A REMARK ON VECTOR-VALUED EQUILIBRIA AND GENERALIZED MONOTONICITY

W. OETTLI

Dedicated to Hoang Tuy on the occasion of his seventieth birthday

ABSTRACT. It is the purpose of this note to show that existence results for vector-valued equilibria, of the type considered recently in [1] or [2], can be deduced in a straightforward way from corresponding results about scalar-valued equilibria. We shall proceed as follows. First we prove an existence result for scalar-valued equilibria, employing a certain notion of generalized monotonicity, and from this we deduce several results for the vector-valued case, by using appropriate gauge functions.

1. The vectorial equilibrium problem

The setting for the vectorial equilibrium problem is as follows:

X is a real topological vector space;

 $K \subseteq X$ is a convex, nonempty set;

Z is a locally convex topological vector space;

 $P \subseteq Z$ is a closed convex cone, with $\operatorname{int} P \neq \emptyset$ and $P \neq Z$.

On Z a vectorial ordering is defined by means of

$$z \leq 0 :\iff z \in -P, \qquad z \geq 0 :\iff z \in P,$$
$$z \prec 0 :\iff z \in -\operatorname{int} P, \quad z \succ 0 :\iff z \in \operatorname{int} P.$$

Furthermore, a mapping $F: K \times K \to Z$ is given. The vectorial equilibrium problem, as considered in [1] or [2], consists in finding $x^* \in X$ such that

(1)
$$x^* \in K, \quad F(x^*, y) \not\prec 0, \quad \forall y \in K.$$

We shall also consider the related problem of finding $x^* \in X$ such that

(2) $x^* \in K, \quad F(x^*, y) \succeq 0, \quad \forall y \in K.$

Both problems (1) and (2) can be reduced to the scalar equilibrium problem, which we consider next.

Received July 20, 1996

2. The scalar equilibrium problem

Here X and K are as before, $Z := \mathbf{R}$ and $P := \mathbf{R}_+$. Then $\neq 0$ and $\succeq 0$ coincide with ≥ 0 . We are given a function $f : K \times K \to \mathbf{R}$, and we consider the problem

(3)
$$x^* \in K, \quad f(x^*, y) \ge 0, \quad \forall y \in K.$$

It is convenient to introduce the following definition for $f, g: K \times K \to \mathbf{R}$: f is g-monotone iff, for all $x, y \in K$,

(4)
$$f(x,y) \ge 0 \Longrightarrow g(y,x) \le 0;$$

f is maximal g-monotone iff f is g-monotone and, for all $x, y \in K$,

(5)
$$(g(\xi, x) \le 0, \quad \forall \xi \in]x, y]) \Longrightarrow f(x, y) \ge 0.$$

We have the following existence result for problem (3).

Lemma 1. Let the functions $f, g : K \times K \to \mathbf{R}$ satisfy the following conditions:

- (i) for all $x \in K$, $f(x, x) \ge 0$;
- (ii) for all $y \in K$, $S(y) := \{\xi \in K \mid g(y,\xi) \le 0\}$ is closed in K;
- (iii) for all $x \in K$, $W(x) := \{\xi \in K \mid f(x,\xi) < 0\}$ is convex;
- (iv) f is maximal g-monotone;
- (v) there exist $D \subseteq K$ compact and closed in K, and $y^* \in D$ such that $f(\xi, y^*) < 0$ for all $\xi \in K \setminus D$ (coercivity).

Then there exists $x^* \in K$ such that $f(x^*, y) \ge 0$ for all $y \in K$.

Proof. For all $y \in K$ let

$$T(y) := \operatorname{cl}_K \{ x \in K \mid f(x, y) \ge 0 \}.$$

Then $T(\cdot)$ is a KKM map, i.e., for every finite subset $\{y_1, \ldots, y_n\} \subseteq K$ there holds conv $\{y_1, \ldots, y_n\} \subseteq \bigcup_{i=1}^n T(y_i)$. Indeed, suppose to the contrary that $x \in \text{conv} \{y_1, \ldots, y_n\}$, but $x \notin T(y_i)$ for all $i = 1, \ldots, n$. Then $y_i \in W(x)$ for all $i = 1, \ldots, n$. From condition (iii), W(x) is convex, hence $x \in W(x)$, a contradiction with condition (i). Since $T(\cdot)$ is a KKM map with closed values, and since $T(y^*)$ is contained in the compact set D by

condition (v), it follows from the KKM Lemma (see [5]) that there exists $x^* \in D$ such that $x^* \in T(y)$ for all $y \in K$. The sets S(y) are closed in K, by condition (ii), and from the *g*-monotonicity of f – see (4) – it follows then that $T(y) \subseteq S(y)$. Therefore we obtain that $x^* \in S(y)$ for all $y \in K$, i.e.,

$$g(y, x^*) \le 0, \quad \forall y \in K.$$

Now fix $y \in K$ arbitrarily. Then $[x^*, y] \subseteq K$ and therefore

$$g(\xi, x^*) \le 0, \quad \forall \xi \in [x^*, y].$$

From the maximal g-monotonicity of f – see (5) – it follows then that

$$f(x^*, y) \ge 0.$$

Since $y \in K$ was arbitrary, the claimed result follows.

We observe that the coercivity condition (v) is vacuously satisfied, if K is compact, by choosing D := K.

In the applications to follow we need only two special cases of Lemma 1, which we single out as theorems. We let $f \wedge g := \min\{f, g\}$.

Theorem 1. Let the functions $f, g : K \times K \to \mathbf{R}$ be such that, for all $x, y \in K$, the following conditions are satisfied:

- (i) $(f \wedge g)(x, x) \ge 0;$
- (ii) $\{\xi \in K \mid g(y,\xi) \leq 0\}$ is closed in K;
- (iii) $\{\xi \in K \mid f(x,\xi) < 0\}$ is convex;
- (iv) $f(x,y) \ge 0 \Longrightarrow g(y,x) \le 0;$

(v) $\forall u \in]x, y[, (g(u, x) \leq 0, f(u, y) < 0) \Longrightarrow ((f \land g)(u, \xi) < 0 \forall \xi \in]x, y]);$

(vi) $\{\xi \in [x, y] \mid f(\xi, y) \ge 0\}$ is closed in [x, y];

(vii) there exist $D \subseteq K$ compact and closed in K, and $y^* \in D$ such that $f(\xi, y^*) < 0$ for all $\xi \in K \setminus D$.

Then there exists $x^* \in K$ such that $f(x^*, y) \ge 0$ for all $y \in K$.

Proof. It only remains to show that f is maximal g-monotone. By (iv), f is g-monotone. Let $g(\xi, x) \leq 0$ for all $\xi \in [x, y]$, and assume, for contradiction, that f(u, y) < 0 for some $u \in [x, y]$. From (v) we obtain $(f \wedge g)(u, \xi) < 0$ for all $\xi \in [x, y]$, in particular $(f \wedge g)(u, u) < 0$, which

contradicts (i). Hence there holds $f(u, y) \ge 0$ for all $u \in]x, y[$. From (vi) follows then $f(x, y) \ge 0$.

Remark 1. If $g \ge f$, then (iii) and (v) are satisfied, if, for all $x, y, u \in K$,

$$\left(f(u,x) \le 0, \ f(u,y) < 0\right) \Longrightarrow \left(f(u,\xi) < 0 \ \forall \xi \in]x,y]\right).$$

Theorem 2. Let the function $f : K \times K \to \mathbf{R}$ be such that, for all $x, y \in K$, the following conditions are satisfied:

- (i) $f(x, x) \ge 0;$
- (ii) $\{\xi \in K \mid f(\xi, y) \ge 0\}$ is closed in K;
- (iii) $\{\xi \in K \mid f(x,\xi) < 0\}$ is convex;
- (iv) there exist $D \subseteq K$ compact and closed in K, and $y^* \in D$ such that $f(\xi, y^*) < 0$ for all $\xi \in K \setminus D$.

Then there exists $x^* \in K$ such that $f(x^*, y) \ge 0$ for all $y \in K$.

Proof. We set

$$g(y,x) := -f(x,y).$$

Then, obviously, f is maximal g-monotone, and Lemma 1 gives at once the claimed result.

Theorem 2 is a classical result due to Fan [5]. In connection with Lemma 1 an interesting case occurs, if f(x, y) = a(x, y) + b(x, y), g(x, y) = a(x, y) - b(y, x). Suppose that f is g-monotone, a(x, x) = 0 and b(x, x) = 0 on K, $a(x, \cdot)$ and $b(x, \cdot)$ are convex, $a(\cdot, y)$ is upper semicontinuous along line segments in K. Then f is maximal g-monotone. The proof is a replica of the proof of Lemma 3 in [3]. Here we shall not pursue this case further.

3. Reduction of the vectorial case to the scalar case

We return to the vectorial case. Let Z^* denote the topological dual space of Z, and let $P^* := \{\lambda \in Z^* \mid \langle \lambda, z \rangle \ge 0 \ \forall z \in P\}$ denote the polar cone of P. We emphasize that P does not have to be pointed. Since int $P \neq \emptyset$ and $P \neq Z$, P^* has a weak^{*} compact base, i.e., there exists $B \subseteq P^*$, B convex, weak^{*} compact, such that $0 \notin B$ and $P^* = \bigcup_{t \ge 0} tB$. We may choose for instance $B := \{\lambda \in P^* \mid \langle \lambda, c \rangle = 1\}$, where $c \in int P$ is arbitrary (see [6], p. 539). We fix such a base B and let

$$\psi(z):=\max_{\lambda\in B}\langle\lambda,z\rangle,\quad \varphi(z):=\min_{\lambda\in B}\langle\lambda,z\rangle.$$

The function ψ is sublinear and lower semicontinuous on Z, φ is superlinear and upper semicontinuous on Z, and $\varphi \leq \psi$. For all $z \in Z$ there holds:

$$\begin{aligned} z \preceq 0 &\iff z \in -P \iff \langle \lambda, z \rangle \leq 0, \quad \forall \lambda \in P^* \\ &\iff \langle \lambda, z \rangle \leq 0, \quad \forall \lambda \in B \iff \psi(z) \leq 0; \\ z \prec 0 &\iff z \in -\text{int} \ P \iff \langle \lambda, z \rangle < 0, \quad \forall \lambda \in P^* \setminus \{0\} \\ &\iff \langle \lambda, z \rangle < 0, \quad \forall \lambda \in B \iff \psi(z) < 0. \end{aligned}$$

Likewise there holds

$$z\succeq 0 \Longleftrightarrow \varphi(z) \geq 0, \quad z\succ 0 \Longleftrightarrow \varphi(z) > 0.$$

Now let $F: K \times K \to Z$ be given and set

$$\Psi(x,y) := \psi(F(x,y)), \quad \Phi(x,y) := \varphi(F(x,y)).$$

Then $\Phi \leq \Psi$ and, for all $x, y \in K$,

$$\begin{split} \Psi(x,y) &\leq 0 \Longleftrightarrow F(x,y) \preceq 0, \quad \Psi(x,y) < 0 \Longleftrightarrow F(x,y) \prec 0, \\ \Phi(x,y) &\geq 0 \Longleftrightarrow F(x,y) \succeq 0, \quad \Phi(x,y) > 0 \Longleftrightarrow F(x,y) \succ 0. \end{split}$$

Problem (1) now takes the form of problem (3), namely

(6)
$$x^* \in K, \quad \Psi(x^*, y) \ge 0, \quad \forall y \in K.$$

Likewise problem (2) takes the form

(7)
$$x^* \in K, \quad \Phi(x^*, y) \ge 0, \quad \forall y \in K.$$

In order to obtain existence results for problems (1) or (2) we simply have to apply Theorem 1 or Theorem 2 to (6) or (7). The decisive point is that all hypotheses and the conclusion of these theorems are formulated in terms of $f(x,y) \ge 0, \le 0, < 0$, and $g(x,y) \ge 0, \le 0, < 0$. Hence, identifying f and g with Ψ or Φ , they can be rewritten in terms of the vectorial inequalities $F(x,y) \prec 0, \le 0, \succ 0$ and their negations, and thus are independent of the selected base B.

We first turn to Theorem 1. We let $f := \Psi$ and $g := \Phi$. Then $f \wedge g = \Phi$. Therefore from Theorem 1 we obtain

Corollary 1. Let $F : K \times K \to Z$ be such that, for all $x, y \in K$, the following conditions hold:

- (i) $F(x,x) \succeq 0;$
- (ii) $\{\xi \in K \mid F(y,\xi) \neq 0\}$ is closed in K;
- (iii) $\{\xi \in K \mid F(x,\xi) \prec 0\}$ is convex;
- (iv) $F(x, y) \not\prec 0 \Longrightarrow F(y, x) \not\succ 0;$

(v) $\forall u \in]x, y[, (F(u, x) \neq 0, F(u, y) \prec 0) \Longrightarrow (F(u, \xi) \not\geq 0 \forall \xi \in]x, y]);$

- (vi) $\{\xi \in [x, y] \mid F(\xi, y) \not\prec 0\}$ is closed in [x, y];
- (vii) there exist $D \subseteq K$ compact and closed in K, and $y^* \in D$ such that $F(\xi, y^*) \prec 0$ for all $\xi \in K \setminus D$.

Then there exists $x^* \in K$ such that $F(x^*, y) \not\prec 0$ for all $y \in K$.

Remark 2. Let $F : K \times K \to Z$ be given, and suppose that, for all $x, y, u \in K$ and $c \succeq 0$,

(8) $\{\xi \in K \mid F(u,\xi) \preceq c\} \text{ is convex};$

$$(9) \ \left(F(u,x) \not\succ 0, \ F(u,x) \succ F(u,y)\right) \Longrightarrow \left(F(u,x) \succ F(u,\xi) \ \forall \xi \in [x,y]\right).$$

Then conditions (iii) and (v) of Corollary 1 hold. Indeed, (iii) follows from (8) by the fact that, given $a \prec 0$ and $b \prec 0$, there exists $c \prec 0$ such that $a \preceq c$ and $b \preceq c$. To prove (v), let $F(u, x) \neq 0$, $F(u, y) \prec 0$. Assume, for contradiction, that $F(u, \xi) \succeq 0$ for some $\xi \in [x, y]$. If $F(u, x) \succeq 0$, then $F(u, x) \succ F(u, y)$, and from condition (9) follows $F(u, x) \succ F(u, \xi) \succeq 0$, a contradiction with $F(u, x) \neq 0$. On the other hand, if $F(u, x) \not\geq 0$, then by Lemma 2.2 of [2] there exists $c \not\geq 0$ such that $c \succeq F(u, x)$ and $c \succeq F(u, y)$. From condition (8) follows $c \succeq F(u, \xi) \succeq 0$, a contradiction with $c \not\geq 0$. \Box

Thus one sees that Corollary 1 includes Theorem 3.1 of [2]. A mapping F which satisfies condition (iv) of Corollary 1 was termed pseudomonotone in [2]. Conditions (8) and (9) are automatically satisfied if, for all $u \in K$, $F(u, \cdot)$ is affine.

Now we let $f := \Phi$ and $g := \Psi$. Again $f \wedge g = \Phi$, and we obtain from Theorem 1

Corollary 2. Let $F : K \times K \to Z$ be such that, for all $x, y \in K$, the following conditions hold:

- (i) $F(x,x) \succeq 0;$
- (ii) $\{\xi \in K \mid F(y,\xi) \leq 0\}$ is closed in K;
- (iii) $\{\xi \in K \mid F(x,\xi) \succeq 0\}$ is convex;

(iv) $F(x,y) \succeq 0 \Longrightarrow F(y,x) \preceq 0;$

(v) $\forall u \in]x, y[, (F(u, x) \leq 0, F(u, y) \not\geq 0) \Longrightarrow (F(u, \xi) \not\geq 0, \forall \xi \in]x, y]);$

(vi) $\{\xi \in [x, y] \mid F(\xi, y) \succeq 0\}$ is closed in [x, y];

(vii) there exist $D \subseteq K$ compact and closed in K, and $y^* \in D$ such that $F(\xi, y^*) \not\geq 0$ for all $\xi \in K \setminus D$.

Then there exists $x^* \in K$ such that $F(x^*, y) \succeq 0$ for all $y \in K$.

Remark 3. Let $F : K \times K \to Z$ be given, and suppose that, for all $x, y, u \in K$ and $c \succeq 0$,

(10)
$$\{\xi \in K \mid F(u,\xi) \preceq c\} \text{ is convex};$$

$$(11) \quad \left(F(u,x) \preceq 0, \ F(u,x) \not\preceq F(u,y)\right) \Longrightarrow \left(F(u,x) \not\preceq F(u,\xi), \ \forall \xi \in]x,y]\right).$$

Then condition (v) of Corollary 2 holds. Indeed: Let $F(u, x) \leq 0$ and $F(u, y) \not\geq 0$, and assume, for contradiction, that $F(u, \xi) \succeq 0$ for some $\xi \in [x, y]$. Then $F(u, x) \leq F(u, \xi)$, and from condition (11) follows $F(u, x) \leq F(u, y)$. Thus, with c := F(u, y), there holds $c \not\geq 0$, $F(u, x) \leq c$, $F(u, y) \leq c$. From (10) follows $F(u, \xi) \leq c$. Since $F(u, \xi) \succeq 0$, this contradicts $c \not\geq 0$. \Box

Conditions (10) and (11) are automatically satisfied if, for all $u \in K$, $F(u, \cdot)$ is affine.

We turn now to Theorem 2. We let $f := \Psi$. Then we obtain from Theorem 2

Corollary 3. Let $F : K \times K \to Z$ be such that, for all $x, y \in K$, the following conditions hold:

(i) $F(x,x) \neq 0$;

(ii) $\{\xi \in K \mid F(\xi, y) \not\prec 0\}$ is closed in K;

- (iii) $\{\xi \in K \mid F(x,\xi) \prec 0\}$ is convex;
- (iv) there exist $D \subseteq K$ compact and closed in K, and $y^* \in D$ such that $F(\xi, y^*) \prec 0$ for all $\xi \in K \setminus D$.

Then there exists $x^* \in K$ such that $F(x^*, y) \not\prec 0$ for all $y \in K$.

Finally we let $f := \Phi$. Then we obtain from Theorem 2 the following result.

Corollary 4. Let $F : K \times K \to Z$ be such that, for all $x, y \in K$, the following conditions hold:

(i) $F(x,x) \succeq 0$;

(ii) $\{\xi \in K \mid F(\xi, y) \succeq 0\}$ is closed in K;

(iii) $\{\xi \in K \mid F(x,\xi) \succeq 0\}$ is convex;

(iv) there exist $D \subseteq K$ compact and closed in K, and $y^* \in D$ such that $F(\xi, y^*) \not\geq 0$ for all $\xi \in K \setminus D$.

Then there exists $x^* \in K$ such that $F(x^*, y) \succeq 0$ for all $y \in K$.

4. EXTENSION

Under more restrictive assumptions about the space Z it is possible to extend the approach proposed above to the case when the mapping F is multivalued. We indicate briefly how this can be done.

Within the same framework as before, let $F: K \times K \to Z$ be a multivalued mapping. We consider the problem of finding $x^* \in X$ such that

(12)
$$x^* \in K, \quad F(x^*, y) \not\subseteq -\operatorname{int} P, \quad \forall y \in K.$$

We assume that the space Z is a Banach space, provided with its norm topology. The dual space Z^{*} is equipped with the weak^{*} topology $\sigma(Z^*, Z)$. Again B is a weak^{*} compact base of the polar cone P^{*}. Then the canonical bilinear form $\langle \cdot, \cdot \rangle$ is continuous on $B \times Z$. In fact, B is norm-bounded ([4], Corollaire II.4), and given a net (λ_i, z_i) in $B \times Z$ converging to (λ, z) , we have $\|\lambda_i\| \leq c$ for all i; so $|\langle \lambda_i, z_i \rangle - \langle \lambda, z \rangle| \leq c \|z_i - z\| + |\langle \lambda_i - \lambda, z \rangle|$, which shows that $\langle \lambda_i, z_i \rangle$ converges to $\langle \lambda, z \rangle$.

We assume that, for all $x, y \in K$, F(x, y) is norm-compact and nonempty. Then we can define

$$f(x,y) := \max_{\substack{\lambda \in B \\ z \in F(x,y)}} \langle \lambda, z \rangle = \max_{z \in F(x,y)} \psi(z),$$
$$g(x,y) := \min_{\substack{\lambda \in B \\ z \in F(x,y)}} \langle \lambda, z \rangle = \min_{z \in F(x,y)} \varphi(z),$$

where ψ, φ are as in the preceding section. It is clear that the inequalities

$$f(x,y) \ge 0, \quad f(x,y) \le 0, \quad f(x,y) < 0$$

are equivalent with

$$F(x,y) \not\subseteq -\operatorname{int} P, \quad F(x,y) \subseteq -P, \quad F(x,y) \subseteq -\operatorname{int} P,$$

respectively, and the inequalities

$$g(x,y) \ge 0, \quad g(x,y) \le 0, \quad g(x,y) < 0$$

are equivalent with

$$F(x,y) \subseteq P, \quad F(x,y) \not\subseteq \operatorname{int} P, \quad F(x,y) \not\subseteq P,$$

respectively. In particular, if $x^* \in K$ and $f(x^*, y) \ge 0 \ \forall y \in K$, then x^* is a solution of (12). Hence, with this choice of f and g, Theorems 1 and 2 give sufficient conditions for the solvability of (12) The details can surely be left to the reader.

References

- 1. Q. H. Ansari, *Vector equilibrium problems and vector variational inequalities*, Presented at 2nd World Congress of Nonlinear Analysts, Athens, 1996.
- M. Bianchi, N. Hadjisavvas and S. Schaible, Vector equilibrium problems with generalized monotone bifunctions, Journal of Optimization Theory and Applications 92 (1997), No. 3 (forthcoming).
- 3. E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, The Mathematics Student **63** (1994), 123–145.
- 4. H. Brézis, Analyse Fonctionnelle, Masson, Paris, 1992.
- 5. Ky Fan, A generalization of Tychonoff's fixed-point theorem, Mathematische Annalen 142 (1961), 305–310.
- V. Jeyakumar, W. Oettli and M. Natividad, A solvability theorem for a class of quasiconvex mappings with applications to optimization, Journal of Mathematical Analysis and Applications 179 (1993), 537–546.
- 7. S. Schaible, *Generalized monotonicity and equilibrium problems*, Presented at 13th International Conference on Mathematical Programming, Mátraháza, 1996.

Fakultät für Mathematik und Informatik, Universität Mannheim, 68131 Mannheim, Germany