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CONVEX ENVELOPES OF MULTILINEAR FUNCTIONS
OVER A UNIT HYPERCUBE AND
OVER SPECIAL DISCRETE SETS

HANIF D. SHERALI

Dedicated to Hoang Tuy on the occasion of his seventieth birthday

Abstract. In this paper, we present some general as well as explicit
characterizations of the convex envelope of multilinear functions defined
over a unit hypercube. A new approach is used to derive this charac-
terization via a related convex hull representation obtained by applying
the Reformulation-Linearization Technique (RLT) of Sherali and Adams
(1990, 1994). For the special cases of multilinear functions having coeffi-
cients that are either all +1 or all−1, we develop explicit formulae for the
corresponding convex envelopes. Extensions of these results are given for
the case when the multilinear function is defined over discrete sets, inclu-
ding explicit formulae for the foregoing special cases when this discrete set
is represented by generalized upper bounding (GUB) constraints in binary
variables. For more general cases of multilinear functions, we also discuss
how this construct can be used to generate suitable relaxations for solving
nonconvex optimization problems that include such structures.

1. Introduction

The construction of convex envelopes for nonconvex functions over con-
vex sets plays an important role in solving both discrete and continuous
nonconvex programming problems (see Horst and Tuy, 1993). Explicit
closed-form formulae have been derived for many special cases such as for
bivariate bilinear functions over rectangles (Al-Khayyal and Falk, 1983)
and over D-polytopes (Sherali and Alameddine, 1990), for monomials de-
fined over a unit hypercube (Crama, 1993, Glover and Woolsey, 1974, and
Hansen and Simeone, 1990), for special quadratic multilinear functions
defined over a unit hypercube (Rikun, 1996), for concave functions over
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polytopes or simplices (Pardalos and Rosen, 1987), and for certain classes
of fixed-charge functions defined over hypercubes and special bounded
knapsack constrained regions (Benson and Erenguc, 1988, and Denizel,
Erenguc, and Sherali, 1995). These explicit formulae provide a set of
tools that can be applied to more general problems that include such cases
as substructures in order to generate useful relaxations. General convex
envelope characterizations and results are also given in Falk (1969), Rock-
afellar (1970). McCormick (1976), Grotzinger (1985), Pardalos and Rosen
(1987), and Horst and Tuy (1993) that can be used to derive tight con-
vex underestimating functions for deriving relaxations and lower bounds
within the context of branch-and-bound algorithms. In some cases, a
combination of such explicit and relaxed convex envelope representations
have been proposed. For example, Kalantari and Rosen (1986) show that
given an indefinite quadratic function defined over a polytope, another
special polytope can be generated that contains the given polytope such
that over this regions, an explicit convex envelope of the given function
can be constructed.

In this paper, we focus on multilinear functions φ : H ⊆ Rn → R,
where

(1) φ(x) =
∑

t∈T

αt

∏

j∈Jt

xj ,

and where H is a unit hypercube given by

(2) H = {x : 0 ≤ x ≤ e},

where e is a vector of n-ones. Here, the set T indexes the terms that define
φ, and for each term t ∈ T , αt is a real coefficient and Jt ⊆ N = {1, . . . , n}
is an associated nonempty set of distinct variable indices represented in
the corresponding product term. This is known as a multilinear function
since φ is linear in each variable xj when the other variables in N are
fixed at some values. In particular, when φ contains all possible distinct
products of the variables x1, . . . , xn taken m at a time, where 2 ≤ m ≤ n,
and each such term has a unit coefficient, we will refer to such a multilinear
function as a combinatorial multilinear function (CMF) of order m, and
denote it by φm. Mathematically, this function is given by

(3) φm(x) =
∑
J⊆N
|J|=m

[ ∏

j∈J

xj

]
.
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Note that such CMF functions represent the sum of m-way combinations
of variables, and might arise in combinatorial constraints involving binary
variables or as subsets of multilinear objective or constraint functions in
nonlinear 0-1 programs (see Balas and Mazzola, 1984a, b, Hansen, 1979,
and Hansen, Jaumard, and Mathon, 1989). Recently, Rikun (1996) has
developed an explicit formula for the (polyhedral) convex envelope of φm

given by (3) over H, for the special case of m = 2, and has shown that this
yields a significantly tighter representation than that obtained via stan-
dard linearization approaches for nonlinear 0-1 problems. Rikun states
this formula and verifies that it represents the convex envelope of φ2(x)
over H by applying a set of general results that specify certain sufficient
conditions for a given function to be the convex envelope of a continuously
differentiable function defined over a polytope, given that this envelope is
polyhedral. In contrast, using a new approach based on characterizing the
convex hull for certain discrete sets via the Reformulation-Linearization
Technique (RLT) of Sherali and Adams (1990, 1994) we show how this
formula can be constructively derived. Moreover, we derive explicit for-
mulae for both the convex and concave envelopes of φm of general order
m ≤ n, defined over the unit hypercube H. We also characterize the
convex envelope of φ when its definition is restricted to a set of discrete
binary solutions. In particular, this leads to similar closed-form formulae
for the case when this discrete set is defined by generalized upper bounding
(GUB) constraints in binary variables, given by

(4) HGUB =
{

x :
∑

j∈Sr

xj ≤ 1 for r = 1, . . . , R, x binary
}

,

where
R⋃

i=1

Si = N , and Si∩Sj = ∅ ∀i 6= j. Such GUB constraints arise fre-

quently in applications involving multiple choice constraints, and represent
an important structure in 0-1 optimization for which tight polyhegral rep-
resentation can be quite usefull (see Nemhauser and Wolsey, 1988, Wolsey,
1990, and Sherali and Lee, 1995). For the more general case of φ given by
(1), we discuss how our approach can be used to generate suitable underes-
timating representations for constructing convex or polyhedral relaxations
for nonconvex problems that subsume such structures.

The remainder of this paper is organized as follows. We begin by pre-
senting some preliminary definitions and results in Section 2, and develop
a general characterization of the convex envelope of multilinear functions
over a unit hypercube, as well as over special discrete sets by applying
the RLT procedure. Using this characterization, we then derive explicit
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formulae for the convex envelope of φm(x) over H in Section 3, and for
concave envelope of φm(x) over H in Section 4, for any m ≤ n. These
formulae are extended to the case of GUB constrained regions HGUB

given by (4) in Section 5. Finally, in Section 6, we discuss the genera-
tion of relaxations for more general cases using the construct of Section
2.

2. Preliminary results and some general
convex envelope characterizations

In this section, we present a general approach for constructing con-
vex envelopes, and show how the Reformulation-Linearization Technique
(RLT) of Sherali and Adams (1990, 1994) can be used to characterize, in
particular, the convex envelope of φ given by (1) over a unit hypercube
H.

To begin with, consider the following definition.

Definition 1 [Horst and Tuy, 1993]. The convex envelope of a function φ
taken over a nonempty convex subset S of its domain is that function φS

for which:

(a) φS is a convex function defined over S,

(b) φS(x) ≤ φ(x) for all x ∈ S, and

(c) if φ′ : S → R is a convex function that satisfies φ′(x) ≤ φ(x)
∀x ∈ S, then

φ′(x) ≤ φS(x) ∀x ∈ S.

Equivalently, the convex envelope of φ over the convex set S is given
by the pointwise supremum of all convex, or even simply affine, underes-
timating functions for φ over the set S.

There exists a direct relationship between convex envelopes and convex
hulls that provides a useful facility for constructing the convex envelope of
a nonconvex function φ over a given convex set S. Consider a lower semi-
continuous function φ : S → R, where S ⊆ Rn is a nonempty, compact,
convex set. Recall that (see Bazaraa et al., 1993 for related definitions)
the epigraph of φ over the set S, denoted ES(φ). is defined by

(5) ES(φ) =
{
(x, z) : x ∈ S, z ≥ φ(x)

}
.

Let us denote the convex hull of this set by conv Es(φ). Then, we have
the following result.
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Theorem 1. Let φ : S → R be a lower semicontinuous function, where
S ⊆ Rn is convex and compact, and let ES(φ) be as defined by (5). Then

(6) conv Es(φ) =
{

(x, z) : x ∈ S, z ≥ φ′(x)
}
⇔ φ′(x) = φS(x) ∀x ∈ S.

Proof. The proof follows by Horst and Tuy (1993, Lemma IV.1), and
Sherali and Alameddine (1992, Theorem 4), by noting that convES(φ) is
a closed set since φ is lower semicontinuous and S is a convex, compact
set.

Observe that Theorem 1 is quite intuitive in that the convex hull of
ES(φ) is the smallest convex set that contains ES(φ), and the convex
envelope φS(x) of φ over the set S is, by definition, the tightest convex
underestimating function for φ over the set S. Note that if the set S in
Theorem 1 is nonempty, closed and convex, but not necessarily bounded,
then the convex hull operator in (6) should be replaced by the closure of
the convex hull for this result to hold true.

The construct embodied by Theorem 1 provides a useful technique for
computing the convex envelope of a given function φ over a convex set S.
In particular, if the epigraph ES(φ) defined in (5) can be represented using
binary variables, for example, in a manner that facilitates the construction
of its convex hull, then Theorem 1 can be gainfully employed to derive the
convex envelope of φ. Denizel, Erenguc, and Sherali (1995) analyze certain
instances of fixed-charge functions for which this approach turns out to
be particularly convenient. As we shall presently see, when this concept
is used in concert with the RLT approach, we can derive a usefull tool
for analyzing our problem at hand. This is characterized by the following
result.

Theorem 2. Let φ : H → R be a multilinear function given by (1), where
H is a unit hypercube as defined in (2). Then, the convex envelope of φ
over the set H is given by

(7a) φH(x) = max
{ ∑

j∈N

πk
j xj − πk

0 , k = 1, . . . , K
}

,

where (πk, πk
0 ), k = 1, . . . ,K represent the set of vertices of the set Π,

denoted vert (Π), where Π is given by

(7b) Π =
{

(π, π0) :
∑

j∈J

πj − π0 ≤ βJ ∀J ⊆ N
}

,
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and where, letting x(J) denote the solution

(7c) x(J) = (xj = 1, ∀j ∈ J, xj = 0, ∀j ∈ J ≡ N − J), ∀J ⊆ N,

we have

(7d) βJ ≡ φ(x(J)), ∀J ⊆ N.

Proof. Let the epigraph of φ over S ≡ H be given by (5). Then we have

(8) conv EH(φ) = conv
{
(x, z) : z ≥ φ(x), x binary

}
.

This follows since for any affine function ψx+ψ0, we have φ(x) ≥ ψx+ψ0

∀x ∈ H ⇔ min
{
φ(x) − ψx − ψ0 : x ∈ H

} ≥ 0 ⇔ min
{
φ(x) − ψx − ψ0 :

x binary
} ≥ 0 ⇔ φ(x) ≥ ψx + ψ0 ∀x binary. Here, we have used the

fact that the minimum of φ(x) − ψx − ψ0 over x ∈ H is attained at a
binary solution since φ is multilinear and H represents a set of separable
constraints 0 ≤ xj ≤ 1, for j = 1, . . . , n. Hence, the set of affine underes-
timating functions for φ over H coincide with the set of affine functions
that underestimate φ over binary values of x.

Now, using the RLT approach of Sherali and Adams (1990, 1994), the
convex hull on the right-hand side of (8) can be written as follows.

conv
{
(x, z) : z ≥ φ(x), x binary

}
={

(x, z) : xj =
∑
J⊆N
j∈J

yJ ∀j ∈ N,

z =
∑

J⊆N

θJ , θJ ≥ βJyJ , ∀J ⊆ N,

∑

J⊆N

yJ = 1, and yJ ≥ 0, ∀J ⊆ N
}

,(9)

where θJ and yJ , J ⊆ N , are suitable linearization variables that define
the convex hull as in (9) in a higher dimensional space following Sherali
and Adams, and where βJ is given by (7d) ∀J ⊆ N . Hence, using (8) and
(9) along with linear programming duality, and noting that β∅ ≡ 0, and
that y∅ is a slack variable in the convexity constraint in (9), we have

conv EH(φ) =
{

(x, z) : there exist yJ , J ⊆ N, J 6= ∅ such that

z ≥
∑

J 6=∅
βJyJ , and where

∑

J:j∈J

yJ = xj ∀j ∈ N,

∑

J 6=∅
yJ ≤ 1, yJ ≥ 0 ∀J 6= ∅

}
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=
{

(x, z) : 0 ≤ x ≤ e and z ≥ minimum
y

{ ∑

J 6=∅
βJyJ :

∑

J:j∈J

yJ = xj ∀j ∈ N,
∑

J 6=∅
yJ ≤ 1, and yJ ≥ 0 ∀J 6= ∅}

}

=
{

(x, z) : 0 ≤ x ≤ e, and z ≥ maximum
{ ∑

j∈N

πjxj − π0

}

subject to
∑

j∈J

πj − π0 ≤ βJ ∀J 6= ∅, π0 ≥ 0
}

=
{

(x, z) : 0 ≤ x ≤ e,

and z ≥ maximum
{ ∑

j∈N

πk
j xj − φk

0 , k = 1, . . . ,K
}}

,

(10)

where (πk, πk
0 ), k = 1, . . . , K, represent the vertices of Π given by (7b).

(Note that for J = ∅ in (7b), we have βJ ≡ 0, so that the corresponding
constraint reads as π0 ≥ 0). By Theorem 1 and Equation (10), we have
(7a) holding true, and this completes the proof.

Corollary 1. Let S be a polytope contained in the unit hypercube H that
has binary vertices, and let φ be given by (1). Then

conv
{
(x, z) : x ∈ S, x binary, z ≥ φ(x)

}

=
{

(x, z) : x ∈ S, z ≥
∑

j∈N

πk
j xj − πk

0 ∀(πk, πk
0 ) ∈ vertΠ(S)

}
,

(11a)

where

(11b) Π(S) =
{

(π, π0) :
∑

j∈J

πj − π0 ≤ βJ ∀J ∈ F
}

,

and where

(11c) F =
{
J ⊆ N : x(J) is feasible to (is a vertex of)S

}
,

and x(J) and βJ are given by (7c) for each J ∈ F .
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Proof. From Sherali and Adams (1990, 1994), conv
{
(x, z) : x ∈ S, x binary,

z ≥ φ(x)
}

is given by (9) with the added restriction that yJ ≡ 0 if J 6∈ F .
Hence, following the derivation of (10) with this added restriction, we ob-
tain the characterization specified by (11), and this completes the proof.

Note that Corollary 1 asserts that if we are given a multilinear function
φ defined over a polytope S that has binary vertices, as for example if S
is defined by totally unimodular constraints in variables bounded by H,
and if we are interested in constructing a tight convex underestimator of φ
only over the set of vertices of S, then we can define φb to be the function
such that

(12a) φb(x) =
{

φb(x) if x is binary,

∞ otherwise,

and then accordingly construct the convex envelope φbS(x) of φb over the
set S. By Theorem 1 and Corollary 1, we would then obtain

(12b) φbS(x) = max
{ ∑

j∈N

πk
j xj − πk

0 : (πk, πk
0 ) ∈ vertΠ(S)

}
,

where Π(S) is defined by (11b, c). The polyhedral function (12b) would
hence provide a valid underestimator for φ over binary solutions in S, and
could therefore be used to construct suitable continuous relaxations for
discrete problems that contain such a structure. Later in Section 5, we
will apply this result to the important special case where S is defined by
GUB constraints as in the continuous relaxation of (4).

3. Convex envelope of combinatorial multilinear
functions over a unit hypercube

In this section, we will show that the convex envelope of the function
φm(x) defined in (3) for any m ≤ n over a unit hypercube H is given by

φm
H(x) = maximum

{
0,

( k

m− 1

) n∑

j=1

xj − (m− 1)
(k + 1

m

)
,

for k = m− 1, . . . , n− 1
}

.(13)

We derive this result (as opposed to verifying this claim) by applying
Theorem 2, and characterizing the set of vertices of the set Π defined by
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(7b). Note that for φm given by (3), we have from (7c) and (7d) that

(14) βJ =





0 if |J | = k, for k = 0, 1, . . . , m− 1,
( k

m

)
if |J | = k, for k = m, . . . , n,

for each J ⊆ N . Substituting this in (7b), we obtain

Π =
{

(π, π0) :

(15a)
∑

j∈J

πj − π0 ≤ 0 ∀J ⊆ N 3 |J | = k, for k = 0, 1, . . . , m− 1,

(15b)
∑

j∈J

πj − π0 ≤
( k

m

)
∀J ⊆ N 3 |J | = k, for k = m, . . . , n

}
.

The following result characterizes the vertices of (15), and hence estab-
lishes (13).

Theorem 3. The extreme points of the set Π defined in (15) are given by
(π = 0, π0 = 0) and

(16)
(
πj =

( k

m− 1

)
∀j ∈ N, π0 = (m− 1)

(k + 1
m

))
,

for k = m− 1, . . . , n− 1, and so, φm
H(x) is given by (13).

Proof. Since Π ⊂ Rn+1, its vertices are feasible solutions at which some
(n+1) linearly independent defining hyperplanes are binding. If (15a) for
k = 0 is binding, i.e., π0 = 0, then (15a) for k = 1 asserts that πj ≤ 0
∀j ∈ N , and these restrictions then imply the other defining constraints
in (15). Hence, if π0 = 0 at a vertex of Π, we must have πj = 0 ∀j ∈ N ,
and this produces the vertex (π = 0, π0 = 0) of Π.

Next, consider any 1 ≤ k′ < m− 1, and suppose that for some J = Jp

with |Jp| = k′, a constraint from (15a) is binding at a vertex of Π, so that

(17a)
∑

j∈Jp

πj − π0 = 0.

Note that the constraints in (15a) that correspond to J = Jp ∪ j for
j 6∈ Jp (where k = k′ + 1) together with (17a), imply that

(17b) πj ≤ 0 ∀j 6∈ Jp.
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Moreover, for any k = (k′+2), . . . , n, we get using (17) and the constraints
in (15a) for k = 0, . . . , k′ that

∑

j∈J

πj − π0 ≤
∑

j∈J∩Jp

πj − π0 ≤ 0.

Hence, all the constraints for k ≥ k′ + 2 in (15) are then implied, and
therefore do not figure into determining a vertex of Π in this case. But
all the constraints in (15a) are binding at the above extreme point (π =
0, π0 = 0), and so, this is the only vertex at which any constraint of type
(17a) is binding.

Proceeding inductively, now suppose that for some k′ ∈ {m−1, . . . , n−
1}, we have that at some vertex of Π, all the constraints in (15) for k < k′

are inactive, while some constraint corresponding to J = Jp with |Jp| = k′

is active or binding. Hence, we have

(18a)
∑

j∈Jp

πj − π0 =
(k′

m

)
,

where we assume that
(

k′

m

)
≡ 0 whenever k′ < m. From the constraints

in (15) corresponding to J = Jp ∪ j for j 6∈ Jp, so that |J | = k′+1, we get
using (18a) that

(18b) πj ≤
(k′ + 1

m

)
−

(k′

m

)
=

( k′

m− 1

)
∀j 6∈ Jp.

Now, consider the constraints in (15) for k = k′+ r, where r ≥ 1. Note
that so long as (15) is satisfied for k ≤ k′ and that (18) holds true, we get

∑

j∈J

πj − π0 =
[ ∑

j∈J∩Jp

πj − π0

]
+

∑

j∈J−Jp

πj ≤
(k′

m

)

+ r
( k′

m− 1

)
≤

(k′ + r

m

)
.(19)

The first inequality in (19) holds true since by (15b), we have

∑

j∈J∩Jp

πj − π0 ≤
( |J ∩ Jp|

m

)
≤

(k′

m

)

and since (18b) is satisfied ∀j 6∈ Jp, and the second inequality in (19)
holds true since the number of ways m items can be selected from some
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k′ plus r items exceeds the number of ways m items can be selected from
the k′ items, plus the number of ways (m− 1) items can be selected from
the k′ items along with just one of the r items taken in turn. (Note that
this inequality also holds true for k′ = m − 1 and r ≥ 1). Therefore, we
have shown that under this case, if (18a) holds true, then (18b) must be
satisfied, and that all the other inequalities in (15) for k ≥ k′ + 1 would
then automatically be satisfied and so would not figure into determining
the corresponding vertex. Consequently, the possible defining hyperplanes
that could determine a vertex corresponding to this case must come from
the following constraints:

(20)
{constraints in (15) for k = k′

including the one for J = Jp

}
∪ {

constraints in (18b)
}
.

Consider now the situation in which all the constraints from the first
set within {·} in (20) are binding. By symmetry, this gives via (15) that

(21) πj ≡ π ∀j ∈ N, where k′π − π0 =
(k′

m

)
.

Hence, in order to obtain (n + 1) linearly independent hyperplanes, we
must have some from (18b) also binding, where any of these uniquely
gives along with (21) that

πj = π =
( k′

m− 1

)
∀j ∈ N, and

π0 = k′
( k′

m− 1

)
−

(k′

m

)
= (m− 1)

(k′ + 1
m

)
.(22)

Hence, (22) defines a vertex of Π, and moreover, since all the constraints
in (20) are active at the solution (22), no subset of these could yield a
set of (n + 1) linearly independent hyperplanes that produce a different
vertex of Π. Therefore, (22) is the only vertex obtained for this case, for
each k′ = m − 1, . . . , n − 1. This establishes (16). Hence, by Theorem 2,
(13) holds true and this completes the proof.

Example 1 (Rikun’s (1986) result as a special case). Note that for m = 2,
we have

φ2(x) ≡
∑∑

i<j

xixj

and by (13), we obtain

φ2
H(x) = maximum

{
0, k

n∑

j=1

xj −
(k + 1

2

)
for k = 1, . . . , n− 1

}
.



256 HANIF D. SHERALI

Rikun states this result and verifies it using his generalized theorems
that present sufficient conditions for checking certain convex envelope
representations for multilinear functions. However, these results do not
present the facility to derive convex envelope representations as does The-
orem 2, and as demonstrated by the validation performed in Theorem 3,
leading to the generalized result (13).

4. Concave envelope of combinatorial multilinear
functions over a unit hypercube

In this section, we will use Theorem 2 to derive the concave envelope
of φm(x) defined in (3) over the unit hypercube H, or equivalently, we
will derive the convex envelope φ

m

H (x) of φ
m

(x) ≡ −φm(x) over H. To
apply Theorem 2, by (7b)-(7d), we need to characterize the vertices of the
polyhedron defined by

Π =
{

(π, π0) :
∑

j∈J

πj − π0 ∀J ⊆ N 3 |J | = k, for k = 0, 1, . . . ,m− 1,

∑

j∈J

πj − π0 ≤ −
( k

m

)
∀J ⊆ N 3 |J | = k, for k = m, . . . , n

}
.

(23)

Using the consingular affine transformation

(24) y0 = π0 and yj = π0 − πj ∀j = 1, . . . , n,

we will find it more convenient to equivalently characterize the vertices
of the following polyhedron Y obtained by transforming Π given by (23)
under (24):

Y =
{

(y, y0) :
∑

j∈J

yj ≥ (k − 1)y0 +
( k

m

)
∀J ⊆ N 3 |J | = k,

for k = 2, . . . , n, (y, y0) ≥ 0
}

,(25)

where the nonnegativity restrictions in (25) come from (23) for |J | = k =
0 and 1 along with (24), and where throughout, we will consider that( k

m

)
= 0 whenever k < m.

Now, in order to characterize the vertices of Y , we will characterize all
possible unique solutions obtainable for the linear program
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(26a) LP : Minimize θ0y0 +
n∑

j=1

θjyj ,

(26b) subject to
∑

j∈J

yj ≥ (k − 1)y0 +
( k

m

)
∀J ⊆ N 3 |J | = k,

for k = 2, . . . , n,

(26c) (y, y0) ≥ 0.

Note that we can assume that θj ≥ 0 ∀j ∈ N , or else, by the nature
of the constraints, LP would be unbounded if θj < 0 for any j ∈ N .
Furthermore, we can assume that θj > 0 ∀j ∈ N since we are interested in
examining only those objective function coefficients that result in a unique
(and hence a vertex) solution to LP. Hence, without loss of generality, let
us characterize the optimal solution(s) to LP under the assumption that

(27) θ1 ≥ θ2 ≥ · · · ≥ θn > 0,

and then examine all possible permutations of the type (27) in order to
obtain the required vertices of Y . Toward this end, consider the following
results.

Lemma 1. Given any y0 ≥ 0. Let LP (y0) represent the linear program
LP defined by (26) with y0 fixed at the given value, and suppose that (27)
holds true. Then, an optimal extreme point solution to LP (y0) is given
by
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y∗1 = 0, y∗k = y0 for k = 2, . . . , m− 1, and

y∗k = y0 +
( k − 1

m− 1

)
for k = m, . . . , n.(28)

Proof. First, let us verify the feasibility of (28) to LP (y0). Note that
(26c) holds true, and that for any J ⊆ N 3 |J | ≡ k ∈ {2, . . . , m − 1},
(26b) is satisfied since we have

∑
j∈J

y∗j ≥ (k − 1)y0. Moreover, for any

J ⊆ N 3 |J | ≡ k ∈ {m, . . . , n}, we have

∑

j∈J

y∗j ≥ (k − 1)y0 +
(m− 1

m− 1

)
+

( m

m− 1

)
+ · · ·+

( k − 1
m− 1

)

= (k − 1)y0 +
(m

m

)
+

( m

m− 1

)
+

(m + 1
m− 1

)
+ · · ·+

( k − 1
m− 1

)
.(29)

Using the general identity that

(30)
( q

m

)
+

( q

m− 1

)
=

(q + 1
m

)
for any q ≥ m,

and applying it inductively in (29) to pairs of the combination terms, we

get that the right-hand side in (29) sums to (k − 1)y0 +
( k

m

)
, and so, y∗

is feasible to (26b) for this case as well. Hence, y∗ is feasible to LP (y0).

Next, let us show that y∗ defined by (28) is a vertex of LP (y0). To-
ward this end consider the following n defining inequalities from (26) and
let us show that y∗ is a unique solution to the intersection of these n
corresponding hyperplanes,

(31) y1 ≥ 0, and y1 +
k∑

j=2

yj ≥ (k − 1)y0 +
( k

m

)
for k = 2, . . . , n.

The first hyperplane when active yields y1 = 0 as in (28). For k =
2, . . . , m − 1, since the corresponding equations in (31) are y1 + y2 = y0,
y1 + y2 + y3 = 2y0, . . . , y1 + y2 + · · · + ym−1 = (m − 2)y0, we get
y2 = y3 = · · · = ym−1 = y0, and so again, (28) holds true. For k = m, the
corresponding hyperplane in (31) gives y1+y2+· · ·+ym = (m−1)y0+

(m

m

)
,

which yields from above that ym = y0 +
(m

m

)
= y0 +

(m− 1
m− 1

)
as in (28).
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Finally, for k = m + 1, . . . , n, the similar difference between the hyper-
plane equation corresponding to k in (31) and that corresponding to (k−1)
yields upon using the identity (30) for q ≡ k − 1 that

yk =
[
(k − 1)y0 +

( k

m

)]
−

[
(k − 2)y0 +

(k − 1
m

)]

= y0 +
( k

m

)
−

(k − 1
m

)
= y0 +

( k − 1
m− 1

)
.

Hence, the defining hyperplanes in (31) are linearly independent, yielding
y∗ of (28) as a unique solution, and so, y∗ is a vertex of Y .

To complete the proof, it is sufficient to show that even with all but the
constraints (31) of LP (y0) relaxed, y∗ is an optimal solution to this linear
program. To show this, since (31) defines a polyhedral cone with its vertex
at y∗, we must verify that each extreme direction dt of this cone formed by
holding all but the tth inequality in (31) as active and considering the half-
ray feasible to the tth inequality in (31) is nonimproving for t = 1, . . . , n.
Note that dt = (0, . . . , 0, 1,−1, 0, . . . , 0) for t = 1, . . . , n − 1, when the
two nonzeros appear in positions t and t + 1, and that dn = (0, . . . , 0, 1).

Hence, using (27), we see that
n∑

j=1

θjd
t
j = θt−θt+1 ≥ 0 for t = 1, . . . , n−1,

and
n∑

j=1

θjd
n
j = θn ≥ 0 for t = n as well. Hence, y∗ solves LP (y0) and this

completes the proof.

Lemma 2. Consider Problem LP defined by (26) and suppose that (27)
holds true. Then, if y∗ is the unique optimum to LP, we must have

(32) y∗0 = y∗1 = · · · = y∗m−1 = 0, and y∗k =
( k − 1

m− 1

)
for k = m, . . . , n.

Proof. By Lemma 1, since (28) gives an optimal completion to a solution
for LP given any y0, we can equivalently project LP onto the space of y0

to obtain

LP = minimize
y0≥0

{[
θ0 +

n∑

j=2

θj

]
y0 +

n∑

k=m

( k − 1
m− 1

)
θk

}
.

Hence, if θ ≡ θ0 +
n∑

j=2

θj < 0, then LP is unbounded, and if θ = 0, then
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LP has an infinite number of optimal solutions. Therefore, if LP has a
unique optimum, we must have θ > 0, whence y∗0 = 0. Consequently, by
Lemma 1, since (32) then gives an optimal (vertex) solution to LP, if LP
has a unique optimum it must be given by (32). This completes the proof.

We are now ready to characterize the convex envelope of φ
m

(x) ≡
−φm(x) over the unit hypercube H.

Theorem 4. Let φ
m

(x) = −φm(x), where φm(x) is given by (3). Then

φ
m

H (x) = maximum
{
−

n∑

k=m

( k − 1
m− 1

)
xj(k)

for each ordered choice of indices
(
j(m), j(m + 1), . . . , j(n)

)
selected from the set {1, . . . , n}

}
.(33)

Proof. By Lemma 2, and noting (27), whenever LP has a unique optimum,
this optimum is of the form wherein y0 along with some (m−1) y-variables
are zeros and the remaining (n − m + 1) y-variables are equal to values
given collectively by

(
k−1
m−1

)
for k = m, . . . , n. This hence characterizes

the set of vertices of Y . By (24), the set of vertices of Π of (23) are given
by π0 = 0, some (m − 1) π-variables equal to zero, and the remaining

(n−m+1) π-variables equal to the values given collectively by −
( k − 1

m− 1

)

for k = m, . . . , n. Using this characterization along with Theorem 2, we
obtain (33), and this completes the proof.

Remark 1. Note that the number of defining linear functions in (33) is
given by

(34)
( n

n−m + 1

)
(n−m + 1)!.

Example 2. Consider a quadratic function φ
2
(x) in three variables x1,

x2, and x3 (case of n = 3, m = 2). By (34), φ
2

H(x) has 6 defining lin-
ear functions. Each of these is given by selecting some (n −m + 1) = 2

variables, and giving one of these variables a coefficient of −
(1

1

)
= −1
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via k = m = 2 in (33), and the other a coefficient of −
(2

1

)
= −2 via

k = n = 3 in (33). This yields via (33) that

φ
2

H(x) = maximum
{
− x1 − 2x2,−2x1 − x2,−x1 − 2x3,

(35)

− 2x1 − x3,−x2 − 2x3,−2x2 − x3

}
.

Example 3. Similar to Example 2, consider the case m = 3, n = 4. By

(34), we will now have
(4

2

)
2! = 12 terms, each term being comprised of

(n−m+1) = 2 variables having coefficients of −1 and −3 from (33). This
gives

φ
3

H(x) =
{
− x1 − 3x2,−3x1 − x2,−x1 − 3x3,−3x1 − x3,

(36)

− x1 − 3x4,−3x1 − x4,−x2 − 3x3,−3x2 − x3,

− x2 − 3x4,−3x2 − x4,−x3 − 3x4,−3x3 − x4

}
.

5. Convex and concave envelopes of combinatorial
multilinear functions over GUB constraints

In this section, we will extend the formulae (13) and (33) for the case
where the unit hypercube H is replaced by the GUB constraints

(37) GUB :
{

x :
∑

j∈Sr

xj ≤ 1 for r = 1, . . . , R, x ≥ 0
}

,

where
R⋃

i=1

Si = N , and Si ∩ Sj = ∅ ∀i 6= j, and where we are interested

only in the binary solutions HGUB to (37) as defined by (4). Accordingly,
we assume that m ≤ R ≤ n, where the first inequality is assumed because
otherwise, if R < m, then for each term defining φm(x), at least two
variables must appear from some set Si, which means that φm(x) ≡ 0
∀x ∈ HGUB . Furthermore, as in (12a), let us define

φm
b (x) =

{
φm(x) if x is binary,

∞ otherwise,
and

(38)

φ
m

b (x) =
{ −φm(x) if x is binary,

∞ otherwise,



262 HANIF D. SHERALI

and consider the derivation of the functions φm
bGUB(x) and φ

m

bGUB(x) as
defined in (12b). The following results provide this characterization.

Theorem 5. Let φm
b (x) be as defined by (38), and let GUB be the set

given by (37), where m ≤ R ≤ n. Then the convex envelope of φm
b (x) over

GUB is given by

φm
bGuB(x) = maximim

{
0,

( k

m− 1

) n∑

j=1

xj − (m− 1)
(k + 1

m

)
(39)

for k = m− 1, . . . , R− 1
}

.

Proof. From (12b), we need to characterize vertices of Π(GUB), where,
from (11), we have

Π(GUB) =
{

(π, π0) :
∑

j∈J

πj − π0 ≤
( k

m

)
∀J ⊆ N 3 |J ∩ Si| ≤ 1

for each i = 1, . . . , R, and |J | = k, for k = 0, 1, . . . , R
}

,(40)

and where as before,
( k

m

)
≡ 0 whenever k < m. Following the proof of

Theorem 3, we can construct an identical argument yielding (π = 0, π0 =
0) as a vertex of (40), and that at any other vertex, the constraints in (40)
corresponding to k = 0, 1, . . . ,m − 2 are all inactive. (Here, (17b) holds
true ∀j 6∈ Jp where j belongs to a GUB set not represented in Jp). Next, as
in the proof of Theorem 3, suppose that for some k′ ∈ {m− 1, . . . , R− 1},
we have that at some vertex of Π(GUB), all the constraints in (40) for
k < k′ are inactive, while some constraint corresponding to J = Jp with
|Jp| = k′ in (40) is binding.

Hence, we are given (18a) and then (18b) holds true ∀j 6∈ Jp where j
belongs to a GUB set not represented in Jp. Using the constraints in
(40) corresponding to k ≤ k′ along with (18), all the other constraints
in (40) are then implied as in the proof of Theorem 3, and as in (20),
we obtain that the possible defining hyperplanes that could determine a
vertex corresponding to this case must come from the following constraints
(41)

{
constraints in (40) for k = k′

including the one for J = Jp

}
∪





constraints in (18b)
as restarted above for
the present GUB situation





.
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But if all the constraints in (41) are made to hold as equalities, we obtain
the unique solution (22), and so, no subsystem of these equations could
yield a different unique solution. Hence, as in the proof of Theorem 3,
the remaining vertices of Π(GUB) are given by (22), but for k′ = m −
1, . . . , R − 1. This establishes (39) via (12b), and the proof is complete.

Theorem 6. Let φ
m

b (x) be as defined by (38), and let GUB be the set
given by (37), where m ≤ R ≤ n. Then the convex envelope of φ

m

b (x) over
GUB is given by

φ
m

bGUB(x) = maximum
{
−

R∑

k=m

( k − 1
m− 1

) ∑

j∈Si(k)

xj

for each ordered choice of GUB set indices

(i(m), i(m + 1), . . . , i(R)) selected from the set {1, . . . , R}
}

.(42)

Proof. From (12b), we need to characterize the vertices of Π(GUB), where
from (11), we have,

Π(GUB) =
{

(π, π0) :
∑

j∈J

πj − π0 ≤ −
( k

m

)
∀J ⊆ N 3 |J ∩ Si| ≤ 1

for each i = 1, . . . , R, and |J | = k, for k = 0, 1, . . . , R
}

.(43)

Under the transformation (24), we can equivalently seek to characterize
the vertices of the set Y given below, similar to (25).

Y =
{

(y, y0) :
∑

j∈J

yj ≥ (k − 1)y0 +
( k

m

)
∀J ⊆ N 3 |J ∩ Si| ≤ 1

∀i = 1, . . . , R and |J | = k, for k = 2, . . . , R, (y, y0) ≥ 0
}

.

(44)

Toward this end, we need to characterize all possible unique optimal so-
lutions obtainable for the linear program of the form

(45) LP : minimize
{

θ0y0 +
n∑

j=1

θjyj : (y, y0) ∈ Y
}

.
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Suppose that y∗ is any such optimum to (45). Let us show that for each
GUB set Si, i = 1, . . . , R, we must have that the values of y∗j are equal to
each other for all j ∈ Si. To see this, fix all the variables other than yj for
j ∈ Si at the values given by y∗ in the linear program (45), and consider
the resultant problem in these variables yj , j ∈ Si. From (44) and (45),
this reduced LP is of the form

(46a) minimize
{ ∑

j∈Si

θjyj : yj ≥ LB ∀j ∈ Si

}
,

where

(46b) LB = maximum
k=2,...,R

maximum
J⊆N−Si
|J∩Sj |≤1 ∀j 6=i

|J|=k−1

{
(k − 1)y∗0 +

( k

m

)
−

∑

p∈J

y∗p , 0
}

.

Consequently, since LP is assumed to have a unique optimum y∗, by (46),
we must have θj > 0 ∀j ∈ Si (and hence for all j ∈ N), and moreover, y∗j
must equal LB given by (46b) ∀j ∈ Si. Hence, to characterize all possible
unique solutions to (45), we can a priori set

(47) y0 ≡ y′0 and yj = y′r ∀j ∈ Sr, for each r = 1, . . . , R

in the LP (45), thereby reducing this to the form

LP′ : minimize
{

θ′0y
′
0 +

R∑
r=1

θ′ry
′
r :

∑

j∈J

y′j ≥ (k − 1)y′0 +
( k

m

)

∀J ⊆ {1, . . . , R} 3 |J | = k, for k = 2, . . . , R, (y′, y′0) ≥ 0
}

,(48)

where

(49) θ′0 ≡ θ0 and θ′r =
∑

j∈Sr

θj ∀r = 1, . . . , R.

But observe that LP’ of (48) is of the form of LP given in (26) for which
Lemma 2 characterizes the optimum under the analogous condition (27)
written for θ′. Employing this characterization together with (47) and (24)
yields a characterization of the set of vertices of Π as having π0 = 0, some
(m − 1) GUB sets having their corresponding π-variables equal to zero,
and the remaining (R −m + 1) GUB sets having the π-variables within
each GUB set equal to each other, where these (R − m + 1) values are
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given collectively by −
(

k−1
m−1

)
for k = m, . . . , R. By (12b), this establishes

(42), and the proof is complete.

Remark 2. Analogous to Remark 1, the number of defining linear functions
in (42) is given by

(50)
( R

R−m + 1

)
(R−m + 1)!.

Example 4. Consider a quadratic (m = 2) combinational multilinear
function in n = 6 variables with R = 3 GUB constraint sets given by
S1 = {1, 2}, S2 = {3, 4}, and S3 = {5, 6}. Then from (39), we directly
obtain

φ2
bGUB(x) = maximum

{
0,

6∑

j=1

xj − 1, 2
6∑

j=1

xj − 3
}

,

In contrast, recall from Example 1 that φ2
H(x) has 3 additional defining

faces in this case. Furthermore, by Theorem 6, φ
2

bGUB(x) has 6 defining
linear functions (see Equation (50) of Remark 2) corresponding to the
ordered GUB set index choices (1,2), (2,1), (1,3), (3,1), (2,3), and (3,2).
By (42), these yield the characterization

φ
2

bGUB(x) = maximum
{
− (x1 + x2 + 2x3 + 2x4),

− (x3 + x4 + 2x1 + 2x2),−(x1 + x2 + 2x5 + 2x6),

− (x5 + x6 + 2x1 + 2x2),−(x3 + x4 + 2x5 + 2x6),

− (x5 + x6 + 2x3 + 2x4)
}

.

This is analogous to (35) of Example 2, noting (33) of Theorem 4.

6. Conclusions and extensions to the general case

Thus far, we have derived explicit characterizations of convex and con-
cave envelopes of combinatorial multilinear functions over the unit hyper-
cube, as well as for their binary restricted versions over GUB constraints.
For general multilinear functions, Theorem 2 provides a characterization
for the convex envelope over a hypercube, and Corollary 1 along with (12)
provides a characterization for the convex envelope of its binary restricted
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version over general polytopes having binary vertices. Note from these
results that in general, these complete characterizations would require the
enumeration of vertices of polyhedra of the type (7b) and (11b) that may
not be as conveniently structured as the cases considered thus far. Indeed,
as shown by Crama (1989), computing the convex envelope φH(x) of a
multilinear function φ over the unit hypercube H is an NP-hard problem.

To illustrate, consider the following example of a quadratic multilinear
function in n = 3 variables given by

(51) φ(x) = x1x2 − x1x3 + x2x3.

Rikun (1996) uses this example to illustrate that the special characte-
rizations provided by his results yield an incomplete description for this
instance. Applying Theorem 3, we see that in order to completely charac-
terize φH(x), we need to enumerate vertices of (7b), which in this instance
is given by the following polyhedron, where (52a), (52b), (52c) and (52d)
respectively correspond to sets J ⊆ N of cardinality 0, 1, 2, and 3.

(52a) Π =
{

(π, π0);−π0 ≤ 0,

(52b) π1 − π0 ≤ 0, π2 − π0 ≤ 0, π3 − π0 ≤ 0,

(52c) π1 + π2 − π0 ≤ 1, π1 + π3 − π0 ≤ −1, π2 + π3 − π0 ≤ 1,

(52d) π1 + π2 + π3 − π0 ≤ 1
}

.

Enumerating the vertices of Π by systematically considering combinations
of 4 linearly independent defining hyperplanes that yield a feasible solu-
tion, we obtain 7 vertices (π1, π2, π3, π0) given by (−1, 0, 0, 0), (0, 0,−1, 0),
(1, 1,−1, 1), (−1, 1, 1, 1), (1, 2, 0, 2), (0, 2, 1, 2), and (0, 2, 0, 1). This yields
via (7a) that

φH(x) = maximum
{
− x1,−x3, x1 + x2 − x3 − 1,−x1 + x2 + x3 − 1,

x1 + 2x2 − 2, 2x2 + x3 − 2, 2x2 − 1
}

.(53)

Note that even when the coefficients αt are nonnegative ∀t ∈ T in (1),
but do not conform to a scaled version of φm(x) defined in (3), one would
need to enumerate specific cases. For example, consider

φ(x) = α12x1x2 + α13x1x3 + α23x2x3,

where without loss of generality, assume that the variable indices are de-
fined so that 0 ≤ α12 ≤ α13 ≤ α23. In this case, we need to enumerate
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vertices of the set Π given by (7b) as

Π =
{

(π, π0) : −π0 ≤ 0, π1 − π0 ≤ 0, π2 − π0 ≤ 0, π3 − π0 ≤ 0,

π1 + π2 − π0 ≤ α12, π1 + π3 − π0 ≤ α13, π2 + π3 − π0 ≤ α23,

π1 + π2 + π3 − π0 ≤ α12 + α13 + α23

}
,

and by considering various cases as before, it can be verified that this leads
to the characterization (7a) given by

φH(x) = maximum
{

α12(x1 + x2 + x3)− α12,

(54)

α13x1 + α23x2 + (α13 + α23 − α12)x3 − (α13 + α23 − α12),
α13x1 + α12x2 + α13x3 − α13, α12x1 + α23x2 + α23x3 − α23,

(α12 + α13)x1 + (α12 + α23)x2 + (α13 + α23)x3

− (α12 + α13 + α23)
}

.

While look up tables can be constructed for various special cases of this
type in order to facilitate the generation of tight relaxations for general
polynomial programming problems, there is another approach in which
Theorem 2 could be used for constructing such relaxations. Suppose that
we have a polynomial programming problem for which the (bounded) va-
riables have been scaled to lie in the unit hypercube. Consider a particular
inequality φ(x) ≤ γ defined by a multilinear function φ that might relate
to either the constraints or the objective function of the given polynomial
program, and suppose that we decompose φ(x) into several (≥ 1) pieces
φp(x) indexed by p ∈ P , that are not necessarily disjoint in variables, and
are such that the set Πp, say, given by (7b) corresponding to φp(x) is of
a manageable size for each p ∈ P . By “manageable” we mean that either
it is convenient to enumerate all the vertices of Πp (perhaps by using the
aforementioned look-up tables) or at least, it is convenient to generate
vertices of Πp via “separation problems” of the type

(55) maximize
{ ∑

j

πpjxj − πp0 : (πp, πp0) ∈ Πp

}
,

where x is a solution to some previous relaxation with respect to which
a strengthened relaxation needs to be generated. Using a collection of
vertices (πk

p , πk
p0) for k ∈ Kp of Πp that are thus obtained, we can impose

(56) φp(x) ≥ maximum
{ ∑

j

πk
pjxj − πk

p0 ∀k ∈ Kp

}
∀p ∈ P.
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The constraints (56) can be used in combination with the original con-
straint φ(x) ≡ ∑

p∈P

φp(x) ≤ γ in order to generate tightened relaxations.

For example in the RLT procedure of Sherali and Tuncbilek (1992), in ad-
dition to the linearized original constraint φ(x) ≤ γ following this scheme,
the linearized form of (56) can also be similarly incorporated in order to
further tighten this relaxation. Such considerations need further investi-
gation, and will be explored in future research.
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