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INTRODUCTION

Consider the Lotka-Volterra system for 3-competing species

21(t) = z1() (1 — z1(t) - a(t)z2(t) — B(t)z3(t)),
(0-1) z3(t) = 22(8)(1 - B(t)z1(t) — 2a(t) — a(t)za(2)),
z5(t) = 23(t)(1 = a(t)z1(t) — B(t)z2(t) — z3(1)),

where o, § : R! — R! are continuous, nonnegative and T-periodic for
some common period T > 0. Set

Ri:{x:(zlax2$$3)€R3 : -’L'iZO; i=1!2’3}’
L={zeRY : z, =1z, = 23},

In this paper we shall show that system (0.1) has at least one T-periodic
solution with strictly positive components. If n‘%ax (a(t) +B(t)) < 2, then

such a solution is unique and globally asymptotically stable (or attra.ctwe)
inint (R%) := {zr € R : 2; > 0,7 = 1,2, 3}. Furthermore, if mm {a( )+

B(t)} > 2 then a positive (componentvvlse) T-periodic solutlon of (0.1) is
also unique but dist(z(¢),0R3) — 0 as t — 400 for every solution z(t) of
(0.1) with z(to) € int(R?%) \L for some to € R, where dist(z(t),0R3) is
the distance from z(t) to 9R3.

The case that a, § are p051t1ve constants was a.lready studied by R. M.
May and W. J. Leonard [6], P. Schuster, K. Sigmund and R. Wolff [8].
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The study of the nonautonomous Lotka-Volterra competition equations
have been the subject of several recent papers (see e.g. 1, 2, 4, 9]). K
Gopalsamy [4] and A. Tineo and C. Alvarez [9] considered the system

‘(0.2) :c()——z,(t[ . Zau :c,t] (1<i<n),

when n > 2 and a5, b; : R! — R! are continuous, positive and T-periodic
for some common periodic T > 0.
In [9], it was shown that the two sets of conditions

(T1) b:i(t) > D ay{)URE). (1 <i<n, teR), where UP(t) is the
Jjed;
unique T-periodic and positive solution of the logistic equation

U'(e) = UE)(:t) - sV ),

and J; = {1,2{,...,1’—.1,i+1,...,n},‘

(T2) there are positive constants aj,... , 0y such that

a,—a;,—(t] > Z aja]-,;(t) (1 <i<n, t€ R),
JEJ:

imply that the s.ystem (0.2) has a T-periodic solution z°(t) whose com-

ponents are positive and z(t) — z0(t) — 0 as t — 400, for any pbsitive
solution z(¢) of (0.2).

In the case of the system (0 1), conditions (Tl) and (T3) become aft) +
B(t) < 1, for t € R, which is more restrictive than ours. The ecological

significance of the system (0.1) is discussed in [4, 5, 6, 8].

We also consider the case that «(t) and §(t) are continuous, nonnega-
tive and almost periodic in Section 3 of this paper.
1. EXISTENCE

The Cauchy problem for (0.1) has a unique solution whenever the initial
data z;(to) = zio belong to R4 (z = 1,2,3). Any solution satisfies the
condition

0 < z:(t) < max{l,zi0} (i=1,2,3, ¢>to). .
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Let

M1={x€Rf”|_ : Eiﬁl}, M2={-'E€M1 : $1+$2+$327]},

where 7 = 40<KT( + o?(t) + 8%(2)) L.

In the following lemma we do not assume periodic conditions on the
coefficients a(t) and B(t).

Lemma 1.1. The sets My and M, are positively invariant and attractive

aith respective to RS and R3 \ {0}, respectively.

Proof. It is easy to see that M; is positively invariant and attractive. We
now prove the attractivity and invariance of M,

Let z € M) \ (M2 U{0}). Then 0 < z; <1 (¢ = 1,2,3) and there exists
at least one index j € {1,2,3} such that z; > 0. From (0.1) we have

2 > 2 (1= \/(1+ o2 + 62)(at + 2] + 22))
> z;(1—v/(1+ a2 + B2)(z; + 22 + z4))
2;(1= T+ a7+ 7)7) > 1z; >0.

v

This fact and the invariance and attractivity of M) imply the invariant
and attractivity of M;. The lemma is proved

By Lemma 1.1, as far as the asymptotlc behavior is concerned, we may
confine our attention to Ms.

Lemma 1.2. The set L is invariant and the system (0.1) has a unique

‘T-pertodic solution z*(t) in L with positive components.

Proof. Suppose that zg = (w01, o2, To3) € L with zo; > 0 (1 = 1,2,3).
For each i = 1,2, 3 let us denote zo,(t) the solution of the equation

(1.1) - zi(t) = z:(¢) (1 — (1 + a(t) + A(8))z:(t)),

(1.2) , zi(to) = Zo;.

Clearly, 3301(t) = xoz(f) = $03(t0).
It is easy to see that zo(t) = (z01(t), Zoz(t), Tos(t)) is the solution of

‘ (0.1) with initial condition zo(to) = zo. The invariant property of L
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follows from the uniqueness of solution of the Cauchy problem. Since the
T-periodic logistic equation (1.1) has a unique positive and T-periodic
solution z(¢) (see, for example, (2]}, it follows that the system (0.1) has a
unique positivé T-periodic solution z*(t) = (z}(¢), z3(t), z3(¢)) in L. The
lemma is proved.

2. UNIQUENESS AND ASYMPTOTICITY

In this section we prove the assertion mentioned before.. To do this, we
need the following result in [7, p. 289]. Consider

21 2'(t) = £t 3(0),
(2.2) (tO)—xcn |

where f : RXR" — R™ is such that the Cauchy problem (2.1} - (2.2) has a |
unique solution fortg € R, zo € R™ Ifg: R — R is a function, we denote
t) —glto}
by D*g(to) = lim supg%:M , the (upper right) Dini derivative of ¢
t—rt+ — 0 \

at ¢t = to

Furthermore, if V : R x R® — R is a function then DV denotes the
Dini derivative of V along solutions of (2.1).

Theorem 2.1 (see (7, p. 289]). Suppose that @ C R" is open and connect-

ed. Let S be a subset of 0, closed with respect to Q. Let V : [ty, +-00) X {1 —

R be a function which is locally Lipschitzian in = and continuous, and let

¥ : 1 = R be a locally Lipschitzian functzon If there e:czsts ci number

B > 0 such that for every (t,z) € [to, +00) X S:

(i) D¥V{(t, :t:) < —9(x),

(i) ¥(z) >

(iii) D+1,b(:z;) > ~B, (or Dt ¢(x) < B} and

(iv) for every compact set C C R", there ezists a number A > 0 such

that _ ‘
Vit,z) > ~A4 on [tg,+o0) x (CNQ),

then any solution z(t) of (2.1) for which the right mazimal interval of
ezistence 1s [tg, +00) and z(t) € S for t € [to, +oo) has the w-limit set A+
satisfying

A+ﬂﬂcEz{x€S:¢(m)=0}.

Theorem 2.2. Let z*(t) be the T-periodic solution of (0.1) as in Lemma
1.2. If (Dax {a() ()}<2 then z(t) — z*(t) — 0°as t — +co for any

solutzon z( ) of (0.1) wrth :c(to) € int (R3), to € R.
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Proof. Suppose that z(t) is a solution of (0.1) with z;(to) >0 (i = 1,2,3).

Denote by At the w-limit set of z(t). Without loss of generality, we may

assume that z(fo) € Ma, since My is attractive relative to R \ {0}.
Define a Liapunov function

V(z) = —z1za73(z1 + 22 + £3)"3 on M.

Then we have

4

DYV = —(1 _at ﬁ)zimgzg(zl + g+ z3) " X
(w1 — 22)* + (32— 78) + (B3 —21)*]

< - (1 - % Org:gcT(a(t) + ﬂ(t)))mlm?z3(zl + 3 + z3) "X
[(3; — 23)% + (22 - 23)* + (23 — 21)*] =t —¥(z)-

It is easy to verify that V and ¥ satisfy all conditions in-Theorem 2.1 with
1 = S = int (M3). Therefore

ATNQCE= {m:¢(z)=0}= {:c:n<a:1=-x2_=a:3<1}.
Singe M, is positive invariant, we ca.\.n conclude that
At C {m:n <Ly =Tp = Tsa <,1}U6M2.
Clearly,
DYV(z) <0 for xEMz\{QRiU{m:ns Ty =33 =23 < 1}},
V(z) = -—2—17-, for z € {z n <z =22 =13 Sl},
and V(z) = 0 for z € IR} N IM;: Consequently,

A"‘C{x:nﬁ:nl:z:g::casl}.

Since A+ is bounded, we have z(t) — AT as t — 4-oo0.
We now prove that z;(t) ~ z2(t) — O ast — +oo ({ = 1,2,3). It is
enough to prove x,(t) — z}(t) — 0 as { — +o0.
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- 1 e 1
| Suppose tha.il; W(t) = parl W*{(t) = poyn R Then
W(e) = 1= W) + (a)aalt) + AOs(8) s
W*(t) = 1 —W*(t) + alt) + B(2)-
Hence,
23) 7 -W)(0) =~ -w) (0 +al) (2 1) 40 (2 1),
- _ _ zy(t) - z1(t)

There are two possibilities:

(1) There exists t; > to such that (W — W*)'(¢) # 0 for ¢t > ¢;.

(2) There exists a sequence of numbers {Sn}io in [to,+00) such that
forn>1, S, < Spy1, (W—W*)(S;) =0, and S, = 400 as n — oo.

If (1) holds, then W (t) — W*(t} is monotonic on [t;,+00). Therefore
t_liinoo(W(t) —W*(t)) exists. If t—lélfoo(w(t) ~W*(t})) = 0 then, since z;(¢)
and z}(t) are bounded and zj(t) — z1(t) = =} ()= (&) (W (t) — W*(¢)), it
follows that zj(t) — z1(t) — 0 as t — +oo. R

Suppose now that (1) holds and f_lél_if_ﬂoo(W(t) — W*(t)) =~ # 0. Since

z(t) — AT as t — +oo and At C {a: i n< oy =29 =23 < 1}, (2.3)
follows
(W(t) — W t))‘ Mo, for ¢34
Since this contra.dlcts the boundeness of W (t)—W*(t) on [tg, o0), it follows
that if (1) holds then hm (xl(t) —zi(t)) =o0.
If (2) holds, for each n > 1 we take a number 'rn € [SnySn+1] such that

@) W) W) = mex  WE -]

Since (W —W*)!(S,) = 0-for n > 1, it follows that (W — W*)/(r,} =0
for n > 1. Therefore, by (2.3),

W (ra) = W* (7a) = c(r) (g:% ~ 1) +B(rw) (i"a—("“—) -1).

n 251 (Tn)

Since z—‘(?— — last — +oo (¢ = 1,2,3) and a(t), f(t) are bounded, it
1

follows that

(2.5) | lim (W(r,) — W*(r,)) = 0.

rn—0oo
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Since S, — +00 as n — oo, it follows from (2.4) and (2.5) that W(t) —
W*(t) — 0 as t — 4oo. Therefore, if (2} holds we have , li+m (z1(t) —
— 00

z3(t)) = 0. Since the possibilities (1) and (2) are exhaustive, the theorem
is proved.

Remark. As a consequence of the global attractivity of the solution z*(t),
Theorem 2.2 also implies the uniqueness of a positive T—perlodlc solutlon
of (0.1).

In the next theorem we do not assume periodic conditions on the coef-
ficients o(t) and B(t).

Theorem 2.3. Suppose that a(t) and S(t) are continuous, nonegative
and bounded above. If tiéllf;.(a(t) + B(t)) > 2, then , li_il_l dist(z(t), OR3 N
dMz) = 0 for any solution z(t) of (0.1) with z(ts) € R\ L, to € R.

Proof. Suppose z(t) is a solution of (0.1) with z(to) € R% \ L. Denote
by AT the w-limit set of z(t). By the attractivity of M, we may assume,

without loss of generality, that z(to) € int (Mz) \ L. We also define here a
Liapunov function

V(z) = z1z223(z1 + 22 + z3) "3
~on M,. Hence
DYV (z) = T1T2T3 (1 _ aft) + ﬁ(t)) 5
(-'51 +z2+ z3)4 2

[(z1 = 22)® + (22 — z3)* + (23 — 21)?]
< (1 - = ogmiél’i‘ (a( )+ t) )zlzzzs(ml + z2 + x3) "~ —4x
[(1‘11 — z2)® + (72 — 73)% + (za~ 31)2] =: —9(z)
By Theorem 2.1 and using the same argument as in the proof of The-

orem 2.2 we can conclude that A+ < 3R N OM,. Since AT is bounded,
it follows

t_lér_'poo dist(z(t),6R3. N6M;) =0
: T_he theorem is proved.

Remark. In the case that a(t) and () are T-periodic, Theorem 2.3 and
Lemma 1.2 imply the uniqueness of a positive T-periodic solution of (0.1).
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3. THE CASE OF ALMOST PERIODIC COEFFICIENTS

In this section we assume that a(t) and B(t) are continuous, nonnega-
tive and almost periodic instead of being T-periodic. Given a function a(t)
defined on (~ oo, +00), we let g7, and ¢5s denote tig}f;{g(t)} and sup{g(¢)},

teRr

respectively. Suppose that f = (f. . f"):R=R"is continuous. Let
us recall that f is almost periodic if for each € > 0 there exists a positive
number £ = {(¢) such that each interval (e, 4 ¢), (@ € R), contains at
least a number r = 7(€) satisfying ‘

sup [|f(¢ " ) =S} <& where ||f(t)]l = 22x {l1@)]}.

We recall Bochner’s criterion for almost periodicity: f(t) is almost pers-
odic if and only if for every sequence of numbers {Tm};o, there exists a
subsequence {ka }:‘;1 such that the sequence of translates { g(t-f-r,,; k)}lc::1
converges uniformly on (—oo, +00) (see, for example [3]). )
Note that a continuous almost periodic function is always bounded. 7
First of all we need the following lemma which was given by 8. Ahmad
1l | .
Lemma 3.1 (see [1]). Let 2,b: R - R be continuous and bounded above
and below by positive constants. Then the logistic equation

(3.1) v(0) =(2)(alt) - be)o 1),
has a unique solution ¥°(t) defined on (~—o0,+00) such that
§<y°(t) <A for t € (~o0,+00),

where §, A are any positive numbers satisfying 6 < ;—zl*—, A> %Ai.

M L
Lemma 3.2. Suppose that a(t), b(t) are as in Lemma 9.1. If, in addition,
a(t), b(t) are almost periodic then the solution y°(t} in Lemma 9.1 is
almost periodic.

/
Proof. Take &' > 0. By Bochner’s criterion, it follows that (a(t), b(t)) is
almost periodic. Therefore there exists a positive number ¢ — £(¢’) such
that each interval (eya+£), @ € R, contains at least a number r such
that

(3-2)  supla(t+71) - a@t)| <¢', sup [b(t +7) — 8(2)] < ¢,
tER tER
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1

Let us fix 7 as above. Define W(t) = TR From (3.1) it follows that

LW - Wt +)] = b(e) ~ bt +) = )W Q) Wt 4 1)
(3.3) = [a(t +7) — a(t)|W (t + 7).
| Consider the following equation
(3.4) MM=nmm4ﬂ+Mﬂ—MHwy+h@+ﬂ—dﬂﬁﬁ+¢y

Since az, > 0, it is not hard to prove that if 2(t) is a bounded solution
of (3.4) defined on (—oo0, +-00), then

b(t) — bt - t - alt}|W
inf{ (8) = bt +7) + [a(t + 7) — a(?)] (H-T)}gz(t)
tER a(t)
(3.5) _ . A - :
b(t) —b(t+ 1) + [alt +7) —a®)|W(t+ 1)y .
< su teR).
- teg{ a(t) } ( )
Therefore, from (3.2) and (3.5) we have
1 1
E’(l—f-—o) E’(l-l"T) . .
(3.6) —— Y1 < 2(t) < — Ui’ , for any t€R.
ar, ar,
1 1
Si - is a bounded solution of (3.4) defined —00,+00),
1ncey0(t) PEE7 is a2 bounded solution of (3.4) ed on ( )
it follows that 1
. 14 L
‘ 1 1 1 , * v
— <e ,
¥ v+ e
consequently, -
1
1+ y—o R
0 -+ 1) <o —2 ()
Therefore if
-
e=e — (g
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then [y°(¢ +7) — y°(t)| < € and we can take £(¢) = £(’). This proves
that y°(¢) is almost periodic. The lemma is proved.

By Lemma 3.2, the equation (1.1) has a unique almost periodic solution
defined on (—oo0, +00) which is bounded above and below by positive con-
stants. Therefore, the system (0.1) has a unique almost periodic solution
Z(t) in L defined on (—o0, +00) whose components are bounded above and
below by positive constants. In the proof of Theorem 2.2, the periodicity
of z*(t) was not used. Therefore we have the following

Theorem 3.3. Suppose that ot), B(t) are continuous, nonnegative al-
most periodic and sup (af(t) +B(t)) < 2. Then z(t) —&(t) — 0-as t — +oo
teR - '

for any solution z(t) of (0.1) with z(to) € int(R3), t, € R.

Remark. If a(t), B(t) are only assumed to be continuous and nonnegative
then Theorem 3.3 is also true with Z(¢) being a unique solution in L,
defined on (—o0,+00), whose components are bounded above and below
by positive constants. In fact, this follows from Lemma 3.1 and the proof
of Theorem 2.2.
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