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QUASIDIFFERENTIABLE FUNCTIONS AND

PAIRS OF CONVEX COMPACT SETS

D. PALLASCHKE AND R. URBAŃSKI

Dedicated to Hoang Tuy on the occasion of his seventieth birthday

Abstract. In the theory of optimization several types of piecewise dif-

ferentiable functions occur in a quite natural way. As a typical example

for such nondifferentiable functions we mention the finite max-min combi-
nations of differentiable functions. A more general class are the quasidif-

ferentiable functions, which are investigated in detail by V. F. Demyanov

and A. M. Rubinov (see for instance [1]).

The directional derivatives of these functions can be represented as a
difference of two sublinear functions. Since a sublinear function is uniquely

described by its subdifferential in the origin, there exists a natural corre-

spondence between the directional derivatives and the set of pairs of convex
compact sets. In this paper we give a comprehensive representation of the

results in [5], [6] and [7]. Moreover we show that there exists a natural
definition for the difference between pairs of convex compact sets.

1. Introduction

Let U be an open subset of Rn and let fi : U −→ R, i ∈ {1, . . . , m},
continuously differentiable functions. Then a typical example for a piece-
wise differentiable function is given by:

f : U −→ R, with f(x) = max
i∈{1,...,k}

min
j∈Mi

fj(x),

where Mi ⊆ {1, . . . , m} for each i ∈ {1, . . . , k}. For a given point x0 ∈ U

the essential active index sets are given by M̂i(x0) =
{

j ∈ Mi | fj(x0) =

min
l∈Mi

fl(x0)
}

for i ∈ {1, . . . , k} and by Î(x0) =
{

i ∈ {1, . . . , k} | f(x0) =

max
i∈{1,...,k}

min
j∈M̂i(x0)

fj(x0)}.
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For the directional derivative of f at x0 ∈ U in the direction g ∈ Rn the

following formula
df

dg

∣

∣

∣

x0

= max
i∈Î(x0)

min
j∈M̂i(x0)

〈 ∇fj

∣

∣

∣

x0

, g 〉 holds, since every

max-min combination of linear functions is representable as the difference
of two sublinear functions, namely:

df

dg

∣

∣

∣

x0

= max
i∈Î(x0)

{

∑

k∈Î

k 6=i

max
j∈M̂k(x0)

〈−∇fj

∣

∣

x0

, g 〉
}

−
∑

k∈Î(x0)

max
j∈M̂k(x0)

〈−∇fj

∣

∣

x0

, g〉.

A more general class of nondifferentiable functions has been considered by
V. F. Demyanov and A. M. Rubinov in [1]. They consider the following
situation:

Let (X, ‖ · ‖) be a real normed vector space, let X∗ be its topological
dual, and let U ⊆ X be an open subset of X . The dual norm of X will be
denoted by ‖ · ‖∗. Moreover, let

〈·, ·〉 : X∗ × X → R

be the dual pairing given by

〈 v, x 〉 := v(x).

Definition 1.1. A continuous real-valued function f : U → R is said to be
quasidifferentiable at x0 ∈ U if the following two conditions are satisfied:

(a) For every g ∈ X \ {0} the directional derivative

df

dg

∣

∣

∣

∣

x0

= lim
t→0+

f(x0 + tg) − f(x0)

t

exists.

(b) There exist two sets ∂f |x0
, ∂f |x0

∈ K(X∗) such that

df

dg

∣

∣

∣

∣

x0

= max
v∈∂f |x0

〈v, g〉+ min
w∈∂f |x0

〈w, g〉.

Here K(X∗) denotes the collection of all nonempty weak-*-compact convex
subsets of X∗. We remark that, by Theorem of Alaoglu (cf. [9], p. 228)
the elements of K(X∗) are bounded in the dual norm.
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A real-valued function p : X → R is called sublinear if

(i) p(tx) = tp(x) for all x ∈ X and t ∈ R+ := {t ∈ R | t ≥ 0},

(ii) p(x + y) ≤ p(x) + p(y) for all x, y ∈ X .

It was shown by L. Hörmander [3] that a sublinear function p : X → R
is continuous if and only if its subdifferential at the origin

∂p|0 := {v ∈ X∗ | 〈v, x〉 ≤ p(x), x ∈ X}

is an element of K(X∗). Since every continuous sublinear function p :
X → R can be expressed as

(1) p(x) = max
a∈A

〈a, x〉

for a set A := ∂p|0 ∈ K(X∗), the condition (b) is equivalent to the re-
quirement that the directional derivative as a function of the direction g

can be expressed as the difference of two sublinear functions. By

P(X) := {p : X → R | p is sublinear and continuous }

we denote the convex cone of all real-valued sublinear functions defined
on X and by

D(X) := {ϕ = p − q | p, q ∈ P(X)}

the real vector space of differences of sublinear functions. This space is a
lattice with respect to the pointwise max- and min-operations (cf. [1], p.
74).

Observe that every difference of sublinear functions is representable by
a difference of two non-negative sublinear functions. This follows imme-
diately from Theorem of Hahn-Banach. Namely, let

ϕ(h) := inf
v∈∂f

∣

∣

x0

〈 v, g 〉 − sup
v∈−∂f

∣

∣

x0

〈 v, h 〉.

Then we can add to the first summand a continuous linear functional
f1 ∈ X? with

inf
v∈∂f

∣

∣

x0

〈 v, g 〉 ≥ f1(h)

and, analogously, to the second summand a f2 ∈ X? with

sup
v∈−∂f

∣

∣

x0

〈 v, h 〉 ≥ f2(h).
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Now we take a representation:

ϕ(h) = ( inf
v∈∂f

∣

∣

x0

〈 v, g 〉 − f1(h) + max{f1(h) − f2(h), 0})

−( sup
v∈−∂f

∣

∣

x0

〈 v, h 〉 − min{f2(h) − f1(h), 0}).

This technique suggests that different representations of a given func-
tion as a difference of sublinear functions arise from adding and subtracting
suitable sublinear functions. But the situation is more complicated, as the
following example shows.

Example 1.2. There exists an element ϕ ∈ D(X) with two different rep-
resentations as a difference of sublinear functions, which do not connected
by adding and subtracting suitable sublinear functions, namely

ϕ : R2 → R,

with

ϕ(x1, x2) = max{0, x1, x2, x1 + x2} − max{x1, x2, x1 + x2}

= max{0, x1, x2} − max{x1, x2}.

For a more detailed investigation we use the representation (1) of a
sublinear function which yields a representation of ϕ ∈ D(X) in terms of
a pair of compact convex sets (A, B) ∈ K(X∗)×K(X∗). Observe that we
have

max
a∈A

〈a, x〉 − max
b∈B

〈b, x〉 = max
c∈C

〈c, x〉 − max
d∈D

〈d, x〉

if and only if A + D = B + C, where + denotes the usual Minkowski
addition, i.e. A+B = {x ∈ X∗ | x = a+b, a ∈ A, b ∈ B}. This motivates
the introduction of the following equivalence relation ∼ on K(X∗)×K(X∗):

(A, B) ∼ (C, D) if and only if A + D = B + C

which will be studied in the next section.



QUASIDIFFERENTIABLE FUNCTIONS 227

2. The minkowski-r̊adström-hörmander lattice

In this section, we will consider pairs of nonempty convex compact
sets. Let X = (X, τ) be a topological Hausdorff vector space and let
K(X) be the collection of all nonempty convex compact subsets of X . On
K2(X) = K(X) ×K(X) the equivalence relation

(A, B) ∼ (C, D) ⇐⇒ A + D = B + C

is introduced and [A, B] ∈ K2(X)/∼
denotes the equivalence class which

is represented by (A, B) ∈ K2(X).

We recall some notations:

If (X, τ) is locally convex, then we denote for a continuous linear func-
tional f ∈ X∗ by

Hf (A) := {z ∈ A | f(z) = max
y∈A

f(y)}

the face of A ∈ K(X) with respect to f . For the sum of the faces of two
nonempty compact convex sets A, B ⊆ X with respect to f ∈ X∗ the
following identity holds:

Hf (A + B) = Hf (A) + Hf (B).

For A ∈ K(X) we denote by E(A) the set of extremal points, and by E0(A)
the set of exposed points. For two compact convex sets A, B ⊆ X in a
topological vector space X we will use the notation

A ∨ B := conv (A ∪ B),

where the operation “conv” denotes the convex hull. For a set A ⊆ X

we denote by Ā the closure of A. If A, K ⊂ X are nonempty compact
convex sets then A is said to be a summand of K if and only if there
exists a nonempty compact convex set B ⊂ X with A + B = K for the
Minkowski sum. An essential role in K(X) is played by the

Order Cancellation Law (see [3], [11]). Let X be a topological vec-
tor space and A, B, C ⊆ X compact convex subsets. Then the inclusion
A + B ⊆ A + C implies B ⊆ C.

The following identity for compact convex sets was first observed by
A. Pinsker, namely:
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Pinsker’s Identity (see [8]). For A, B, C ∈ K(X) in a topological vector
space X we have:

(A + C) ∨ (B + C) = C + (A ∨ B).

This identity can be proved as follows: Every x ∈ (A ∨ B) + C can be
represented as x = α · a + (1 − α) · b + c with a ∈ A, b ∈ B, c ∈ C and
0 ≤ α ≤ 1. Now x = α · a + (1−α) · b + c = α · (a+ c) + (1−α) · (b+ c)
and hence C + (A ∨ B) ⊆ (A + C) ∨ (B + C).

The converse inclusion can be seen as follows: Let x ∈ (A+C)∨(B+C).
Then we have: x = α·(a+c1)+(1−α)·(b+c2) with a ∈ A, b ∈ B, c1, c2 ∈ C

and 0 ≤ α ≤ 1. Now x = α·(a+c1)+(1−α)·(b+c2) = α·a+(1−α)·b + α·
c1+(1−α)·c2. Hence the converse inclusion (A+C)∨(B+C) ⊆ C+(A∨B)
also holds.

We will use the abbreviation A + B ∨C for A + (B ∨C) and C + d for
C + {d} for compact convex sets A, B, C and a point d. Moreover we will
write [a, b] instead of {a} ∨ {b}.

A. G. Pinsker [8] introduced the following partial order on K(X)/∼

[A, B] � [C, D] ⇐⇒ A + D ⊆ B + C.

This partial ordering is independent of a special choice of representants.
Namely, for (A′, B′) ∈ [A, B] and (C′, D′) ∈ [C, D] the inclusion A + D ⊆
B + C implies A′ + D′ ⊆ B′ + C′, since:

B + C ⊃ A + D;

B + C + C′ ⊃ A + D + C′ = A + C + D′; since (C, D) ∼ (C′, D′)

B + C′ ⊃ A + D′; from cancelling C

B + C′ + B′ ⊃ A + D′ + B′ = B + A′ + B′; since (A, B) ∼ (A′, B′)

C′ + B′ ⊃ D′ + A′; from cancelling A

Thus from the algebraic point of view the set K(X) of all nonempty
compact convex subsets of a real topological vector space X is a commuta-
tive semi-ring with cancellation property endowed with the “addition ⊕ ”
given by

A ⊕ B := A ∨ B

and the “multiplication ?” given by

A ? B := A + B.
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Within this context, the elements of K2(X) (with respect to the rela-
tion ∼ ) can be considered as fractions.

The operation of an addition can be extended to the elements of K2(X)/∼

as follows:

K2(X)/∼
×K2(X)/∼

−→ K2(X)/∼

with

[A, B]⊕ [C, D] = [(A + D) ∨ (C + D), B + D].

This operation is independent from a special choice of representants by
using the above technique. Moreover, if [A, B] � [C, D], i.e. A + D ⊆
B + C, then we define a difference [E, F ] by the equation

[A, B]⊕ [E, F ] = [C, D],

and we will write [E, F ] = [C, D] 	 [A, B]. The existence of such a differ-
ence follows from

Proposition 2.1. Let (X, τ) be a topological vector space and [A, B],
[C, D] ∈ K2(X)/∼

. If [A, B] � [C, D], i.e. A + D ⊆ B + C, then the
difference [E, F ] = [C, D] 	 [A, B] exists.

Proof. We have to solve the equation

[A, B]⊕ [E, F ] = [C, D],

which is equivalent to the equation

(A + F ) ∨ (B + E) + D = B + C + F.

This equation can be solved as follows. Let us put

E = A + U and F = B + V,

for some elements U, V ∈ K(X), which we consider for a moment as un-
known variables. If we fix the first variable V , for instance V = A + D

then we can find a solution for the second variable U ∈ K(X) which sa-
tisfies U ∨ V = B + C. This can be seen as follows

[A, B]⊕ [E, F ] = [C, D] ⇐⇒ (A + F ) ∨ (B + E) + D = B + C + F,
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i.e.

(A + F ) ∨ (B + E) + D = B + C + F

m

(A + B + V ) ∨ (B + A + U) + D = B + C + B + V

m

A + B + D + (U ∨ V ) = B + B + C + V

m

A + D + (U ∨ V ) = B + C + V.

Any U ∈ K(X) with U∨V = B+C is a solution, for instance U = B+C

since A + D ⊆ B + C.

Corollary 2.2. Let (X, τ) be a topological vector space and A, B ∈ K(X)
with A ⊆ B. Then every E ∈ K(X) with A ∨ E = B gives a solution of

[A, {0}]⊕ [E, {0}] = [B, {0}].

Proof. This follows immediately from the equation

(A + {0}) ∨ (E + {0}) + {0} = B + {0}

Thus for elements A, B ∈ K(X) of a topological vector space X with
A ⊆ B we define the convex complement by E = B	̂A as the minimal
inclusion E ∈ K(X) with A ∨ E = = B. Let us observe, that by the
Krein-Milman Theorem this difference is uniquely determined.

The multiplication between elements in K(X) can be extended to K2(X)/∼

by

[A, B] ? [C, D] = [A + C, B + D] for [A, B], [C, D] ∈ K2(X)/∼
.

It is easy to see that this extension of ? is independent of a special choice
of representants. The neutral element for the multiplication is [{0}, {0}]
and the multiplicative inverse of [A, B] ∈ K2(X)/∼

is given by [B, A] ∈
K2(X)/∼

.

From the Pinsker formula follows, that the distributivity law holds also
in K2(X)/∼

, i.e., for all [A, B], [C, D], [E,F ] ∈ K2(X)/∼
we have

[A, B] ? ([C, D]⊕ [F, G]) = ([A, B] ? ([C, D]) ⊕ ([A, B] ? [F, G])
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All together we have

Theorem 2.3. Let (X, τ) be a topological vector space. Then (K2(X)/∼
,

?,⊕) is a partially ordered semi-ring with cancellation property, such that
for every [A, B] ∈ K2(X)/∼

the multiplicative inverse exists and for all

[A, B], [C, D] ∈ K2(X)/∼
, with [A, B] � [C, D] the difference.

3. minimal pairs of compact convex sets

For a nonempty compact convex set A ⊂ X we consider a set S ⊆
X∗ \ {0} such that

conv(
⋃

f∈S
Hf (A)) = A.

Such a set S ⊂ X∗ \ {0} is called a shape of A and will be denoted by
S(A). For a shape S(A) we consider subsets

Sp(A) := {f ∈ S(A) | card(Hf (A)) = 1},

which may be empty and

Sl(A) := S(A) \ Sp(A).

In the sequel we will state some typical sufficient conditions for min-
imality: The criteria presented here are of two different types: The first
type of criteria uses conditions which ensure that two compact convex
sets are in a certain “general position”, while the second type of criteria
uses information about exposed points of the Minkowski sum of compact
convex sets. For a more detailed presentation of this topic we refer to ([5],
[6], [7]).

We start with a criterium for minimality which is of the first type.

Theorem 3.1. Let ( X, τ) be a real locally convex topological vector space
and let A, B ⊂ X be nonempty compact convex sets. Assume that there is
a shape S(A) of A satisfying the following conditions:

(i) for every f ∈ S(A) , card(Hf (B)) = 1,

(ii) for every f ∈ Sl(A) and every b ∈ B, the condition

Hf (A) + (b − Hf (B)) ⊆ A implies b = Hf (B),

(iii) for every f ∈ Sp(A) , Hf (A) − Hf (B) ∈ E(A − B),
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or conversely, by interchanging A and B. Then the pair (A, B) ∈ K2(X)
is minimal.

Proof. Assume, that A
′

⊆ A and B
′

⊆ B are nonempty compact convex
sets such that

A
′

+ B = A + B
′

.

Choose an element f ∈ S(A). Since

Hf (A) + Hf (B
′

) = Hf (B) + Hf (A
′

)

and Hf (B) = {b}, this can be written as:

Hf (A) + Hf (B
′

) = {b} + Hf (A
′

).

Now we choose an element b
′

∈ Hf (B
′

) and determine for every extremal

point e ∈ E(Hf (A)) an element ae ∈ Hf (A
′

) such that

e + b
′

= b + ae.

The following two cases are possible:

• case p): Assume that f ∈ Sp(A). Then e − b = ae − b
′

. Since, by

condition iii), e − b ∈ E(A − B), we have ae = e and b
′

= b. Hence

Hf (B
′

) = Hf (B) = {b} and therefore

Hf (A) = Hf (A
′

).

• case l): Now we assume that f ∈ Sl(A). In this case we choose finitely
many extremal points e1, ..., en ∈ E(Hf (A)) which lead to the system of
equations

ei + b
′

= b + aei
, i ∈ {1, ..., n}.

Clearly,
n
∨

i=1

(ei + b
′

) =
n
∨

i=1

(b + aei
).

Hence by the result of A. G. Pinsker ([8]), this implies

(
n
∨

i=1

(ei) + b
′

= b + (
n
∨

i=1

aei
),
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which gives
n
∨

i=1

(ei + b
′

) ⊆ b + Hf (A
′

).

Since e1, ..., en ∈ E(Hf (A) are arbitrarily chosen, it follows from the the-
orem of Krein-Milman ( cf. [9], p. 239) that

Hf (A) + b
′

⊆ b + Hf (A
′

).

By condition ii) this gives b = b
′

and hence

Hf (A
′

) = Hf (A).

Thus, for all f ∈ S(A) we have

Hf (A
′

) = Hf (A).

Therefore

A
′

⊇ conv(
⋃

f∈S(A)

Hf (A′)) = conv(
⋃

f∈S(A)

Hf (A)) = A ,

i.e., A
′

= A.

Then, by cancellation law, the equality

A + B
′

= B + A
′

implies that

B
′

= B,

which completes the proof.

The next criterium for minimality is based on a sufficient condition on
the indecomposability of a nonempty compact convex set and is formulated
in terms of exposed points of this set.

Theorem 3.2. Let (X, ‖ · ‖) be a real Banach space, and let (A, B) ∈
K2(X). If for every exposed point a + b ∈ E0(A + B) with a ∈ E0(A), b ∈
E0(B) there exists b1 ∈ E0(B) or a1 ∈ E0(A) such that a + b1 ∈ E0(A + B)
and a− b1 ∈ E(A−B) or a1 + b ∈ E0(A+B) and a1 − b ∈ E(A−B), then
(A, B) is minimal.
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Proof. Let (A, B) ∈ K2(X) and f ∈ X∗. Then

Hf (A + B) = Hf (A) + Hf (B).

This implies the unique representation of every exposed point of A+B as
a sum of exposed points of A and B.

Let us show that the pair (A, B) ∈ K2(X) is minimal. To do this, we

choose a pair (A
′

, B
′

) ∈ K2(X) such that A
′

⊆ A , B
′

⊆ B and A + B
′

=

B + A
′

. Let a + b ∈ E0(A + B). Without loss of generality we can assume
that for a ∈ E0(A) there exists b0 ∈ E(B) such that a + b0 ∈ E0(A + B)
and a − b0 ∈ E(A − B). Hence there exists a continuous linear functional
f0 ∈ X∗ such that

Hf0
(A + B) = {a + b0}.

By the above formula for faces we have

Hf0
(A) = {a} and Hf0

(B) = {b0}.

Since
A + B

′

= B + A
′

=: K,

it follows that

Hf0
(A) + Hf0

(B
′

) = Hf0
(B) + Hf0

(A
′

).

Hence there exist elements a
′

∈ Hf0
(A

′

) ⊆ A and b
′

∈ Hf0
(B

′

) ⊆ B such
that

a + b
′

= b0 + a
′

.

Since a − b0 ∈ E(A − B), it follows that a = a
′

, b0 = b
′

. The equality
implies

B + a ⊆ B + A
′

= K.

Hence a + b ∈ K. Since a + b ∈ E0(A + B), by a modification of V. Klee
([4]) of Krein-Milman Theorem, it follows that

A + B = K.

Hence the cancellation law implies

A + B
′

= B + A
′

, i.e. A = A
′

,
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and
A + B

′

= B + A
′

, i.e. B = B
′

.

Therefore (A, B) ∈ K2(X) is minimal.

4. Reduction techniques

We now present a technique for the reduction of pairs of compact convex
sets by cutting hyperplanes or by excision which is based on the following
observation:

Lemma 4.1. Let X be a real topological vector space and A, B, S ∈ K(X).
Then

A ∨ B + S ⊆ (A ∨ S) + (B ∨ S).

Proof. Given any x ∈ A∨B and s ∈ S, then x = αa+βb for some elements
a ∈ A, b ∈ B and numbers α, β ≥ 0 with α + β = 1. Hence

x + s = αa + βb + s = αa + βb + (α + β)s

= (αa + βs) + (αs + βb) ∈ A ∨ S + B ∨ S.

Remark 4.2. i) If S = A ∩ B 6= φ then A ∨ B + A ∩ B ⊆ A + B.

ii) If for a compact convex set S 6= ∅ the equation A + B = A ∨ B + S

holds then S = A ∩ B.

Part i) is obvious. To prove ii) observe that A+B = A∨B +S implies
both A + B ⊇ B + S and A + B ⊇ A + S and hence S ⊂ A ∩ B.

From Lemma 4.1 follows

A ∨ B + A ∩ B ⊆ A + B ⊆ A ∨ B + S.

Hence A ∩ B ⊆ S and therefore S = A ∩ B.

This lemma leads to the following definition

Let X be a real topological vector space and A, B, S ∈ K(X). Then S

is separating the sets A and B if and only if for every a ∈ A and b ∈ B we
have [a, b] ∩ S 6= ∅, with [a, b] = {a} ∨ {b}.

Now we have

Lemma 4.3. Let X be a real topological vector space, A, B, S ∈ K(X)
such that S is separating A and B. Then

A + B ⊆ A ∨ B + S.
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Proof. Let a ∈ A, b ∈ B. Then there exists α, β ≥ 0 with α + β = 1 such
that

αa + βb ∈ S.

Hence

a + b = (αa + βa) + (αb + βb)

= (βa + αb) + (αa + βb) ∈ A ∨ B + S.

Next we have

Proposition 4.4. Let X be a real topological vector space, A, B ∈ K(X)
such that A ∩ B 6= ∅. Then

i) if A ∩ B separates the sets A and B, then

A ∨ B + A ∩ B = A + B.

ii) if X is locally convex then A∨B+A∩B = A+B implies that A∩B

separates A and B.

Proof. i) Let us write S := A ∩ B. Then from Remark 4.2 i) it follows
that

A ∨ B + A ∩ B ⊆ A + B.

Moreover from Lemma 4.3 we have that

A + B ⊆ A ∨ B + A ∩ B.

Hence

A + B = A ∨ B + A ∩ B.

ii) Now let us assume that X is locally convex and that A∨B+A∩B =
A +B holds. If A∩B 6= ∅ does not separate the sets A and B, then there
exist points a ∈ A and b ∈ B such that

[a, b] ∩ (A ∩ B) = ∅.

Since X is locally convex there exists a continuous linear functional f ∈ X∗

such that

max(f(a), f(b)) ≤ min
z∈A∩B

f(z).
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Now choose elements a0 ∈ A, b0 ∈ B such that

f(a0) = min
a∈A

f(a), f(b0) = min
b∈B

f(b).

Since

max(f(a0), f(b0)) ≤ max(f(a), f(b)) < min
z∈A∩B

f(z),

it follows that

[a0, b0] ∩ (A ∩ B) = ∅.

Since by assumption A+B = A∨B +A∩B, there exist elements a1 ∈ A,
b1 ∈ B, z1 ∈ A ∩ B, and numbers α, β ≥ 0 with α + β = 1, such that

a0 + b0 = αa1 + βb1 + z1.

Hence

f(a0) + f(b0) = αf(a1) + βf(b1) + f(z1).

Since

max(f(a0) − f(z1), f(b0) − f(z1)) < 0,

this implies

f(a0) > αf(a1) + βf(b1) and f(b0) > αf(a1) + βf(b1).

Hence f(a0) > f(b1) and f(b0) > f(a1) which leads to the contradiction

f(a0) > f(b1) ≥ f(b0) > f(a1).

Theorem 4.5. Let X be a real topological vector space, A ∈ K(X) a
nonempty compact convex set. Moreover let us assume that there exists a
nonempty compact convex subset C ⊆ A such that A \C is nonempty and
convex. Then the pairs

(A, C), (A \ C, C ∩ (A \ C)) ∈ K2(X)

are equivalent.

Proof. Put

S = C ∩ (A \ C).



238 D. PALLASCHKE AND R. URBAŃSKI

Then it is obvious that S separates A \ C and C. Hence by Proposition
4.4 i) we have

(A \ C) ∨ C + S = A \ C + C.

Since
(A \ C) ∨ C = A,

we get
A + S = (A \ C) + C,

which means
(A, C) ∼ (A \ C, C ∩ (A \ C)).

In the case where X is a real locally convex topological vector space,
the assumption that the sets C and A\C are convex is equivalent to the
existence of a point z ∈ A and a continuous linear functional f ∈ X∗ such
that

A \ C = A+
f,z := {x ∈ A | f(x) ≥ f(z)},

and
C = A−

f,z := {x ∈ A | f(x) ≤ f(z)}.

Observe that

(A \ C) ∩ C = Af,z := {x ∈ A | f(x) = f(z)}.

The above result now leads us to a theorem on the reduction of pairs
of nonempty compact convex sets by cutting hyperplanes.

Theorem 4.6. Let X be a real locally convex topological vector space,
A, B ∈ K(X) nonempty compact convex sets and let us assume that there
exists an element z ∈ A ∩ B and a continuous linear functional f ∈ X∗

such that A+
f,z = B+

f,z and Af,z = Bf,z. Then the pairs

(A, A−
f,z) , (B, B−

f,z) ∈ K2(X)

are equivalent.

Proof. By the above Theorem 4.5 we have (A, A−
f,z) ∼ (A+

f,z, Af). Since

by assumption A+
f,z = B+

f,z and Af,z = Bf,z, it follows that

(A, A−
f,z) ∼ (B, B−

f,z).
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For further results about pairs of compact convex sets we refer to [2],
[10], [7] and [12].

5. Examples

In this section, we will illustrate the reduction technique and the two
criteria for minimality by simple examples of compact convex sets in the
plane.

Example 5.1. We begin with an example for the convex complement.
Let us consider the sets A = {p}∨{q}∨{r} and B = {r}∨{s}∨{t}∨{u}
as indicated in the following figure.

The convex complement is E = A	̂B = {p} ∨ {q}.

Example 5.2. The two different representations of

ϕ : R2 → R,

with

ϕ(x1, x2) = max{0, x1, x2, x1 + x2} − max{x1, x2, x1 + x2}

= max{0, x1, x2} − max{x1, x2}

given in Example 1.2, can be explained by the reduction technique.

If we put

pA(x1, x2) = max{0, x1, x2, x1 + x2}, pB(x1, x2) = max{x1, x2, x1 + x2}

and

pA0
(x1, x2) = max{0, x1, x2}, pB0

(x1, x2) = max{x1, x2},
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then the reduction of the pair (A, B) to (A0, B0) which follows from
Theorem 4.6 is now illustrated by the following figure:
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Example 5.3. Let R > 0 be given and define a linear map

T : R2 → R2,

by

T (x1, x2) := (−x1, x2).

Furthermore, put u := ( R√
2
, 0) and consider the balls

K1 := B(u; R) := {z ∈ R2 | ‖z − u‖ ≤ R} and K2 := B(−u; R)

in the Euclidean norm. Put

A := K1 ∩ K2 and B := T (A).

Then A + B = A−B = B(0; R) is the ball with radius R at the origin
0 = (0, 0) ∈ R2. It is easy to see that the condition stated in Theorem 3.2
gives the minimality of the pair (A, B).



242 D. PALLASCHKE AND R. URBAŃSKI

Example 5.4. Let R > 0 be given. Put x := R√
2
, y := R

2
. Further-

more, put a1 := (0, R), a2 := (x,−y), a3 := (−x,−y), A := a1 ∨ a2 ∨
a3 and B := −A.

Then Theorem 3.1 gives the minimality of the pair (A, B).
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3. L. Hörmander, Sur la fonction d’ appui des ensembles convexes dans un espace

localement convex, Arkiv för Matematik 3 (1954), 181-186.

4. V. Klee, Extremal structure of convex sets II, Math. Z. 69 (1958), 90-104.

5. D. Pallaschke, S. Scholtes and R. Urbański, On minimal pairs of compact convex
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6. D. Pallaschke and R. Urbański, Some criteria for the minimality of pairs of com-

pact convex sets, Zeitschrift für Operations Research 37 (1993), 129-150.
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