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LEXICOGRAPHICAL CHARACTERIZATION
OF THE FACES OF CONVEX SETS

J. E. MARTINEZ-LEGAZ

Dedicated to Hoang Tuy on the occasion of his seventieth birthday

Abstract. We prove that a nonempty proper subset of a convex set C is
a face if and only if it is the set of points where a linear mapping achieves
its lexicographical maximum over C .

1. Introduction

A basic notion in the theory of convex sets is that of a face. Given a
convex set C ⊆ Rn, one says that F ⊆ C is a face of C if every closed line
segment in C with a relative interior point F has both endpoints in F . For
instance, the set of points where a linear function attains its maximum
over C is a face of C. A face obtained in this way is called an exposed
face. Not all faces of a convex set are necessarily exposed. As observed
in [2], if C is the convex hull of a torus and D is one of the two closed
disks forming the sides of C, each relative boundary point of D is a face
of C but not an exposed face; however, these points are exposed faces of
D, which is in turn an exposed face of C.

The aim of this paper is to show that all faces of a convex set are
exposed in a lexicographical sense, namely, we will prove that for each
nonempty proper face F of a convex set C there exists a linear mapping
the set of whose lexicographical maximum points is F . As a consequence
of this result, it turns out taking the exposed faces of a convex set C, the
exposed faces of the exposed faces, and so on, one obtains all the nonempty
proper faces of C.

Let us recall now some notions and notation which we shall use in the
next section. The elements of Rn will be considered column vectors and
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the superscript T will mean transpose. One says that x = (ξ1, . . . , ξn)T ∈
Rn is lexicographically less than y = (η1, . . . , ηn)T ∈ Rn (in symbols,
x <L y) if x 6= y and if for k = min{i ∈ {1, . . . , n} | ξi 6= ηi} we have
ξk < ηk. We write x ≤L y if either x <L y or x = y. The notation
maxL will stand for lexicographical maximum, i.e., given S ⊂ Rn, we
write z = maxL S if z ∈ S and z′ ≤L z for all z′ ∈ S. Notice that, in
case such a point z exists, it is unique since the lexicographical order is a
total order relation. The symbols ⊆, ⊂, and ⊃ will denote inclusion, strict
inclusion and strict containment, respectively.

Our characterization of faces of convex sets will be based on the fol-
lowing lexicographical separation theorem for two sets.

Theorem 1 (1, Theorem 2.1). Let C and D be two nonempty subsets of
Rn. The convex hulls of C and D are disjoint if and only if there exists a
square real matrix A such that Ax <L Ay for all x ∈ C and y ∈ D.

2. The characterization theorem

We next present the main result of this paper.

Theorem 2. Let C be a convex subset of Rn and ∅ 6= F ⊂ C. Then
F is a face of C if and only if there exists a k × n matrix A, for some
k ∈ {1, . . . , n}, such that

(1) F = {y ∈ C | Ay = maxL{Ax | x ∈ C}}.

Proof. If (1) holds then the set AF = {Ay | y ∈ F} is a singleton, say
AF = {b} for some b ∈ Rn. Let x, x′ ∈ C, λ ∈ (0, 1) and suppose that
(1 − λ)x + λx′ ∈ F , i.e., (1 − λ)Ax + λAx′ = b. Since Ax ≤L b and
Ax′ ≤L b, it follows that Ax = b = Ax′, whence x, x′ ∈ F . This proves
that F is a face of C.

Conservely, assume that F is a face of C. Then the sets C \ F and F
are convex and disjoint. Hence, by Theorem 1, there is a n × n matrix
B = (b1, . . . , bn)T such that

(2) Bx <L By (x ∈ C \ F, y ∈ F ).

Let Bj = (b1, . . . , bj)T for j = 1, . . . , n and ` = min{j | Bjx <L Bjy for all
x ∈ C\F and y ∈ F}. If B`F = {B`y | y ∈ F} is a singleton then (1) holds
with A = B`. Let us consider the case when B`F is not a singleton, i.e.,
there exist y1, y2 ∈ F with B`y1 <L B`y2. If ` = 1 then, taking x0 ∈ C \F
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and λ ∈ (0, 1) close to 1, we would obtain a point (1 − λ)x0 + λy2 ∈ C
satisfying bT

1 y1 < bT
1 ((1 − λ)x0 + λy2). But, by (2), this implies that

(1 − λ)x0 + λy2 ∈ F , which is impossible (as F is a face of C). Thus,
` > 1. Let

k = max{j ∈ {1, . . . , n} | BjF is a singleton}.

We will next prove that A = Bk satisfies (1). Let us suppose that one has
BkF = {Bkx} for some x ∈ C \ F . Then we have k < n since otherwise
x would violate (2). As Bk+1x ≤L Bk+1y for all y ∈ F and Bk+1F is not
a singleton, there exist y1, y2 ∈ F with Bk+1x ≤L Bk+1y1 <L Bk+1y2.
Therefore, by Bkx = Bky1 = Bky2 we deduce bT

k+1x ≤ bT
k+1y1 < bT

k+1y2.
Hence, for λ ∈ (0, 1) close to 1, we have Bky1 = Bk((1 − λ)x + λy2) and
bT
k+1y1 < bT

k+1((1− λ)x + λy2), which implies that Bk+1y1 <L Bk+1((1−
λ)x = λy2). It follows that By1 <L B((1− λ)x + λy2). But this, together
with (2), implies that (1 − λ)x + λy2 ∈ F , which contradicts that F is a
face of C. Thus, we must have BkF 6= {Bkx} for all x ∈ C \ F and hence
A = Bk satisfies (1).

Based on Theorem 2, we can introduce the following notion of the
degree of non-exposedness of a face of a convex set.

Definition 3. Let C be a convex subset of Rn and let F ⊂ C be a
nonempty face of C. The degree of non-exposedness of F relative to C is

dC(F ) = min{k | there exiss a k × n matrix A satisfying (1)} − 1.

This definition is justified by the fact that one has dC(F ) = 0 if and
only if F is an exposed face of C. According to Theorem 2, the degree of
non-exposedness of a face of a convex set in Rn satisfies 0 ≤ dC(F ) ≤ n−1.
More precisely, one has:

Proposition 4. Let C and F be as in Definition 3. Then

dC(F ) ≤ dim C − dim F − 1,

where dim denotes dimension of the affine hull.

Proof. The inequality follows from the following observation. Let dim C =
p and let M = {x ∈ Rn | aT

i x = αi (i = 1, . . . , n − p)} be the affine
hull of C. If A = (b1, . . . , bk)T is a matrix satisfying (1) with k =
dC(F ) + 1 then the vectors a1, . . . , an−p, b1, . . . , bk are linearly indepen-
dent. To prove this assertion, observe first that the vectors a1, . . . , an−p
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are linearly independent (by dim C = p). Assume, by contradiction, that
a1, . . . , an−p, b1, . . . , bk are linearly dependent and denote by ` the smallest
index j such that a1, . . . , an−p, b1, . . . , bj are linearly dependent. We will
next prove that the matrix Ã obtained from A by deleting its row bT

` also
satisfies (1), thus contradicting the equality k = dC(F )+1. Indeed, let y ∈
F and x ∈ C. By (1), we have Ax ≤L Ay whence also A`−1x ≤L A`−1y,
with A` = {a1, . . . , a`−1)T . If A`−1x <L A`−1y then, obviously, Ãx ≤L

Ãy. If, instead, A`−1x = A`−1y then, by aT
i x = αi = aT

i y (i = 1, . . . , n−p)
and the fact that b` is a linear combination of a1, . . . , an−p, b1, . . . , b`−1,
we have bT

` x = bT
` y. Therefore, by Ax ≤L Ay we also have Ãx ≤L Ãy.

We have thus proved that F ⊆ {y ∈ C | Ãy = maxL{Ãx | x ∈ C}}. To
prove the opposite inclusion, let y be a point belonging to the right hand
side and let x ∈ C. One has Ãx ≤L Ãy. If we had Ay <L Ax then we
should have A`−1x = A`−1y and bT

` y < bT
` x, which is impossible because

b` is a linear combination of a1, . . . , an−p, b1, . . . , b`−1, and aT
i x = αi = aT

i

(i = 1, . . . , n − p). Thus Ax ≤L Ay, which concludes the proof of our
assertion.

The proof of the inequality in the statement follows from the linear
independence of a1, . . . , an−p, b1, . . . , bk and the fact that

F ⊆ {x ∈ Rn| aT
i x = αi (i = 1, . . . , n− p), Ax = maxL{Ay | y ∈ C}}.

As it is well known, if F is a face of C and F ′ is a face of F then F ′ is a
face of C. Next proposition establishes a relation between dC(F ), dF (F ′)
and dC(F ′).

Proposition 5. Let C be a convex subset of Rn, F ⊂ C a face of C and
F ′ ⊂ F a nonempty face of F . Then

dC(F ) + dF (F ′) ≥ dC(F ′)− 1.

Proof. Let k = dC(F ) + 1, k′ = dF (F ′) + 1 and let A and A′ be k×n and
k′ × n matrices, respectively, such that F = {x ∈ C|Ax = maxL{Ay|y ∈
C}} and F ′ = {x ∈ F | A′x = maxL{Ay | y ∈ F}}. One can easily check

that, for Ã =
( A

A′

)
, one has

F ′ = {x ∈ C | Ãx = maxL{Ãy | y ∈ C}},

whence by Definition 3

dC(F ′) ≤ k + k′ − 1 = dC(F ) + dF (F ′)− 1.
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Our last result, which is an immediate consequence of Theorem 2, states
that by iterating the operation of taking exposed faces one obtains all faces
of a convex set.

Proposition 6. Let C and F be as in Definition 3 and let k = dC(F ) > 0
Then there are faces of C, F0 ⊃ F1 ⊃ · · · ⊃ Fk ⊃ Fk+1, with F0 = C and
Fk+1 = F , such that

dFj (Fi) = i− j − 1 (0 ≤ j < i ≤ k + 1).

In particular, Fi is an exposed face of Fi−1 for each i = 1, . . . , k.

Proof. Take a (k + 1) × n matrix A = (a1, . . . , ak+1)T satisfying (1) and
let Aji = (aj+1, . . . , ai)T (0 ≤ j < i ≤ k + 1). Define

Fi = {x ∈ C | A0ix = maxL{A0iy | y ∈ C}} (i = 1, . . . , k + 1).

One can easily verify that

Fi = {x ∈ Fj | Ajix = maxL{Ajiy | y ∈ Fj}} (0 ≤ j < i ≤ k + 1),

whence dFj (Fi) ≤ i − j − 1. On the other hand, dC(Fi) ≤ i − 1 and, by
Proposition 5,

k = dC(F ) = dC(Fk+1) ≤ dC(Fi) + dFi(Fk+1) + 1 ≤ dC(Fi) + k − i + 1;

therefore, dC(Fi) = i− 1. Using again Proposition 5, we obtain

dFj (Fi) ≥ dC(Fi)− dC(Fj)− 1 = i− j − 1

and hence we get dFj (Fi) = i− j − 1.
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