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ON THE LANGLANDS TYPE DISCRETE GROUPS III.
THE CONTINUOUS COHOMOLOGY -
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Dedicated to Hoang Tuy on the occasion of his seventieth birthday

ABSTRACT. For a fixed percuspidal subgroup P=MAU and a fixed finite
spectrum I'-module V, the associated spectral sequence for the fibration

U/TAU >—° P—p-M/Trr

converges and the cohomology group H*(Kas\°P/T'NP;V) is isomorphic
to the direct sum of E,-terms. Every cohomology class of this type can be
represented by an V-valued automorphic form. The restriction map sends
the cohomology classes at infinity of H*®(I';V), represented by singular .
values of the associated Eisenstein series to the cohomology classes of
the boundary 8(X,u.,/T'), compatible with its weight decomposition. Al
together these give us a decomposition of the cohomology of Langlands
type discrete groups into the cuspidal and Eisenstein parts.
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INTRODUCTION

For a fixed reductive algebraic (Lie) Q-group G, the subgroup Gz of
the integral points, under some natural conditions (see [R1]) admits an
interesting property: Every finite dimensional representation of Gz re-
stricted to a subgroup of finite index can be extended to the whole group
G as a rational representation (for more details, see [R1], [R2]). Arith-
metically defined subgroups I' C.G are, by definition, just the subgroups,
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whose images g(I'} under some algebraic faithful representation (p, V') are
commensurable with p(Ggz). In particular, V is a bimodule over the max-
imal compact subgroup K and the center-Z(§) of the universal envelop-
ing algebra U(§s). Therefore one considers the local K-finitely generated
and local Z(§)-finite spectrum submodule °LZ (G/T) of the automorphic
forms in the twisted regular representation

LL(G/T) = L} (@) ®r V.

The problem of decomposing this regular twisted representation into irre-
ducible components requires a theory of V-valued Eisenstein series. Really,
the theory of Eisenstein series uses only some definitive properties needed
for the reduction theory. Abstracting these properties, R. P. Langlands
introduced a larger than arithmetically defined class of discrete groups.
We call them the Langlands type discrete groups, see [La).

So, following R. P. Langlands, in Part II of this series we considered the
theory of V-valued Eisenstein series for Langlands type discrete groups,
where V' can be any unitary I'-module of (in-)finite dimension, but with
the following two basic properties: K-finiteness and Z(§)-finiteness of
spectrum. We say in this case that V has finite spectrum. In general the
theory is related to the spectral decomposition of L (G/T) as a G-module.

As remarked in Part I, it is easy to see that T’ can be supposed to
be acting freely on the smooth contractible quotient X = K \ G of G
by a maximal compact subgroup K, and hence X/T is the Eilenberg -
MacLane space K(I',1). The cohomology H*(T; V) is then isomorphic to
the sheaf cohomology H*(X/T; #v), where 7y is the local coefficient sheaf
associated to the representation (o,V) of I'. '

. Following A. Borel and J.-P. Serre, in Part I we constructed the com-
pactlﬁca.tlon Xcuap/T of X/T, the boundary 8(X,ysp/T) of which is ho-
momorphic to the quotient by I of the cuspidal part in the Tits building.

We show in this third paper (Theorem 1) that for a fixed percuspidal
subgroup P = M AU, the spectral sequence of the corresponding fiberation

U/Ty »=°P/TNP — M/Tp

converges and the cohomology H*(Ka \oP/T' N P; V) is isomorphic to the
direct sum of the E;-terms. Every cohomology class of this type can be
represented by an V-valued automorphxc form, with which then associates
some Eisenstein series [D2].

Following G. Harder [H], J. Schwermer [S], K. F. Lai [L], we prove
(Theorem 2) in this paper that the preimage

inf(T;V) :==res }(Im res),
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(the so called cohomology at infinity) of the restriction map
H'(X/T;V) = . H'(3(Xeusp/T); V)

consists entirely of classes which can be represented byjs;v)eé:ia.l values of V-
valued Eisenstein series, and that the image of these classes is compatible
with the weight decomposition of the boundary cohomology

H*(a()_(cusp'/r); ) EBwEW @Gir>o Hw,\—p(a( cusp/r) V)

All together these give us a decomposition of the cohomology of Langlands
type discrete groups into the cuspidal and Eisenstein parts.

This work is completed under the research fellow grant awarded to
the author by the Alexander von Humboldt Foundation and in the per-.
fect working condition at the Department of Mathematics and Sonder-
forschungberelch 343 der Universitat Bielefeld, Germany, to which the
author is very happy to thank. The deep thanks are addressed to Prof.
Dr. A. Bak for his general support and to Prof. Dr. J Schwermer for hlS
(p) reprmts

1. COHOMOLOGY OF DISCRETE CUSPIDAL SUBGROUPS

. Recall that G is a reductive Lie group, K a maximal compact subgroup
of G, T a fixed Langlands type discrete subgroup and (o,V’) some finite
spectrum unitary I-module of any (finite or infinite) dimension. Let P =
M AU be a cuspidal subgroup of G,

rM =INM, Tp:=TnP, Ty:=Tny, X K\G,
= (KENM)\M, X/T:=K\G[T, °X:=z. P,

where 2o = K.e € X. We have therefo;‘e a ﬁb'era,tion
| | U/I‘U>-+°X/I‘p—>-XM/I‘M
Theorem 1. For the cohomology
H*(Tp;V)=H*(°X/Tp;V) = H*(X/T N P;V)

there ezists a convergent spectral sequence of Hach:schild-Serrc type such
that if Xpr /T ar ts compact, the map

it 0P(Xp/Tar; BIU; V)) — QPH(°X/T 0 P;V)
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induces an isomorphism of the cohomology groups

& P HP(X/Ta HYU; V))-SH™(X/T N P;V),

ptg=m

where H*(U; V') denote the Lie algebra cohomology of Lie algebrall = LieU
with coefficients in V, represented by harmonic forms. :

Proof. From the properties of Langlands type discrete groups, one deduces
that Tas isalsoa Langlands type discrete group in M. With the fiberation

U/Ty>— °X/TNP — M/Tp
there‘exists a spectral séquence |
H.’°(Ji'1\4/1’M;JH”*'(U/I‘U;V)) = HPT(°X/T N P;V).
" Lemma 1.1 (Van Est; see, for example, [BW]).
H*(U[Ty;V) = H'WV)=H'WYV).
Lemma 1.2. There exists a convergent spectral sequence wz'th.Ez-terms
HP (Xp/Ta HIU; V)) = H™(CX/T NP V),

with p+ ¢ = m. ) R
Proof. Essentially, this lemma was proved:in [I;I,J for the finite dimension-

al T-modules V. We consider here an arbitrary K-finite and Z(§)-finite
spectrum T'-module V, or shortly finite spectrum: I'-module V. The co-
homology of Xar/Tar with coefficients in-the local system of H*@;v),
determined by the operation of the fundamentaligroup I'ss. This action
coincides with the restriction of the action of M on X*(U; V). The last
action of M is defined by the action of °P. on the cochain complex defining

H*(U; V). We have a diagram

°X/(LNP) —— Xm/Tu

T_. .T,.

ﬂ_l

Yy ——°X/(TNP),
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where Y is the pull-back of the fiberation 7 over itself. The fiber bundle

Y 5 °X/(T N P)

is induced by the action of I' 0" P on U/T'y. For this fiberation we have
the well-known Hochschild-Serre spectral sequence, which converges to
H*(°X/(I' n P); V). The lemma is proved.

Next we consider for each fixed ¢ an embedding 7, which commutes
with differentials d, dps and operators * o #, %ps 0 #ps

0P (Xar/Tar; HH(U; V) b, Qrte(°X/T N P;V)

he| IE

QP (Xpg /Tar; HIW; V) ——s QPH+1(X/T 1 P, V)

ty

VP (Xp/Tas HOU; V) ——  QPH(°X/T N P;V)
(-1)‘"-=’>qwo#Ml [ -

O"P(Xpg /Tag HOIU; V*)) ——s Qo+n—p=9(°X/T N P;V*),

where n = dim X,s, s = dimlU. From this comr‘nutative diagrams we
deduce that for each g, 7, interwines the Laplacian Aps on Xps/Tar and
Aon°X/(TNnP),

igolpr = Aoig,

The first diagram gives us a homomorphism +* on cohomology

*: D HP(Xa/Tar; HUU;V)) = H™(°X/( N P); V).
ptg=m

The Hodge decomposition gives us therefore injectivity and subjectivity
of +*. The theorem is proved.

Remark 1.4. Since V has finite spectrum on each .irreducible component,
A acts as a scalar multiplication and with finite multiplicity. Thus the
Hodge decomposition for A is the same as in the case, where V is of finite
dimension. '

Recall that for any finite spectrum unitary I-module (o, V), the space
Av(G/T',0,x) of V-valued automorphic forms of type {(o,x) has also a
finite spectrum (see [D2], Theorem 2).
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For any percuspidal subgroup P = M AU we have the relationship for
the corresponding Lie algebras

M=Ku®Pu, P=Molol,

°P=Mol, °‘R=Puel,
R=°R@a, A™°R= (D (A"Py®AU).

' ptg=m

Then each cohomology class
el e HM(CX/TnPV)
can be represented by a unique harmonic representative
p e HCX/TNP;V) Cc Q" (°X/T N P;V)
which can be viewed as a function
©:°P/T NP — Hom(A™Rr; V),

such that
p(kpu) = AT Adeg (k) ® o (k) (0(p))-

We have K M—inva.ria.ﬁt embedding
Hom(A™°R; V) < Hom(A™R; V).
We can extend p to a function
©a : G/(T' N P) — Hom(A™R;V),
oalktp) = AT Adp (k) ® o(k)p(p) exp —(p + A) (Int)

and define the Eisenstein series (see [D2])

Ep, (=)= >, ealz1)

~el/(TNP)

The series converges absolutely and uniformly on any compact {} X w C
G x (A5)T. Its sum is a function of class C*®(G x (Ag)*), homomorphic
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on A € (M), right T-invariant on the variable z, a A Ady (k) ® o(k)-
function on z satisfying equations

ZE(SO:; A) = X(.U'A (Z))E((p: A)a
where ,
(A)Y ={Acd;(A-p,a) > 0,Ya € A(P|A)}
(A&)T == {A € A5;Reh € (49 ).
The constant term EF2(p, A)(z) can be expressed as

EP(p,A)z) = ) (elsiA)p)(z) exp (—sh — o, )(Hp, (a(2)))
sCW (A,,4z) }

= D (es4)p)al2)

acW (.‘1 ,‘2)

(see {D2], Theorem 4).
The weight decomposition

H'U,V) = ®uwew Dreca+ Hyy_, U V)

provides us a corresponding decomposition for

H™(°X/(L N P);V) = @uew ®r>0 Opsg=mH? (Xar/Tar; HY,_ U V).

wWh—p

We refer to the elements of Y. HP, (.;H?v-A_P(.;V)) as a class of
prg=m _

weight wA — p.
Lemma 1.5. If [p] € H™(°X/(T N P);V) is of weight wA — p, then
dps = Zt: —(wA; '!‘:Ai) + i T
i=1 ki \
Spp =0,
Bepn = (AN = (A, A))en.

Proof. We identify £ = (R*) ! On the itk copy R% choose the differential

form _‘E}_ We have
: :
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!
dt; o
dps = A —p4.
PA T at.;(‘oﬂ

=

From Lemma 3.1 of [H], we have

d
at;

oy o
oA = (—Et — A —wA + ?‘)‘PA-

The other statements can be proved in the same maner as in [H].

2. BOUNDARY (X usp/T) AND THE COHOMOLOGY AT INFINITY

For a fixed weight wA—p cohomology class [p] € H™(°X/(TNP); V), we
now consider the corresponding Eisenstein series E(p, A) and its Fourier
constant term EF (p, A).

Lemma 2.1. dE(p,+A) =0 < dEF(p,+)) =0.

Proof. For each cusp form w € Q™1 (X/T;V), which is a x-eigenvector
for Z(G¢c) = cent U(Gc),

xoftw € * Ay (G/T,0,X),
on one hand. On the other hand, we have

dE(p, £)) € 4v(G/T, o).

Then by [HC Lemma 15], the following integral converges

(@B(o,N),0) = [ (@B, 7o)
: X/r

This integral is equal to :
(E(p, A), 6w).

Since 6w is also a cusp form and the Eisenstein series are orthogonal to
the cusp forms, we conclude that

@B o) = [ (Ble, ), 7o) =0,
a(X/T) '
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if dEF = 0. Now due to Langlands’ Theorem 3 [D2], we see that in this
case dE = 0.

Lemma 2.2. If E(p, }) is a closed form, E(p,)) and EF(p, \) represent
the same cohomology class of the boundary, symbolically

[E(0, Mo (R,u,p/r) = 1B (2 V)]5(Ze00p /)

Proof. Since for any ‘cuspidal subgroup P = M AU we have

H™(CX/CnP)V)2 @ B (Xu/Ta HIU;V))
p+g=m

and in virtue of the Langlands assumption, for every cuspidal subgroup,
there exists a finite set of percuspidal ones

PI,P2,-'-vPaa
such that the associated Siegel domains
sla 525' .. :SB

recover M /Ty, i.e.

M/Ty = Os,-rM,..

We have also a convergent spectral sequence, such that H*(8(X,usp/T); V)
is isomorphic to the direct sum of Es-terms. It rests to recall that

HYU; V) =HI(U/Ty; V).

These ones are 1nvar1a.nt under forming Fourier consta.nt terms. The lem-
ma is proved.

Recall that the boundary cohomology admits also a weight decompo-
sition

H*(3(Xeuap /TN V) = €D D H,s—,(8(Reusp/T); V),

weWA>0

" following the weight decomposition

= P PHus—, @ V).

weW >0
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Following the weight decomposition of

Hom(A™R; V) =Y Y APA®Hom,(AIR,V),

B ptg=m

we have

dt s, dte,
.c(s,A)go:Z Z Ao A . A el (s, A)p

Lemma 2.3.

dEP(qo,A);ZE > —s(}\g—}-A;)%/\...

scW p plg=m N

dt o dt; :
A—=LA— Afch(s,A)p)sn
tap )
di
+y ) (dt“‘ Ao A —L Adet(s,A)p)sp
i opigam T oy

Proof. We have

Thus, on one hand we have

d(e sA)tpsA-E Z A+ A)— A
B ptg=m o1
dia, dt;
N— 8
P AT (s )P |
dta ‘f
+ Z Z dtal e ta P /\dC";(s, A)‘P)SA
# ptg=m ’

On the other hand, for each automorphic form

dto, . dba,
ta

1 Gp

A :°P/(T N P) — AA A Hom(A?(°R), V)
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dt
%A.../\ a"/\(p,A)_

[+ 3] Op

we can define E(

; .
dt: .
Lemma 2.4.  dEP(p,A) =) — (whi + A;)EP(*E_—' A, A).
=1 :
Proof. 1t is easy to use repeatedly the parabolic rank one case [H] for each
t1,%2,...,%; and remark that

I
dEF =) d;EF,
i=1

where for each ¢;, d; is the corresponding differential in fixing the others.
The lemma is well proved .

3. SPECTRAL DECOMPOSITION

Recall that if [p] € HY_,(°X/(I' N P);V), i. e. is of weight wA — p,
then E(p,+(p+ A)) is a harmonic form, but has an isolate pole at such a

point. We define

. dt;
Resa=waB(p, A) i= lim ) (i - wA,-)EP(-t—' A @, A).
— - i

Lemma 3.1. . E'(p,w)) = Resp—uyrE(p,A) is a closed form.

Proof. In vitue of Lemma 2.1, we have
dE(p,A) =0 <= dEF(p,A) =0.

Posing :

¢y = Resa—wacl(s, A),

we have . _
| E’ (e, wA)”2 =¢. <, Cyr-ppp >

= / (2, %1 0 F#1Cuwr— ).
_ °X/("'NP)
The others are orthogonal each to other. Then E'(p,w}) has a WP-ellip-

ticity property. So E'{p,w]) is a ¢losed form by the Andreoti-Vesentini
theorem. The lemma is proved.
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We use now the Laplacian-Hodge decomposition for Cy_,, A > 0,

Cor—pp = é)\—p(P + H,

where H is the sum of the eigenvectors to nonzero eigenvalues of Ayy.

[Cr—ptp] = [éA—p‘P]
and }
(‘Ps C)«—pﬁo) = (‘Pa C)«-p)'

We define : 3
Ca-olip] = [Cr-pp]-

It is a strictly positive self-adjoint linear operator, acting on cohomology
groups. We have therefore

Lemma 3.3. Ifp € Ker(é)\_p), then E(p, A) is holomorphic at the point
A, | , | '
H™(8(Xousp/T); V) = KerCy @ ImC.

Proof. We have

. dt;
0=dEF(p,\) =D (k= A+p) 5= A(Ch_sP)er +-+- -

#
Thus, if 4 = A — p, then Cp is a coboundary, and hence
[(E')P(So,)t)]b(xm;,,/r) = éx—p[‘?’]-‘

The lemma is proved.

Lemma 3.4. If A # 0 s non;positive, i.e. does not belong to the Weyl
chamber, there exists w such that wA > 0 and then

HY 5N 8(Xeusp [T)i V) = KerCopows ® Im C_pui.

I,'f peFyi=x%x0 #lKeré_p_wA, the form E(p,wl) s closed and

B2, Mo st 0,0 my = 220G (51020
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Proof. If p € F, ¥ o #1p0 € KerC—#~%, We have

!
dEF (¥1 0 #10,4) = Y — (whi + A)EF (p, A).

i=1

Thus _:(w_f\l“i'—A)dEP (¥1 o #1¢,A) is holomorphic at —wA, see [H] for
details .

Remark 3.5. It was proved for SL,, and Sps, that
c(s,A) =0,Vs # 1,¢(1,A) = L.

Thus
[E(p, wM)llax...,/m) = @]
Consider the last case A = 0. We see that E(p, A) is holomorphic at
A = 0. We have

#1041 HP(O(Zeusp /T V) = HY"1(0( ooy [T V).
Always dE(p,0) = 0, because we have -

x o #dEF (p,A) = — E(A; _ w;)EF(., ) .E 0,

b

: c(s,0
H™3(X oyep/T); V) o0 yomy = 3 A(CX/T ar;, A™ AdY ® 0, Aear))

oo |

¥ (m) o), o ym)

So from the functional equations for ¢(s, A), we have ¢(s,0)? = Id and

Hom = 3= u,

scW

where £(s) € Z/(2)IW]. ‘
Denote P:F the projectors on eigenspaces with eigenvalues 1 of ¢(s,0).
So
X =@P}r .. PIP; ... P, ™
= I @ +Po)um.
scW
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We denote P;F ... P} P,

L T 8|W|

H(m) by }l(( )), where £(s;) = 1 and

e(s) = 5(_-‘517) oo E(sw )8 = (81545 8w))
and I(s) := #{ss;e(s:) =1} .

Lemma 3.6.

H,(8(Rewsp /T V) = @ B (0(Xonop/T); V)egay
scW

The tmage of the restriction map
res : H™(X/T;V) — H™,(8(Xcuep/T); V)
15 B
‘ Z HT (0(Xeusp/T); Vee)-
sEW,1(s)£|W|/2
For [p] € Xy N HED(0(Reuop /T V), (B2, Ollo(R,npr) = ]
Proof. We consider the pairing

HT(0(Xouap [T V) X BNy ™0 Reuup /T V) = c

Gehith= [ (o)

8(Xeusp/T)

If [], [1,1;] are the restrictions of classes on X/T, then

([o], [¥]) = 0.

‘We introduce
R :=Image{r : H™,(X/T;V) —» H",(d (J—(c,;sp/I‘);V)},

S i=Image{r : HN;™ 1 (X/T;V) - HY ™Y (3(Xoasp/T); V)}-

Then R and S are orthogonal each to another. So for each irreducible
component E we have

multgR + multgS < multEHTp(B(X'cWP/I‘); V)
= multg HY ™" 1(8(Xcuap/T); V)-
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Certainly, for every p € H™ (3(X.4sp/T); V), E(p,0) € R and for every

Y e H}_\rp_—mml(a(}—fcuap/r);v)sE("/’so] €8
We have also

Ker{ Z ¢(s,0) : HT (3(Xcusp/T);V) = F :=

seEW

> M@ N HT(0(Xewan /TN V),
i(8)=|W|/2

Ker{ ) " ¢(s,0 HN“m‘l(a(}?,:uap/I‘);V)—rH,

scW
Hi= ) A nBY " 0(3(R0up/T); V),
I(s)={W|/2

multg F + mulig & > multEH'_"p(a()?cusp/I‘);V),
#ro#(F)C Y7 HHE T (8(Reusp/T); V)
{s)=IWl/2
cSs
#rom(H)c Y yj;:))nﬂi'g’(a()?m,,/r);V)
. a)=iwi/2
C R.

Hence,"
multp R + multg S = multEH( ™8, cw,,/1") V).

Thus we ha.ve :

R= ) ¥ E™(8(Reusp /TN V),

I(e)}#|W|/2
5= Z ”((":)) To(0(Xeusp [T); V).
l(e)=|W|/2

The lemma is proved.

From the last three lemmas we have our main result about spectra.l
decomposition
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Theorem 2. (i) The.image of the ‘restriction map

cres: H*(X/T;V) — H*(8(Xcusp/T)i V)

is compatible with the decomposition

(i)

@ ®{H:‘0A—'b(a(}zcuap/r); Vie H&A—p(a(xcusp/r); V)}

weW A>0

@ H*—,b(a(xcuSP/r);-V)e(s)-
scW

For every w € Im(res), there exists a cohomology class @ €

H*(X/T;V) such that & can be represented by singular values of an Eisen-

stein

[BW]

(D1]
(D2]

(H]

e
Lal
R
[R2

[S]

INS

~r

series, which is harmonic and res(¥) = w.
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