
ACTA MATHEMATICA VIETNAMICA

Volume 22, Number 1, 1997, pp. 271–287
271

A GLOBAL OPTIMIZATION METHOD

FOR MINIMUM MAXIMAL FLOW PROBLEM

J. SHI AND Y. YAMAMOTO

Dedicated to Hoang Tuy on the occasion of his seventieth birthday

Abstract. In this paper, we present two approaches for solving an NP-

hard problem: minimum maximal flow problem, i.e., min{‖ξ‖
∣

∣ξ is a

maximal flow}. We introduce lower bounds on flow, and cast the problem

into a minimization of a concave function over a convex set. We solve the
problem by a global optimization method. As an application, we consider

the minimum maximal matching problem. Some numerical experiments

are also reported.

1. Introduction

Throughout this paper, G(V, E, ∂+, ∂−) is a directed graph consisting
of node set V = {1, 2, . . . , n}, edge set E ⊆ V × V with |E| = m, and two
incidence functions ∂+ : E → V and ∂− : E → V . Path, cycle, etc., and
their directed versions are defined as usual. A network N(G, c) (abbre-
viated by N) is a graph G with a nonnegative valued capacity function
c : E → R+ on the edge set E, where R+ denotes the set of nonnega-
tive real numbers. c(e) is called the capacity of edge e ∈ E. A function
ξ : E → R is called a flow in the network N if it satisfies the following
conservation law:

(1.1) ∀v ∈ V :
∑

∂+e=v

ξ(e) =
∑

∂−e=v

ξ(e).

A flow ξ is said to be feasible if 0 ≤ ξ ≤ c. A two-terminal network
N(G, s, t, c) is a network with two special nodes source s and sink t. An
s-t flow ξ is a flow satisfying (1.1) for all nodes of V \ {s, t}. The flow
value of an s-t flow ξ in defined by

Received December 2, 1996
Key words. Maximal flow, cutting plane, global optimization, bipartite graph, mat-
ching

272 J. SHI AND Y. YAMAMOTO

‖ξ‖ =
∑

∂+e=s

ξ(e)−
∑

∂−e=s

ξ(e),

or
‖ξ‖ =

∑

∂−e=t

ξ(e)−
∑

∂+e=t

ξ(e).

A feasible s-t flow ξ is said to be maximal on network N if there does not
exists a feasible s-t flow ξ′ of N such that

ξ′ ≥ ξ, ξ′ 6= ξ.

We consider the problem P of finding the minimum value γ∗ of maximal
s-t flow for network N . That is

P : γ∗ = min{‖ξ‖
∣

∣ξ is a maximal s-t flow of N}.

For the sake of notational simplicity, we hereafter abbreviate s-t flow by
flow.

In this paper, we show that Problem P is NP-hard and present a global
optimization method for the problem.

2. Lower bound method for the problem

To solve Problem P , we introduce a lower bound for flow ξ and consider
the relationship between the corresponding maximum flow problem with
the lower bound and the minimum maximal flow problem.

Let ` be a lower bound for flow ξ with 0 ≤ ` ≤ c. We abbreviable
N(G, s, t, c) with lower bound ` by N(`). We say that a flow ξ of N is a
feasible flow of N(`) if ` ≤ ξ ≤ c. A feasible flow ξ of N(`) is said to be a
maximum flow of N(`) if

‖ξ‖ = max{‖ξ′‖
∣

∣ξ′ is a feasible flow of N(`)}.

Then we have

Lemma 2.1. If ξ is a maximal flow in N , then there exists a lower bound
` such that ξ is a maximum flow of N(`).

Proof. Let `(e) = ξ(e) for every e ∈ E. Suppose that ξ is not a maximum
flow of N(`). Then there exists an augmenting path such that

A GLOBAL OPTIMIZATION METHOD 273

1. ξ(e) < c(e) for all forward edges e in the augmenting path,

2. ξ(e) > `(e) for all backward edges e in the augmenting path.

Since `(e) = ξ(e) for every e ∈ E, the augmenting path does not include
any backward edge. Increasing the flow along the path, which consists of
forward edges alone, we see that ξ is not a maximal flow of N .

We assume in this paper the following assumption.

Assumption 2.2. Graph G is connected and acyclic.

Lemma 2.3. Under Assumption 2.2, if ξ is a maximum flow of N(`) for
some `, then ξ is a maximal flow of N .

Proof. Let ξ be a maximum flow of N(`) for some ` and suppose that ξ is
not a maximal flow of N . Then there exists a feasible flow η N such that

η ≥ ξ, η 6= ξ.

Therefore η(ei) > ξ(ei) holds for some edge ei ∈ E. This indicates that
there exist two edges ei−1 and ei+1 such that

∂−ei−1 = ∂+ei, η(ei−1) > ξ(ei−1), and ∂+ei+1 = ∂−ei, η(ei+1) > ξ(ei+1).

Repeating this procedure with ei replaced by ei+1 and ei−1, we will reach s

and t after finitely many steps since G is connected and acyclic. Therefore
we obtain a forward directed path from s to t such that

ξ(ei) < η(ei) ≤ c(ei) for ei in the forward directed path.

It indicates that ξ is not a maximum flow of N(`).

Let

(2.1) L = {`|0 ≤ ` ≤ c, there exists a feasible flow of N(`)},

and for ` ∈ L consider the problem

P (`) : max{‖ξ‖ |ξ is a feasible flow of N(`)}.

We denote by γ(`) the optimal value of Problem P (`), i.e.,

γ(`) = max{‖ξ‖ |ξ is a feasible flow of N(`)}.

When N(`) admits no feasible flow, we assume γ(`) = −∞.

274 J. SHI AND Y. YAMAMOTO

Theorem 2.4. The optimum value γ∗ of P is equal to min{γ(`)|` ∈ L},
i.e., γ∗ = min{γ(`)|` ∈ L}.

Proof. From Lemma 2.1, we have

γ∗ ≥ min{γ(`)|` ∈ L}.

Lemma 2.3 claims that the converse inequality holds.

By Theorem 2.4, Problem P is cast into the minimization of γ(`) over
L.

Lemma 2.5. γ(·) is a piecewise linear concave function on L.

Proof. If follows from the duality theorem of linear programming and the
property of parametric linear programming (see, e,g., [2]).

Lemma 2.6. If 0 ≤ `2 ≤ `1 ∈ L, then `2 ∈ L and γ(`2) ≥ γ(`1).

Proof. Directly follows from the definitions of L and γ(`).

An element ` ∈ L is said to be a maximal element of L if there does
not exist `′ ∈ L such that `′ ≥ ` and `′ 6= `. Denote by Lmax the set of
maximal elements of L, that is,

Lmax = {` ∈ L| there is no `′ ∈ L such that `′ ≥ `, `′ 6= `}.

Denote by Ξ the set of feasible flow of N , that is

Ξ = {ξ|ξ is a feasible flow of N}.

Also, we denote Ξmax the set of maximal elements of Ξ. By Lemma 2.6
we have

Corollary 2.7. γ(·) attains the minimum on Lmax.

Let Rm
−

= {` ∈ Rm|` ≤ 0} and Rm
+ = {` ∈ Rm|` ≥ 0}. Then

Lemma 2.8. (i) Ξ ⊆ L, (ii) L =
(

Ξ + Rm
−

) ∩Rm
+ , (iii) Ξmax = Lmax.

Proof. (i) Trivial.

(ii) “⊆” Suppose ` ∈ L. By the definition of L, there exists ξ ∈ Ξ
such that 0 ≤ ` ≤ ξ. Therefore ` = ξ + ξ− for some ξ− ∈ Rm

−
. It means

` ∈
(

Ξ + Rm
−

)

∩Rm
+ .

A GLOBAL OPTIMIZATION METHOD 275

“⊇” Suppose ` ∈
(

Ξ + Rm
−

)

∩ Rm
+ . Then ` ≥ 0 can be written as

` = ξ + ξ− for some ξ ∈ Ξ and ξ− ∈ Rm
−

. Therefore 0 ≤ ` ≤ ξ ∈ Ξ. It
implies that ` ∈ L by the definition of L.

(iii) “⊆” Let ξmax ∈ Ξmax and suppose that ξmax 6∈ Lmax, i.e., there
exists an ` ∈ L such that ξmax ≤ ` and ξmax 6= `. Since ` ∈ L, we see that
` ≤ ξ for some ξ ∈ Ξ. It follows that ξmax ≤ ξ and ξmax 6= ξ. This is a
contradiction.

“⊇” Let `max ∈ Lmax. Then we see that `max ∈ Ξ from (ii). Suppose
that `max 6∈ Ξmax, then there is a flow ξ ∈ Ξ such that `max ≤ ξ and
Lmax 6= ξ. Since Ξ ⊆ L, we have ξ ∈ L. This contradicts that `max ∈ Lmax.
The desired result follows this relation and (i).

By Corollary 2.7 and Lemma 2.8, we obtain

Theorem 2.9.

min{γ(`)|` ∈ L} = min{γ(ξ)|ξ ∈ Ξ}

= min{γ(ξ)|ξ ∈ Ξmax} = min{γ(`)|` ∈ Lmax}.

Proof.

min{γ(`)|` ∈ L} ≤ min{γ(ξ)|ξ ∈ Ξ} (by Ξ ⊆ L)

≤ min{γ(ξ)|ξ ∈ Ξmax} (by Ξmax ⊆ Ξ)

= min{γ(`)|` ∈ Lmax} (by Ξmax = Lmax)

= min{γ(`)|` ∈ L}. (by Corollary 2.7)

Theorem 2.9 provides four possible domains over which we could con-
sider Problem P.

2.1. Cutting plane algorithm over Ξ

Now we consider the minimization of γ(ξ) over Ξ, i.e.,

Q : γ∗ = min{γ(ξ)|ξ ∈ Ξ}.

Let A be the incidence matrix of graph G and let B be the matrix A

with the rows corresponding to s and t deleted, that is,

A =





. . .

B

. . .



 .
← node s

← node t

276 J. SHI AND Y. YAMAMOTO

Then Problem Q can be rewritten as

min γ(ξ)

Q s.t. Bξ = 0,

0 ≤ ξ ≤ c.

∣

∣

∣

∣

∣

∣

Let us denote the rows of B by b1, . . . , bn−2. We use the convention that
γ(`) = −∞ when ` 6∈ L. Based on the above discussion we propose
Algorithm I for Problem Q using the cutting plane method [7, 9]. Here
we denote the set of vertices of a polyhedral set S by W (S).

The outline of Algorithm I is as follows: At start, the algorithm con-
structs a hypercube C0 = {ξ|0 ≤ ξ ≤ c}, which contains Ξ. Without loss
of generality, we can assume that c 6∈ Ξ since otherwise c would be the
optimal solution of P . Therefore c does not meet the conservation law at
some node and we can choose b ∈ {b1, . . . , bn−2} such that cb 6= 0. Add
the cutting plane {ξ|bξ = 0} to C0 and make a smaller polytope C1. In
general step, we have a polytope Ck−1 and its vertex set W (Ck−1). We
evaluate γ(·) at the vertices and choose one with the smallest value. If it
belongs to Ξ, we have solved the problem. Otherwise we add an equality
constraint, say bξ = 0, of Bξ = 0 which is violated by the chosen ver-
tex, and set Ck := Ck−1 ∩ {ξ|bξ = 0}. The efficient algorithm proposed
by Horst et al. [6] could apply to generating the vertices W (Ck) from
W (Ck−1).

We state Algorithm I formally as follows:

Algorithm I

Step 0: Let B0 := {b1, . . . , bn−2}; C0 := {ξ|0 ≤ ξ ≤ c};

Choose b ∈ B0 such that bc 6= 0; k := 1;

Step 1: Bk := Bk−1 \ {b}; Ck := Ck−1 ∩ {ξ|bξ = 0};

Find W (Ck);

Step 2: γk := min{γ(w)|w ∈ W (Ck)}; Γk := {w ∈ W (Ck)|γ(w) =
γk};

if Γk ∩ Ξ 6= ∅

then γ := γk; Let ξ be an arbitrary element of Γk ∩ Ξ; Stop

else Choose w ∈ Γk and b ∈ Bk such that bw 6= 0;

k := k + 1; go to Step 1.

Theorem 2.10. Algorithm I finds an optimal solution of Problem P
within finitely many iterations.

A GLOBAL OPTIMIZATION METHOD 277

Proof. Note that polytope Ck contains Ξ and γ(·) is a concave function.
Therefore in general

γk = min{γ(w)|w ∈W (Ck)}

= min{γ(w)|w ∈ Ck} ≤ min{γ(ξ)|ξ ∈ Ξ} = γ∗.

When Algorithm I terminates at Step 2, Γk∩Ξ 6= ∅, and for any w ∈ Γk∩Ξ,
we have

γk = γ(w) ≥ min{γ(ξ)|ξ ∈ Ξ} = γ∗.

Therefore γ is the optimal value and ξ is an optimal solution of Problem Q.
Since Ξ has only n− 2 equality constraints, after at most n− 2 iterations
Ck attains Ξ and the algorithm terminates.

2.2. Outer approximation algorithm over L

Let N ′(`) be the network N(`) with a directed edge (t, s) added such
that `(t, s) = 0 and c(t, s) = +∞. For a cut (X, X) of N ′(`) we denote

c(X, X) =
∑

e∈(X,X)

c(e) and `(X, X) =
∑

e∈(X,X)

`(e).

The following lemma provides a well-known necessary and sufficient con-
dition for ` to be in L.

Lemma 2.11 (Theorem 6.11 in [1]). A nonnegative ` is in L if and only
if

c(X, X) ≥ `(X, X)

holds for every cut (X, X) of N ′(`). That is

L = {`|0 ≤ ` ≤ c, c(X, X) ≥ `(X, X) for every cut (X, X) of N ′(`)}.

Based on the above discussion, we can design Algorithm II to solve Prob-
lem P . Algorithm II starts with a hypercube L0 = {`|0 ≤ ` ≤ c} con-
taining L. For `k ∈ Lk \ L (k = 0, 1, . . .), by Lemma 2.11, we find a cut
(X, X) of N ′(`) satisfying

(2.2) c(X, X) < `(X, X).

Adding the cutting plane {`|c(X, X) − `(X, X) ≥ 0} to Lk yields the
polytope Lk+1. Then we find all vertices W (Lk+1) of polytope Lk+1 using
the efficient method in [6]. Checking the values of γ(·) on W (Lk+1), we

278 J. SHI AND Y. YAMAMOTO

obtain the minimum value γk+1 of γ(·) on Lk+1. If a vertex of W (Lk+1)
with the minimum value of γ(·) belongs to L, then it is an optimal solution
of Problem P . Otherwise `k+1 6∈ L will be found and the procedure is
repeated. we assume that c 6∈ L as before and then c is taken as `0.

Algorithm II

Step 0: Let L0 := {`|0 ≤ ` ≤ c}; `0 := c; k := 0;

Step 1: Construct a cut (X, X) satisfying (2.2) for `k;

Let Lk+1 := Lk ∩{`|c(X, X)− `(X, X) ≥ 0}; Find W (Lk+1);

Step 2: γk+1 := min{γ(w)|w ∈W (Lk+1)};

Wk+1 := {w ∈W (Lk+1)|γ(w) = γk+1};

if γk+1 6= −∞

then γ := γk+1; Let ` be an arbitrary element of Wk+1 ∩ L;
Stop

else Choose `k+1 from Wk+1;

k := k + 1; goto Step 1.

Theorem 2.12. Algorithm II finds an optimal solution of Problem P

within finitely many iterations.

Proof. It is easy to see that γ = γ∗ and ` is an optimal solution of
Problem P when the algorithm terminates. From `k ∈ Lk and `k 6∈ Lk+i

for i ≥ 1, we see that the same cut (X, X) will not appear more than once
in Algorithm II. Note that there are only a finite number of cuts of N ′(`),
then Algorithm II terminates in finitely many iterations.

The cut satisfying (2.2) can be found in the following way (see e.g.,
[1]). A new network is constructed by

(i) adding two nodes S (super source) and T (super sink) to G;

(ii) linking S to v and v to T for every node v of G to make n edges
(S, v) and n edges (v, T);

(iii) linking t to s to make new edge (t, s), and setting `(t, s) = 0,
c(t, s) = +∞.

A GLOBAL OPTIMIZATION METHOD 279

For `, the capacity c′ of the new network is determined by

0 ≤ c′(e) = c(e)− `(e) for all e ∈ E,

0 ≤ c′(S, v) =
∑

∂−e=v

`(e) for all v ∈ V,(2.3)

0 ≤ c′(v, T) =
∑

∂+e=v

`(e) for all v ∈ V.

We then determine a maximum flow of the new network. Meanwhile, we
find a minimum cut (X, X). If the value of the maximum flow is equal
to

∑

v∈V

`(e), we see that ` ∈ L. Otherwise, i.e., the value of the maximum

flow is less that
∑

v∈V

`(e), then the cut (X, X) satisfies (2.2).

3. Minimum maximal matching problem

In this section, we consider a special case of Problem P : Minimum
maximal matching problem (see e.g., [3]). This problem can be stated as
follows:

Instance: Graph G = (V, E), positive integer K ≤ |E|.

Question: Is there a subset M ⊆ E with |M | ≤ K such that M is a
maximal matching, i.e., no two edges in M share a common endpoint and
every edge in E \M shares a common endpoint with some edge in M ?

Even for a bipartite graph, this problem is NP-complete (see, e.g.,
[3]). Throughout this section, we assume G is a bipartite graph. That
is, node set V is partitioned into two subsets V1 and V2 such that for
each edge e ∈ E its two endpoints belong to the distinct set V1 and V2,
respectively. To transform the minimum maximal matching problem to
minimum maximal flow problem, we first make a directed version of the
underlying graph G by designating all edges as pointing from the nodes
in V1 to the nodes in V2. Then, we add a source node s and a sink node
t, with edges connecting s to each node in V1 and edges connecting each
node in V2 to t. Denote by V the node set enlarged with s and t, by E

the enlarged edge set. For each edge in the network, we set the capacity
c to 1. Denote the transformed network by N = ((V , E), 1). Note that in
N , every node in V1 has one incoming edge and every node in V2 has one
outgoing edge. Therefore, a matching with cardinality K has a one-to-one
correspondence to an integral flow of value K in N .

Clearly, N satisfies Assumption 2.2. Now we focus on the relationship
between maximal matching problem and maximal flow problem.

280 J. SHI AND Y. YAMAMOTO

Lemma 3.1. If matching M is maximal of G, then ξ defined by

ξ(e) =



















1 if e ∈M,

1 if e = (s, ∂+f) for some f ∈M,

1 if e = (∂−f, t) for some f ∈M,

0 otherwise,

is a maximal flow of N .

Proof. It is clear that ξ is a flow. Suppose ξ is not maximal. Then there
exists a feasible flow η such that η ≥ ξ, η 6= ξ. Let

E1 = {e|e = (s, ∂+f) for some f ∈M},

E2 = {e|e ∈M},

E3 = {e|e = (∂−f, t) for some f ∈M}.

From η ≥ ξ, η 6= ξ, we see that exists an edge e0 such that η(e0) > ξ(e0).
Suppose that e0 ∈ E2. Then there exist e1 ∈ E1 and e2 ∈ E3 such that
η(e1) > ξ(e1), η(e2) > ξ(e2). Therefore ξ(e1) = ξ(e0) = ξ(e2) = 0. Since
(e1, e0, e2) is a s-t path, M ′ = M ∪ {e0} is still a matching of G. This is a
contradiction. For the cases of e0 ∈ E1 and e0 ∈ E3, the proof will be the
same as above.

Then we have

Lemma 3.2. If ξ is a maximal integral flow of N , then {e|e ∈ E, ξ(e) = 1}
is a maximal matching of G.

Proof. It is easy too see that M = {e|e ∈ E, ξ(e) = 1} is a matching of G.
Suppose that M is not maximal. Then there exists an edge f ∈ E \M

such that M ∪ {f} is still a matching. Let

η(e) =

{

1 if e = f, or e = (s, ∂+f), or e = (∂−f, t),

ξ(e) otherwise.

Then η is a feasible flow. This contradicts the maximality of ξ.

From Lemmas 3.1 and 3.2, we see that minimum maximal matching
problem is equivalent to the following problem:

R : γ∗

N
= min{‖ξ‖ |ξ is a maximal integral flow of N}.

Denote by N(`) the network N with lower bound 0 ≤ ` ≤ 1.

A GLOBAL OPTIMIZATION METHOD 281

Lemma 3.3. If ξ is a maximal integral flow of N , then there exists a
lower bound ` such that ξ is a maximum flow of N(`).

Proof. Similar to the proof of Lemma 2.1.

Lemma 3.4. If ξ is a maximum integral flow of N(`) for some `, then ξ

is a maximal integral flow of N .

Proof. Note that N satisfies Assumption 2.2. The lemma follows from
Lemma 2.3.

Denote

LZ = {`| 0 ≤ ` ≤ 1, there exists an integral feasible flow of N(`)}.

Moreover, let

γZ(`) = max{‖ξ‖ | ξ is an integral flow of N(`)}.

Similar to Theorem 2.4, we have

Lemma 3.5.

γ∗

N
= min{γZ(`)| ` ∈ LZ}.

Proof. From Lemmas 3.3 and 3.4.

Let us denote the set of feasible flows of N by ΞN and

LN = {`| 0 ≤ ` ≤ 1, there exists a feasible flow ξ of N(`)}.

Lemma 3.6. If ` ∈ LZ is integral, then γZ(`) = γ(`).

Proof. By the definition of γZ(`) and γ(`), we see that γZ(`) ≤ γ(`).
Since ` is integral, by Integrality Theorem (Theorem 6.5 in [1]) there is
an integral solution ξ of γ(`), i.e., γ(`) = ‖ξ‖. This implies that γZ(`) ≥
‖ξ‖ = γ(`). Therefore γZ(`) = γ(`).

Theorem 3.7. min{γZ(`)| ` ∈ LZ} = min{γ(`)|` ∈ LN}.

Proof. Let ` = arg min{γZ(`)|` ∈ LZ} and ξ be a solution of γZ(`). Then
ξ is integral and ξ ∈ LZ . From Lemma 3.6, γZ(ξ) = γ(ξ). From ` ≤ ξ and
the definition of γZ(·), we see that γZ(`) ≥ γZ(ξ). Therefore

min{γZ(`)| ` ∈ LZ} = γZ(`) ≥ γZ(ξ) = γ(ξ) ≥ min{γ(`)| ` ∈ LN}.

282 J. SHI AND Y. YAMAMOTO

Now we prove the converse inequality. From Theorem 2.9, we have

min{γ(`)| ` ∈ LN } = min{γ(ξ)|ξ ∈ ΞN}.

From Lemma 2.5, we see that γ(·) attains the minimum at a vertex of ΞN .
Note that every vertex of ΞN is integral. Then there exists an integral `∗

such that
γ(`∗) = min{γ(`)| ` ∈ LN}.

By Integrality Theorem in [1], γ(`∗) has an integral solution. It means
`∗ ∈ LZ . By Lemma 3.6, γ(`∗) = γZ(`∗). Therefore

min{γZ(`)|` ∈ LZ} ≤ γZ(`∗) = γ(`∗) = min{γ(`)| ` ∈ LN}.

Thus, the converse inequality holds.

By the above theorem, we can use Algorithms I and II to solve minimum
maximal matching problem on a bipartite graph.

Theorem 3.8. Problem P is NP-hard.

Proof. Note that minimum maximal matching problem is NP-complete.
Therefore Problem R is an NP-hard problem. From Lemma 3.5 and
Theorem 3.7, we see that min{γ(`)| ` ∈ LN} is NP-hard. Note that
min{γ(`)| ` ∈ LN} is a special case of min{γ(`)| ` ∈ L}. Hence min{γ(`)| ` ∈
L} is also NP-hard. It means that P is an NP-hard problem by Theorem
2.4.

4. Numerical experiments

In this section, we report some computational results for Algorithms
I and II. The programs for the two algorithms were coded in Sun Pas-
cal and were run on a Sun SPARCstation LX at School of Management,
Science University of Tokyo. To make clear the behavior of the proposed
algorithms, we consider three types of data for experiments:

Type 1: A s-t network with fixed number of nodes, n = 8, and
varied number of edges, m = 8, 9, 10, 11, 12, 13, 14. The edges were
chosen randomly with uniform distribution from the edge set V ×V .
To focus on edge capacity’s influence over running time, we created
three kinds of capacities for each network:

Type 1.1: Every capacity is 1

A GLOBAL OPTIMIZATION METHOD 283

Type 1.2: Every capacity is an integer generated randomly with
uniform distribution from 1 to 10.

Type 1.3: Every capacity is a real number created randomly with
uniform distribution between 1 to 10.

Figure 1. Average running time vs. number of edges m

Figure 2. Distribution and approximate functions of the running time

Namely, Types 1.1, 1.2 and 1.3 have the same graphical structure but
different capacities.

Type 2: A s-t network with fixed number of edge, m = 12, and
varied number of nodes, n = 6, 7, 8, 9, 10. The 12 edges in this
type were also created randomly with uniform distribution from the
corresponding edge set V × V . Every capacity is 1.

For demonstrating the efficiency of the algorithms for minimum max-
imal matching problem for a bipartite graph, we designed the following

284 J. SHI AND Y. YAMAMOTO

problem:

Table 1. Approximate functions of running time for Type 1

Algorithm I Algoritm II

Type 1.1 Tl11(m) = 10−5m8.0509* Tll11(m) = 7× 10−4m6.1463*
Type 1.2 Tl12(m) = 10−4m6.9735* Tll12(m) = 12× 10−4m5.936*
Type 1.3 Tl13(m) = 10−4m6.9242* Tll13(m) = 21× 10−4m5.6944*

* = millisecond

Type 3: A bipartite graph satisfying |V1| = |V2|. We varied the
number of nodes of V1 (or V2) as 4, 5, 6, 7, 8. For each number of
|V1|, [|V1|2 × 0.3] + 1 edges were generated randomly with uniform
distribution from edge set V1 × V2, where [a] stands for the largest
integer not greater than a.

Figure 3. Average running time vs. number of nodes n for Type 2

All figures in the section are the average of ten instances except for
Figure 5.

A GLOBAL OPTIMIZATION METHOD 285

Figure 1 is the plots of average running time of Algorithms I and II
vs. the number of edges m for Types 1.1. 1.2 and 1.3. The approximate
functions of the running time are shown in Table 1. No certain conclusion
should be drawn from the above limited experiments, however, we can see
that Algorithm II is slightly better than Algorithm I; and different types
of capacity do not influence on the running time sensitively and intensely.

Figure 2 illustrates the distribution of the running time of ten instances.
The curves depict the approximate functions in Table 1.

Figure 3 indicates that the average running time of Type 2 changes
gently as node number n grows from 6 to 10 for both Algorithms I and II
when edge number is fixed to 12. Changing the capacity to integer or real
number, we obtained the similar results.

Figure 4. Tatal running time vs. running time till the appearance
of an optimal solution for Type 1.1

We observed that the optimal solution appeared at almost the half of
total running time. This phenomenon, illustrated in Figure 4 for Type
1.1, implies that is possible to obtain a rather good approximate solution
even the programs are not executed to the end.

Figure 5 is the logarithmic plots of five-instance average running time
of Algorithms I and II for Type 3. Note that [|V1|2 × 0.3] + 1 edges were
generated. The straight lines are approximate functions of running time
with respect to |V1|. Algorithm II again is better than Algorithm I with
the approximate function log(time) = −1.1302 + 8.343 log(|V1|) versus
log(time) = −2.011+10.264 log(|V1|), that is, time = 7.4097×10−2|V1|

8.343

versus time = 9.7499× 10−3|V1|10.264.

286 J. SHI AND Y. YAMAMOTO

Figure 5. Average running time and approximate functions
of running time for Type 3

5. Conclusion

In this paper, we set up a connection between the global optimization
and an NP-complete problem: minimum maximal flow problem. This
connection can be exploited to solve the u-flow (uncontrollable flow) prob-
lem raised by Iri [4]:

For an s-t network N with capacity c, an s-t flow ξ is called a
u-flow if ξ is represented as a positive combination of elementary
s-t paths. A u-flow ξ is said maximal if there does not exist a
u-flow η in N such that η ≥ ξ and c ≥ η 6= ξ. How to solve
min{‖ξ‖ |ξ is a maximal u-flow of N} ?

This problem is called minimum maximal u-flow problem. As shown
in [4, 8], problem

min{‖ξ‖ |ξ is a maximal u-flow of N}

is NP-hard. Under Assumption 2.2, one can see that

min{‖ξ‖ | ξ is a feasible maximal u-flow of N}

= min{‖ξ‖ | ξ is a feasible maximal flow of N}.

It means that the approaches in this paper can be exploited to solve mini-
mum maximal u-flow problem on an acyclic network. Due toNP-hardness

A GLOBAL OPTIMIZATION METHOD 287

of the problems, it is difficult to estimate the order of complexity of the pro-
posed algorithms. So as to investigate the efficiency, computational exper-
iments of the proposed algorithms are carried out for small size problems.
The experiments indicate that the problems can be solved in reasonable
time if the underlying network is fairly small.

Acknowledgments

The authors wish to thank Professor Y. Dai of Kobe University of
Commerce for her helpful comments on this paper.

References

1. R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network Flows: Theory, Algorithms,

and Apllications, Prentice-Hall, London, 1993.

2. K. G. Murty, Linear Complementary, Linear and Nonlinear Programming, Sigma
Series in Applied Mathematics 3, Heldermann Verlag, Berlin 1988.

3. M. R. Garey and David S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, Freeman, San Francisco, 1979.

4. M. Iri, An essay in the theory of uncontrollable flows and congestion, Technical
Report, Department of Information and System Engineering, Faculty of Science

and Engineering, Chuo University, TRISE 94-03 (1994).

5. K. R. Hoffman, A method for globally minimizing concave function over convex

sets, Mathematical Programming 20 (1981), 22-32.

6. R. Horst, J. D. Vries and N. V. Thoai, On finding new vertices and redundant con-

straints in cutting plane algorithms for global optimization, Operations Research

Letter 7 (1988), 85-90.

7. R. Horst and H. Tuy, Global Optimization: Deterministric Approaches, second

edition, Springer-Verlag, 1993.

8. T. Matsui, Is a given flow uncontrollable ?, IEICE Trans. Fundamentals E79-A

(1996), 448-451.

9. P. M. Pardalos and J. B. Rosen, Constrained Global Optimization: Algorithms and

Applications, Lecture Note in Computer Science 268, Springer-Verlag, 1987.

School of Management, Science University of Tokyo,

Kuki, Saitama 346, JAPAN

Institute of Policy and Planning Sciences, University of Tsukuba,

Tsukuba, Ibaraki 305, JAPAN

