p, is given by the
Pompeiu operator

(7) Tf(z) := − 1
π

∫

D

f(ζ)
dξdη

ζ − z
, ζ = ξ + iη, z ∈ C.

Boundary value problems which can be solved for analytic functions can
also be treated for inhomogeneous Cauchy-Riemann equations, see e.g.
[15, 10, 11, 5, 16, 8]. In the case of several complex variables, the overde-
termined inhomogeneous Cauchy-Riemann system

wzk
= fk, fk z`

= f` zk
, 1 ≤ k, ` ≤ n,

in polydomains Dn :=
n×

k=1
Dk can be solved similarly by iterating the

Pompeiu operators Tk of the involved domains Dk. A particular solution
is

n∑
ν=1

(−1)ν+1
∑

1≤k1<k2<···<kν≤n

Tkν Tkν−1 . . . Tk1fk1 ζk2
ζk3

...ζkν
,

where proper differentiability for fk is assumed, see [4]. Here the second
sum is taken over all multi-indices (k1, . . . , kν) satisfying 1 ≤ k1 < k2 <
· · · < kν ≤ n.

Theorem 2. Let fk, 1 ≤ k ≤ n, have mixed derivatives of the first order
with respect to the variables z`, 1 ≤ ` ≤ n and their complex conjugate
counterparts z`, ` 6= k, in L1(D

n
) and satisfy the compatibility conditions

fk z`
= f` zk

1 ≤ k, ` ≤ n, ` 6= k, in Dn.

Let γ be real-valued and continuous on ∂Dn and

Re
{ n−1∑

k=1

1
(2πi)n

∫

∂Dn

γ(ζ)
[ k∏

ν=1

ζν

ζν − zν
− 1

]

× zk+1

ζk+1 − zk+1

n∏

ν=k+2

( ζν

ζν − zν
+

ζν

ζν − zν

− 1
) n∏

ν=1

dζν

ζν
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−
n∑

ν=2

ν−1∑

λ=1

∑
1≤k1<···<kλ≤n

1≤kλ+1<···<kν≤n

cd{k1,...,kν}=ν

(−1)ν

ν

∫

Dk1

· · ·
∫

Dkν

fk1 ζk2
...ζkλ

ζkλ+1 ...ζkν

× zk1

1− zk1 ζk1

· · · zkλ

1− zkλ
ζkλ

zkλ+1

1− zkλ+1 ζkλ+1

· · ·

· · · zkν

1− zkν ζkν

dξk1dηk1 . . . dξkν dηkν

}
= 0.

(8)

Then the Schwarz problem

Rew = γ on ∂Dn

for the inhomogeneous Cauchy-Riemann system

wzk
= fk, 1 ≤ k ≤ n, in Dn

is solvable. The solution is

w(z) =
1

(2πi)n

∫

∂Dn

γ(ζ)
[
2

n∏
ν=1

ζν

ζν − zν
− 1

] n∏
ν=1

dζν

ζν

+
n∑

ν=1

∑

1≤k1<···<kν≤n

(−1)ν

πν

×
∫

Dk1

· · ·
∫

Dkν

{
fk1 ζk2

...ζkν

zk1

1− zk2ζk1

· · · zkν

1− zkν ζkν

− (−1)νfk1 ζk2
...ζkν

1
ζk1 − zk1

· · · 1
ζkν − zkν

}
dξk1dηk1 . . . dξkν dηkν

+
n∑

ν=2

ν−1∑

λ=1

∑
1≤k1<···<kλ≤n

1≤kλ+1<···<kν≤n

(−1)λ

πν

×
∫

Dk1

· · ·
∫

Dkν

fk1 ζk2
...ζkλ

ζkλ+1 ...ζkν

zk1

1− zk1 ζk1

· · ·

· · · zkλ

1− zkλ
ζkλ

1
ζkλ+1 − zkλ+1

· · · 1
ζkν − zkν

dξk1dηk1 . . . dξkν dηkν + ic

(9)

with arbitrary real constant c.
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This result even holds for n = 1. For a proof see [4].

2. Dirichlet problem for second order systems

Any complex harmonic function , i.e. any solution u to uz z = 0 can
be represented by two analytic functions ϕ and ψ as u = ϕ + ψ. In a
bounded smooth domain D ⊂ C the Dirichlet problem u = γ on ∂D for
given complex continuous γ on ∂D is solvable. For D = D we have the
Schwarz problems

Re(ϕ + ψ) = Reγ, Re i(ϕ− ψ) = −Imγ on ∂D,

and hence, by Theorem 1, with arbitrary real constants c1, c2

ϕ + ψ = SReγ + ic1, ϕ− ψ = iSImγ + c2.

That means

u(z) = ϕ(z) + ψ(z) =
1

2πi

∫

|ζ|=1

γ(ζ)
[ ζ

ζ − z
+

ζ

ζ − z
− 1

]dζ

ζ

=
1

4πi

∫

|ζ|=1

γ(ζ)
[ζ + z

ζ − z
+

ζ + z

ζ − z

]dζ

ζ
, |z| < 1.(10)

Up to the last equality these considerations also hold for pluriharmonic
functions. They are solutions to systems

uzk z`
= 0, 1 ≤ k, ` ≤ n,

see [1]. As in Section 1, inhomogeneous systems

(11) uzk z`
= fk`, 1 ≤ k, ` ≤ n,

can be handled if the compatibility conditions

fk`zi = fi`zk
, fk` zj = fkj z`

, 1 ≤ i, j, k, ` ≤ n,

are satisfied. Treating these systems for fixed `, 1 ≤ ` ≤ n, analogously to
Section 1, one gets a particular solution

u0 z`
=

n∑
µ=1

(−1)µ+1
∑

1≤k1<···<kµ≤n

T kµ . . . T k1 fk1`ζk2 ...ζkµ
+ ψ` =: F`,

ψ` zk
= 0, 1 ≤ k ≤ n.
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Choosing the ψ` such that F` satisfies the compatibility conditions F` zj
=

Fj z`
and using the results from Section 1 one can show that

u0 =
n∑

µ,ν=1

(−1)µ+ν
∑

1≤k1<···<kµ≤n

1≤`1<···<`ν≤n

T`ν
. . . T`1 T kµ

. . . T k1 fk1`1ζk2 ...ζkν ζ`2
...ζ`ν

+
n∑

ν=1

(−1)ν+1
∑

1≤`1<···<`ν≤n

T`ν . . . T`1 ψ`1ζ`2 ...ζ`ν

(12)

is a particular solution to (11). The general solution is of the form

(13) u = ϕ + ψ + u0,

with two arbitrary analytic functions ϕ, ψ. Prescribing Dirichlet boundary
conditions for u on ∂Dn,

u = γ on ∂Dn,

and using Theorem 1 as before in the case n = 1, the polyanalytic function
ϕ + ψ is fixed because

(14) ϕ(z) + ψ(z) =
1

(2πi)n

∫

∂Dn

(γ − u0)(ζ)
[ ζ

ζ − z
+

ζ

ζ − z
− 1

]dζ

ζ

if and only if the solvability condition

(15)
1

(2πi)n

∫

∂Dn

(γ − u0)(ζ)K(ζ, z)
dζ

ζ
= 0

is satisfied with

K(ζ, z) :=
n−1∑

k=1

[( k∏
ν=1

ζν

ζν − zν
− 1

) zk+1

ζk+1 − zk+1

+
( k∏

ν=1

ζν

ζν − zν

− 1
) zk+1

ζk+1 − zk+1

] n∏

ν=k+2

( ζν

ζν − zν
+

zν

ζν − zν

)
.

This basically leads to the next result.
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Theorem 3. Let fk`, 1 ≤ k, ` ≤ n, have mixed first order derivatives
with respect to all variables (z1, . . . , zn) ∈ Dn and (z1, . . . , zn) ∈ Dn in
L1(D

n
). Assume that fk` satisfy the compatibility conditions and

1
(2πi)n

∫

∂Dn

f j`

∏

µ6=j,k

dζµ

ζµ − zµ

dζk

(ζk − zk)2
d ζj

ζj − zj
=

=
1

(2πi)n

∫

∂Dn

fk`

∏

µ6=j,k

dζµ

ζµ − zµ

d ζk

ζk − zk

dζj

(ζj − zj)2
, j 6= k, 1 ≤ j, k ≤ n.

Let γ ∈ C(∂D) be complex-valued and satisfy

1
(2πi)n

∫

∂Dn

γ(ζ)K(ζ, z)
dζ

ζ
=

n∑
µ=2

µ−1∑
ν=1

∑
1≤k1<···<kµ−ν≤n

1≤`1<···<`ν≤n

cd{k1,...,kµ−ν ,`1,...,`ν}=µ

(−1)µ

πµ

×
∫

Dk1

· · ·
∫

Dkµ−ν

∫

D`1

· · ·
∫

D`ν

fk1`1ζk2 ...ζkµ−ν
ζ`2

...ζ`ν

zk1

1− zk1 ζk1

· · · zkµ−ν

1− zkµ−ν ζkµ−ν

z`1

1− z`1 ζ`1

· · · z`ν

1− z`ν ζ`ν

× dξk1dηk1 . . . dξkµ−ν dηkµ−ν dξ`1dη`1 . . . dξ`ν dη`ν .

Then the Dirichlet problem for the inhomogeneous pluriharmonic system
(11) is uniquely solvable in Dn. The solution is given by

u(z) =
1

(2πi)n

∫

∂Dn

γ(ζ)
n∏

k=1

1− |zk|2
|ζk − zk|2

dζk

ζk

+
n∑

µ,ν=1

[ min{µ,ν}∑
ρ=0

µ+ν≤n

+
min{µ,ν}∑
ρ=µ+ν−n

n<µ+ν

] ∑
1≤σ1<···<σρ≤n

1≤k1<···<kµ−ρ≤n

1≤`1<···<`ν−ρ≤n

(−1)µ+ν

πµ+ν−ρ

×
∫

Dσ1

· · ·
∫

Dσρ

∫

Dk1

· · ·
∫

Dkµ−ρ

∫

D`1

. . .

· · ·
∫

D`ν−ρ

fσ1σ1ζσ2 ...ζσρ ζk1 ...ζkµ−ρ
ζσ2

...ζσρ
ζ`1

...ζ`ν−ρ

(16)
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×
ρ∏

λ=1

log
∣∣∣ ζσλ

− zσλ

1− zσλ
ζσλ

∣∣∣
2

dξσλ
dησλ

µ−ρ∏

λ=1

dξkλ
dηkλ

ζkλ
− zkλ

×
ν−ρ∏

λ=1

( 1
ζ`λ

− z`λ

+
z`λ

1− z`λ
ζ`λ

)
dξ`λ

dη`λ
,

where the last sum is taken over mutually disjoint ordered sets {σ1, . . . , σρ},
{k1, . . . , kµ−ρ}, {`1, . . . , `ν−ρ}.

3. A boundary value problem for
first order systems in C2

Any first order system

(17) wwwz2 + ΛΛΛ wwwz1 = fff in D0 ⊂ C2

of N ≥ 1 equations with given analytic N × N matrix function ΛΛΛ and
N -dimensional analytic vector fff for the unknown analytic vector function
www can be transformed into a system with the matrix in Jordan normal
form if the eigenvalues λκ, 1 ≤ κ ≤ k, have constant multiplicities nκ

throughout D0. Therefore we may assume that ΛΛΛ has the Jordan normal
form.

Let us consider just one n× n block

ΛΛΛ =




λ 0 · · · · · · 0

1 λ
. . . · · · 0

...
. . . . . . . . .

...

0 · · · . . . λ 0
0 · · · · · · 1 λ




,

where λ is an analytic function in D0. Writing this system componentwise
we get

(18) w0z2 + λw0z1 = f0, wνz2 + λwνz1 + wν−1z1 = fν , 1 ≤ ν ≤ n− 1.

Let there be an integrating factor µ different from zero and analytic in D0

for the differential form dz1 − λdz2 such that

dζ1 := µdz1 − µλdz2
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is a total differential. Then the differentiable function ζ1 satisfies ζ1z1 = µ,
ζ1z2 = −µλ. Setting ζ2(z1, z2) ≡ z2, the mapping ζζζ := (ζ1, ζ2) maps D0

one-to-one onto a domain D ⊂ C2. The Jacobian of this map is
∣∣∣∣
µ −µλ
0 1

∣∣∣∣ = µ 6= 0

in D0, and the Jacobian of its inverse z = z(ζ1, z2) is
∣∣∣∣∣

1
µ

λ

0 1

∣∣∣∣∣ =
1
µ

.

Introducing ωωω(ζ1, ζ2) := www(z1(ζ1, ζ2), z2(ζ1, ζ2)), which is analytic in D,
gives the system

ωωωζ1 =
1
µ

wwwz1 , ωωωζ2 = λwwwz1 + wwwz2 ,

or in component form

ω0ζ2 = f̃0, ωνζ2 + µων−1 ζ1 = f̃ν ,

f̃ν(ζ1, ζ2) := fν(z1(ζ1, ζ2), z2(ζ1, ζ2)), 0 ≤ ν ≤ n− 1.

Instead of (18) one considers the system

(19) w0z2 = f0, wνz2 + µwν−1 z = fν , 1 ≤ ν ≤ n− 1,

in D0 ⊂ C2. Taking integration leads to

w0(z1, z2) = ϕ0(z1) +

z2∫

0

f0(z1, t)dt,

wν(z1, z2) = ϕν(z1) +

z2∫

0

{fν(z1, t)− µ(z, t)wν−1z1(z1, t)}dt,

1 ≤ ν ≤ n− 1.

In vector form (19) is

(20) wwwz2 +




0 0 · · · 0 0
µ 0 · · · 0 0
...

. . . . . .
...

...
...

...
. . . . . .

...
0 0 · · · µ 0




wwwz1 = fff.
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This system can formally be simplified by introducing the nilpotent ele-
ment

e :=




0 0 · · · 0 0
1 0 · · · 0 0
...

. . . . . .
...

...
...

...
. . . . . .

...
0 0 · · · 1 0




, en = 000,

together with the hypercomplex quantities

fff =
n−1∑
ν=0

fνeν , www =
n−1∑
ν=0

wνeν ,

and the hypercomplex differential operator

DDD :=
∂

∂z2
+ µe

∂

∂z1

giving

(21) DDD www = fff in D.

Let ttt =
n−1∑
ν=0

tνeν be a solution to the homogeneous equation DDD ttt = 0 with

t0(z1, z2) ≡ z1. One can choose

tν = tν(z1, z2) = (−1)νµν(z1, z2)

with

µ0(z1, z2) ≡ z1, µν(z1, z2) =

z2∫

0

µ(z1, t)µν−1z1(z1, t)dt, 1 ≤ ν ≤ n− 1,

see [3]. Denoting

ttt1(z1, z2) := ttt(z1, z2), ttt2(z1, z2) := z2

and passing from the complex variables (z1, z2) to the independent hyper-
complex variables (ttt1, ttt2), the operator DDD becomes ∂/∂ttt2. Thus, system
(17) is reduced to

(22)
∂

∂ttt2
www(z1(ttt1, ttt2), ttt2) = fff(z1(ttt1, ttt2), ttt2).

This change of variables has the Jacobian

J :=
∣∣∣∣
ttt1z1 ttt1z2

ttt2z1 ttt2z2

∣∣∣∣ = tttz1 = 1 +
n−1∑
ν=1

tνz1eee
ν 6= 0.
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Moreover,
∂

∂z1
= J

∂

∂ttt1
,

∂

∂z2
= −µeee J

∂

∂ttt1
+

∂

∂ttt2
,

and
DDDttt2 = 1, DDDttt1 = 0,

∂ttt2
∂ttt1

=
1
J

∂z2

∂z1
= 0.

A particular solution to (21) is

www0(ttt1, ttt2) :=

ttt2∫

0

fff(z1(ttt1, ttt), ttt)dttt.

The general solution to the homogeneous equation (21), with fff = 0, is
given by an arbitrary analytic hypercomplex function ϕϕϕ as ϕϕϕ(ttt1(z1, z2)).
Hence, the general solution to (21) is

(23) www(z1, z2) = www0(ttt1(z1, z2), z2) + ϕϕϕ(ttt1(z1, z2)).

In order to determine ϕϕϕ, the Riemann-Hibert boundary condition

Re{G(z1)www(z1, 0)} = ggg(z1) on ∂D1

can be imposed on the boundary of the domain

D1 := D0 ∩ {(z1, z2) ∈ C2 : z2 = 0} ⊂ C.

For z1 ∈ D1, z2 = 0 we have

www(z1, 0) = www0(ttt1(z1, 0), 0) + ϕ(ttt1(z1, 0)) = ϕϕϕ(z1),

so that
Re {G(z1)ϕϕϕ(z1)} = ggg(z1) on ∂D1

determines the analytic vector ϕϕϕ according to the well-known Riemann-
Hilbert boundary value problem, see e.g. [12].

Theorem 4. The general solution to system (17) with ΛΛΛ having just one
eigenvalue, where ΛΛΛ and fff are an analytic matrix- and vector-function,
respectively, in the domain D0 ⊂ C2, (0, 0) ∈ D0, is given by (23). Here
the domains

Dz0
1

= {(z1, z2) ∈ D0, z1 = z0
1} ⊂ C, z0

1 ∈ projz2D0



BOUNDARY VALUE PROBLEMS 419

are assumed to be simply connected. Moreover, ϕϕϕ(z1) is an arbitrary
analytic vector-function in

D1 = {(z1, z2) ∈ D0, z2 = 0}.
Provided D is simply connected and regular ϕϕϕ is determined by Riemann-
Hibert boundary conditions depending on the index of the coefficient.

In [2] the m-th order complex equation

∂mu

∂zm
2

− ∂u

∂z1
= 0 in |z1|2 + |z2|2 < 1,

for 2 ≤ m is treated in the same manner.

4. Stress boundary value problem in
orthotropic elasticity

The equilibrium equations

∂σx

∂x
+

∂τxy

∂y
+ F1 = 0,

(24)
∂τxy

∂x
+

∂σy

∂y
+ F2 = 0,

for the stress components σx, σy, τxy and the body force vector FFF =
(F1, F2) of an orthotropic elastic body together with the Hooke law

σx =
1

1− ν12ν21

(
E11

∂u

∂x
+ ν12E22

∂v

∂y

)
,

σy =
1

1− ν12ν21

(
ν21E11

∂u

∂x
+ E22

∂v

∂y

)
,(25)

τxy = G12

(∂u

∂y
+

∂v

∂x

)
,

in the case of small deformations (u, v) lead to a system of second order
equations for (u, v) if (u, v) are twice continuously differentiable. The
coefficients in (25) are the modulus of motion G12, the Poisson ratios ν12,
ν21 and the Young moduli E11, E22 related by

ν12E22 = ν21E11,

see [9]. Substituting (25) into (24) gives

(26)
[
A11

∂2

∂x2
+ A12

∂2

∂x∂y
+ A21

∂2

∂y∂x
+ A22

∂2

∂y2

](u

v

)
+

(
F1

F2

)
=

(
0
0

)
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with

A11 =
[

E11/(1− ν12ν21) 0
0 G12

]
, A12 =

[
0 ν12E22/(1− ν12ν21)

G12 0

]
,

A21 =
[

0 G12

ν12E11/(1− ν12ν21) 0

]
, A22 =

[
G12 0
0 E22/(1− ν12ν21)

]
.

Let D ⊂ C be a simply connected domain occupied by the elastic body
and as well the displacement (u, v) as the stresses (Xn, Yn) be specified at
all points of ∂D. Here nnn is the exterior normal vector to ∂D and Xn, Yn

are the components of the external stress along the axes. Then the stress
boundary value problem is

σx cos(n, x) + τxy cos(n, y) = Xn,
on ∂D.

τxy cos(n, x) + σy cos(n, y) = Yn,

Using (25) these conditions become
[
cos(n, x)

(
A11

∂

∂x
+ A12

∂

∂y

)

+ cos(n, y)
(
A21

∂

∂x
+ A22

∂

∂y

)](u

v

)
=

(
Xn

Yn

)
on ∂D.

(27)

Introducing new parameters

ν2 = ν12ν21, E2 = E11E22,

δ2 =
√

E11

E22
, k1 =

E

2G12
− ν,

λ =
1− ν2

2(k1 + ν)k
, k = k1 −

√
k2
1 − 1 ,

and new dependent and independent variables

x = δξ, y =
1√
k

η, u =
1− kν

(k + ν)
√

k
ũ, v = −δ ṽ,

(26) is transformed into[[
1 0
0 −λ/k

]
∂2

∂ξ2
+

[
0 λ/k − k

1− λ 0

]
∂2

∂ξ∂η
+

[
λ 0
0 −k

]
∂2

∂η2

](
ũ

ṽ

)

=
ν2 − 1

E




(k + ν)
√

k

1 + kν
F1

F2


 .

(28)
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The left-hand side can be factorized. Thus (28) can be written as
[[

k 0
0 λ

]
∂

∂x
+

[
0 λ
k 0

]
∂

∂y

] [[
1/k 0
0 1/k

]
∂

∂x

+
[

0 −1
1 0

]
∂

∂y

](
u

v

)
=

(
F1

F2

)
,

where (ξ, η) and (ũ, ṽ) were replaced by (x, y) and (u, v), respectively and
the coefficients on the right-hand side were neglected. Using the notations

1
k

∂u

∂x
− ∂v

∂y
= θ,

∂u

∂y
+

1
k

∂v

∂x
= ω,

we get the following relations in some plane domain D ⊂ C

k
∂θ

∂x
+ λ

∂ω

∂y
= F1, k

∂θ

∂y
− λ

∂ω

∂x
= F2.

By introducing complex variables we have
( ∂

∂x
+ ik

∂

∂y

)
(u + iv) = kθ + ikω,

(29)
1
2

( ∂

∂x
+ i

∂

∂y

)
(kθ − iλω) = F1 + iF2.

This system in the homogeneous case F := F1 + iF2 = 0 reduces to the
system of bianalytic functions, see [13], With

f = u + iv, ϕ := kθ − iλω, z = x + iy,

ζ = ζ(z) :=
k + 1
2k

z +
k − 1
2k

z = x + iy/k

(29) is equivalent to

(30)
∂f

∂ ζ
=

λ− k

4λ
ϕ +

λ + k

4λ
ϕ,

∂ϕ

∂ z
= F.

A particular solution to the last equation of (30) is ϕ0 = TDF . Similarly,
a particular solution to the first equation of system (30) is

f0(z) = − 1
π

∫

G

{λ− k

4λ
ϕ0

(k + 1
2

ζ +
1− k

2
ζ̃
)

+
λ + k

4λ
ϕ0

(k + 1
2

ζ̃ +
1− k

2
ζ̃
)} d ξ̃ d η̃

ζ̃ − ζ(z)
,
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when G is the image of D under the transformation ζ = ζ(z). Conse-
quently (26) has the particular solution

u0(x, y) =
1 + kν

(k + ν)
√

k
Re f0

(x

δ
+ i
√

k y
)
,

(31)
v0(x, y) = −δ Im f0

(x

δ
+ i
√

k y
)
.

The theory of bianalytic functions, see [13], shows that the general solution
of the homogeneous system (30), with F 6= 0, is given in the form

f(z) =
λ− k

2(1− k)λ
Φ(ζ(z))+

λ + k

2(1 + k)λ
Φ(ζ(z))+Ψ

(k + 1
2k

ζ(z)−k − 1
2k

ζ(z)
)
,

where for arbitrary analytic function ϕ(z)

Φ(ζ) :=

ζ∫

ζ0

ϕ(z)dz

with some arbitrary fixed ζ0 ∈ G and Ψ is an arbitrary analytic function.
Thus the general solution to (28) has the form

u(x, y) = −k + ν

E
√

k
Re

[
αΦ

(x

δ
+ i
√

k y
)]
− 1 + kν

kE
√

k
Re

[
kβΨ

(x

δ
+ i

y√
k

)]

+
1 + kν

(k + ν)
√

k
Re f0

(x

δ
+ i
√

k y
)
,

v(x, y) =
1 + νk

E22δk
Im

[
αΦ

(x

δ
+ i
√

k y
)]

+
ν + k

E22δk
Im

[
kβΨ

(x

δ
+ i

y√
k

)]

− δ Im f0

(x

δ
+ i
√

k y
)

with
α =

1 + kν

1− k2

E

1− ν2
, β := − E

k + ν
·

The stress boundary conditions lead to boundary value problems for the
unknown analytic functions Φ, Ψ. At first (25) is expressed by the new
parameters,

σx =
E

1− ν2

(
δ2 ∂u

∂x
+ ν

∂v

∂y

)
,

σy =
E

1− ν2

(
ν

∂u

∂x
+ δ−2 ∂v

∂y

)
,

τxy =
E

2(k1 + ν)

(∂u

∂y
+

∂v

∂x

)
·
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Then changing the variables to z1 =
x

δ
+ i

√
k y and z2 =

x

δ
+ i

y√
k

,

respectively, and introducing the functions ψ(x2) = Ψ′(z2), ϕ(z1) = Φ′(z1)
one gets

σx = −δ
√

k αRe ϕ(z1)− δ√
k

βRe ψ(z2)

+
Eδ
√

k

1− ν2

( 1− kν

(k + ν)k
− ν

)
Re f ′0(z1),

σy =
1

δ
√

k
αReϕ(z1) +

√
k

δ
βReψ(z2)

+
E
√

k

(1− ν2)δ

(ν(1 + kν)
(k + ν)k

− 1
)

Re f ′0(z1),

τxy = αIm ϕ(z1) + β Im ψ(z2)− E

2(k1 + ν)

(1 + kν

k + ν
+ 1

)
Im f ′0(z1).

Observe on ∂D with x = δx1,
√

k y = y1, that

cos(n, x) =
dy

ds
=

1√
k

dy1

ds
, cos(n, y) = −dx

ds
= −δ

dx1

ds
,

then on ∂D

Xnds = −d
[
Im {δαΦ(z1) + δβΨ(z2)}+ δg2(z1)

]
,

Ynds = −d
[
Re

{ α√
k

Φ(z1) +
√

k βΨ(z2)
}

+
1√
k

g1(z1)
]
,

where g1, g2 are functions defined by f0(z1), i.e. by the inhomogeneous
right-hand side in (28). Integrating along ∂D from some initial point
with s = 0 to z ∈ ∂D with arc-length parameter s > 0 one gets for
z = x + iy ∈ ∂D

Im {αΦ(z1) + βΨ(z2)} = g2(z1)− 1
δ

s∫

0

Xnd s̃ + c2,

(32)

Re {αΦ(z1) + kβΨ(z2)} = g1(z1)−
√

k

s∫

0

Ynd s̃ + c1

with some integration constants c2 and c1. These are boundary value
problems for the analytic functions Φ and Ψ. In the case of a multi-
connected domain D, these functions are multi-valued in general (see [7],
where D is doubly connected).
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Denote the right-hand side of (32) by −βf2, βf1, respectively, and
assume that D1 := {z1 : z1 =

x

δ
+ i

√
k y, x + iy ∈ D} has a Schwarz

operator S1, see [2]. By eliminating Φ(z1), the system (32) can be reduced
to the integral equation

(33) S1

(k − 1
2

Ψ(z2) +
k + 1

2
Ψ(z2)

)
= S1(f1 − if2) + d

with arbitrary complex constant d.
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