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PIVOTING ALGORITHMS BASED ON

BOOLEAN VECTOR LABELING

HANS VAN MAAREN

Dedicated to Hoang Tuy on the occasion of his seventieth birthday

Abstract. We reconsider complementary pivoting algorithms on the
base of a modified form of Scarf’s primitive sets and Tuy’s abstract pi-

votal method. Here, the pivots are to be controled by a new type of
labeling. The analysis of the limiting stage provides a new variety of

fixed point results, where the usual convexity assumptions are relaxed

drastically. The results mentioned also connect separation and fixed point
theory in a natural way and are even applicable outside the domain of

linear spaces. Moreover, they focus on the differences between integer and

vector labeling in a very accurate manner.

Introduction

The aim of this paper is to introduce a new type of labeling in the per-
formance of complementary pivoting algorithms. This so called Boolean

vector labeling can be considered as intermediate between integer and vec-

tor labeling. The possibility of such a labeling is included (at least for a
substantial part) in Scarf [5]. The analysis of the limiting stage however
has not yet been carried out sofar. It is precisely the result of this analysis
which justifies a renewed attention to the pivoting algorithms based on
Scarf’s notion of primitive sets.

We shall show that these algorithms, whenever modified according to
[3], constitute the base for a variety of new intersection and fixed point the-
orems. These theorems do not assume the presence of a linear space but are
applicable in a context where only orderings are available. Consequently,
the usual convexity assumptions which are present in most (constructive-)
fixed point results are relaxed drastically. Another feature of this new
type of theorems is the linkage of separation theory and fixed point theory.
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Perhaps the most interesting outcome of our analysis is the way it
focuses on the possibility of approximating Kakutani-type fixed points by
means of integer labeling. It is known that an algorithm using vector
labeling might be artificially replaced by one using integer labeling, but
only at the cost of an enormous increase of the dimension. This has
been noticed for instance by Van der Heyden [8] and by Fan [2]. Our
results imply that the use of primitive sets in modified form makes such
an increase unnecessary. This feature shall be discussed in Section 4.

To obtain our results we first extend the notion of a primitive set in
a manner used by Scarf in [6] and then proceed, according to Tuy [7], to
explore orderings in its description rather than coordinates. Further we
use Boolean vector labeling to control the pivot steps. The modification
of the topological arguments calls for the introduction of two boundary
concepts defined in terms of orderings. Finally the convexity restrictions
are eliminated and replaced by conditions on the action of the orderings
on the underlying space.

1. Preliminaries

1.1. A multiply ordered space X is a topological space together with a set
O of continuous, complete orderings on X . That is, for each �∈ O we
have

(i) � is transitive and reflexive,

(ii) x � y or y � x, for each x, y ∈ X ,

(iii) {x ∈ X |a � x} and {x ∈ X |x � a} are closed sets for each a ∈ X .

If x � y and y � x, for some �∈ O x and y are called indifferent with
respect to �, written as x ≈ y. If x � y and x 6≈ y we shall write x � y.
In order to distinguish between different orderings we sometimes prefer to
use an index set P for the orderings involved. Thus O = {�p |p ∈ P}. In
this paper P is assumed to be finite. A nonempty subset of P is called a
coalition.

1.2. For a ∈ X and Q ⊂ P then open Q-cone on a is the set

C0
Q(a) = {x ∈ X | x �q a for all q ∈ A},

while the closed Q-cone on a is

CQ(a) = {x ∈ X | x �q a for all q ∈ Q}.
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1.3. Now two types of combinatorial boundaries of X are considered. For
Q ⊂ P the weak Q-Pareto boundary of X is the set

∂0
Q(X) = {a ∈ X | C0

Q(a) = ∅},

and the strong Q-Pareto boundary of X is given by

∂Q(Z) = {a ∈ X | CQ(a) = {a}}.

1.4. As a standard example consider the n-dimensional Euclidean simplex
with O being the set of orderings induced by the barycentric coordinates:
x �i y iff xi ≤ yi (i ∈ P = {1, . . . , n + 1}).

In this example ∂0
Q(X) = ∂Q(X) = {a ∈ X | ai = 0 for i 6∈ Q}, the

convex hull of {eq | q ∈ Q}. Here eq denotes the n-dimensional 0, 1 - vector
with a one only at the qth coordinate.

Notice that if we reverse the orderings involved we obtain ∂0
q (X) =

{a ∈ X | aq = 0}, while ∂q(X) = ∅, for any q ∈ P .

1.5. A multiply ordered space (X,O) satisfies the nondegeneracy assump-

tion on the Pareto-boundaries, whenever

(ND1) ∂0
Q(X) = ∂Q(X) for all Q ⊂ P.

1.6. We say that (X,O) satisfies the nondegeneracy assumption on the

cones, if

(ND2) a is a closure point of C0
Q(a) whenever this last set is nonempty,

for each a and Q ⊂ P .

Notice that the standard example satisfies (ND2) because of convexity
of C0

Q(a) ∪ {a}. In [4] ND2 is referred to as “coalitionwise convexity”.

As a second degenerate example consider X = {a, b} supplied with two
orderings �1 and �2 satisfying a ≺1 b and b ≺2 a. It is easily verified that
(ND1) holds. However C0

1 (a) = {b} 6= ∅, but a is no closure point of {b}
since any subset of X is closed. In this example therefore, (ND2) fails.

In Section 4 we shall give a second nondegenerate example.

In [4] (page 420) a typical nondegenerate nonconvex example is pre-
sented.

1.7. A multiply ordered space is called nondegenerate whenever both the
nondegeneracy assumptions hold.
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1.8. A continuously integer labeled multiply ordered space X is a multiply
ordered space which is labeled by a mapping L : X → C(P ), the set of
coalitions, satisfying

x = limxm

q ∈ L(xm) for all m

}

⇒ q ∈ L(x).

1.9. We can now state the main result of [4], the generalized Knaster-
Kuratowski-Mazurkiewicz lemma:

(GKKM) Let X be a separable, sequentially compact topological space
which is nondegererately multiply ordered by O. Suppose X is continu-
ously integer labeled by L. Then coalition Q and a ∈ X exist with

(i) a ∈ ∂Q(X),

(ii) Q ⊂ L(a).

1.10. The above result is established by a modification of the methods of
[6]:

For given finite A ⊂ X an agreement for a coalition Q is defined to be
a mapping α : Q → A satisfying

(i) α(q) is the minimum of α(Q) with respect to ordering �q , for each
q ∈ Q and

(ii) the system of inequalities α(q) ≺q x (q ∈ Q) has no solution in A.

The above notion generalizes the concept of a primitive set in order
to meet the context of multiply ordered spaces. Notice that there is no
a priori relation between the number of orderings in O and whatsoever
topological dimension of X .

The intuitive idea behind an agreement for a coalition Q is that the
points α(q) (q ∈ Q) approximate ∂Q(X) whenever grid A is sufficiently
fine, and hence approximate Pareto optimal points for coalition Q.

For a given (integer) labeling ` : A → P Scarf’s primitive set algorithm
is now modified to obtain coalition QA and agreement α : QA → A such
that QA = ` ◦ α(QA) which leaves us with a discrete version of 1.9. More
or less standard topological arguments are used to obtain GKKM.

In [4] it is explicitly described how the nondegeneracy assumptions are
used to obtain one single point a with the desired properties.

In Figure 1 we give an example.
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Figure 1

Generalized KKM. P = {1, 2, 3, 4, 5}.

Agreement α : Q = {1, 2, 3} → A satisfies O = ` ◦ α(Q); a ∈ ∂1,3,4(X)
with {1, 3, 4} ⊂ L(a);

b and c are the only other solutions, with Q = {4, 5} and Q = {1, 2}
respectively.

1.11. Remarks on GKKM:

(a) As presented in the above form, GKKM actually generalizes Scarf’s
intersection lemma: Suppose {Fi|i ≤ n + 1} constitutes a closed covering
of the n-dimensional unit simplex (our standard example). Let L(x) =
{i | x ∈ Fi} and apply GKKM. We obtain Q ⊂ {1, . . . , n + 1} and a ∈
{x | xi = 0 for i 6∈ Q} with L(a) ⊃ Q. Now if we add the boundary
conditions

{x | xi = 0} ⊂ Fi, i ≤ n + 1,

as is done in Scarf’s intersection lemma, we conclude {1, . . . , n+1} ⊂ L(a),
whence a ∈

⋂

i≤n+1

Fi.
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(b) KKM cannot be derived from GKKM in a similar straightforward
fashion. However, as is noticed by Scarf in [5] (page 192), KKM is easily
derived from Scarf’s intersection lemma by embedding a simplex, together
with a closed covering satisfying the KKM-type boundary conditions, into
a large simplex, thereby extending the given covering to a closed covering
satisfying the Scarf-type boundary conditions.

(c) The open version of KKM however can be derived from GKKM in
a straightforward manner:

Suppose {Ui | i ≤ n + 1} is an open covering of the n-dimensional unit
simplex X satisfying

Conv{ei | i ∈ I} ⊂
⋃

i∈I

Ui (I ⊂ {1, . . . , n + 1}).

Let L(x) = {i | x 6∈ Ui}. If L(x) 6= ∅ for a any x we may apply GKKM
obtaining Q ⊂ {1, . . . , n + 1} and a ∈ ∂Q(X) = Conv {eq | q ∈ Q} with
L(a) ⊃ Q. The latter means a 6∈

⋃

i∈Q

Ui, a contradiction. We conclude

that x exists with L(x) = ∅, implying x ∈
⋂

i≤n+1

Ui.

The above argument even shows:

1.12. Corollary (GKKM, open version). Let X be a separable, se-
quentially compact topological space, which is nondegenerately multiply
ordered by O = {�1, . . . ,�N}. Let {Ui | i ≤ N} be a set of open sets
satisfying

∂Q(X) ⊂
⋃

i∈Q

Ui (Q ⊂ {1, . . . , N}).

Then
⋂

i≤N

Ui 6= ∅.

1.13. By embedding a closed covering {Fi | i ≤ N} into an open covering
{Fi(ε)|i ≤ N} in such a way that Fi =

⋂

ε>0
Fi(ε), a closed version of

Corollary 1.12 can be obtained for a large class of topological spaces,
including Euclidean space.

2. Boolean vector labeling

2.1. In the results above the pivot steps leading from one agreement to
another one are steered by integer labeling. That is, given the original
labeling L : X → C(P ) and a specific grid A ⊂ X a selection ` : A → P of
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L is used to perform the modified primitive set algorithm. We now show
that it is possible to use all information of L to obtain a much stronger
result. Indeed, we believe that this so-called Boolean vector labeling is the
best substitute for vector labeling in situations where the latter procedure
is troublesome or even impossible due to the lack of vectorial structure.

In the above we refer to both L and selection ` as being a labeling. We
shall do the same in case of Boolean vector labeling.

2.2. A Boolean vector labeling on a multiply ordered space (X,O) is a
mapping Π which assigns to each x ∈ X a non empty set of vertices of
the cube [0, 1]#P . Thus Π(x) is a set of 0, 1-vectors whose coordinates are
indexed by P . We let ep be the “vertex” with a one at the pth coordinate
and zero at the other coordinates. The vertex with only ones is denoted
by e, and the vertex with only zeros simply by 0.

A Boolean vector labeling π is called continuous if it satisfies

x = limxm

σ ∈ Π(xm) for all m

}

⇒ σ ∈ Π(x).

2.3. Now for a given grid A ⊂ X and a fixed selection π of Π we start with
the system ε =

∑

p∈P

ep and perform the extended primitive set algorithm,

again in modified form (see [3]), to obtain a coalition Q and agreement
α : Q → A satisfying

either (i) 0 ∈ π(α(Q)),

or (ii) e =
∑

q∈Q

λqπ(α(q)) +
∑

p6∈Q

µpep for some coefficients λq, µq ≥ 0.

As far as the generated sequence of agreements concerns we refer to
[3]. In that paper the ep (p 6∈ Q) correspond to the so called passive
orderings of the agreement involved. The eq (q ∈ Q) correspond to the
active orderings.

Here, we only discuss the LP pivots of the above procedure. These
steps perform the exchange of a #P -dimensional 0, 1-vector with a vector
from a set of #P such vectors. To resolve degeneracy (which is rather
structural here) one might perturb the starting system e =

∑

p∈P

ep into

e + ε =
∑

p∈P

µpep, for an appropriate choice of ε ≈ (0, 0, . . . , 0) and µp ≈ 1

(p ∈ P ). Of course, it is also possible to perform the LP pivots with
0, 1-vectors, using lexicographic pivoting.

2.4. Lemma. If (X,O) is a nondegenerate multiply ordered, separa-
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ble and sequentially compact space and Π is a continuous Boolean vector

labeling on X, then coalition Q and a ∈ X exist with

(i) a ∈ ∂Q(X) and

(ii) Either 0 ∈ Π(a) or e =
∑

q∈Q

λqσq +
∑

p6∈Q

µpep for some coefficients

λq, µp ≥ 0 and σq ∈ Π(a).

Proof. We construct a sequence Am of grids (Am ⊂ Am+1) such that
⋃

Am is dense. For each m we obtain a coalition Qm and agreement αm

satisfying condition 2.3 (i) or condition 2.3 (ii). Since there are only finitely
many coalitions, one specific Q must appear infinitely many times in this
sequence Qm. we select the subsequence involved. Now the nondegeneracy
assumptions on (X,O) together with the sequential compactness of X
ensure the existence of a subsequence such that the points αm(q) (q ∈ Q)
converge to one single point a ∈ ∂Q(X). This is shown in [4].

If in this last sequence 2.3(i) holds infinitely many times we obtain
0 ∈ Π(a), by continuity of Π.

If (2.3)(ii) holds infinitely many times we select the subsequence in-
volved. Now, for each m we have a feasible basis for 2.3(ii) of the form
{π(αm(q)) | q ∈ Q} ∪ {ep | p 6∈ Q}. Since there are only finitely many
of such bases, one particular basis appears infinitely many times. The
continuity of Π now finishes the proof.

2.5. Now we shall analyze the above lemma in detail.

We assume that Q and a ∈ X are given such that the second statement
of 2.4(ii) is valid.

Fix a specific p 6∈ Q. Considering only the pth coordinate of the equa-
tion we conclude:

1 =
∑

q∈Q

λq(σq)p + µp.

If all (σq)p = 1 we have
∑

q∈Q

λq +µq = 1. Considering only the coordinates

indexed by Q we conclude that in this case the vector with all ones is a
convex combination of other 0, 1-vectors, which is only possible if at least
one of the σq has only ones at the coordinates indexed by Q. Summarized
we have:

2.6. (*) there exists ρ ∈ Π(a) with ρq = 1 for all q ∈ Q, or for each p 6∈ Q
we have a ξ ∈ Π(a) with ξp = 0.
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2.7. We proceed with fixing a q ∈ Q.

First consider only the q th coordinate of the equation:

1 =
∑

q∈Q

λq(σq)q.

Evidently, not all (σq)q can be zero. Thus

(**) there exists σ ∈ Π(a) with σq = 1.

Suppose now that no τ ∈ Π(a) has τq = 0. Then clearly
∑

q∈Q

λq = 1

and, again considering only the coordinates indexed by Q, we find that
the all-one vector is a convex combination of other 0, 1-vectors. Hence

(***) there exists ρ ∈ Π(a) with ρq = 1 for all q ∈ Q or for some
τ ∈ Π(a) we have τq = 0.

Combining the above conclusions we obtain:

2.8. Theorem. Suppose (X,O) is a nondegenerate multiply ordered, se-

parable and sequentially compact space. If Π is a continuous Boolean vec-

tor labeling on X then there exists a coalition Q and a ∈ ∂Q(X) satisfying

at least one of the following statements:

(i) 0 ∈ Π(a),

(ii) there exists ρ ∈ Π(a) with ρp = 1 for all q ∈ Q,

(iii) for each p 6∈ Q there exists ξ ∈ Π(a) with ξp = 0 and for each

q ∈ Q there are σ, τ ∈ Π(a) with σq = 1 and τq = 0.

2.9. We now show how Lemma 2.4 can be formulated as a genera-
lized Knaster-Kuratowski-Mazurkiewicz-Shapley lemma. As in the case
of GKKM this generalization is presented in the typical context of mul-
tiply ordered spaces, thus appearing in a form which is in some sense
the dual of the classical formulation, without boundary conditions on the
covering.

Corollary (GKKMS). Let X be a separable and sequentially compact

space which is nondegenerately multiply ordered by O = {�1, . . . ,�N}.
Let {FP | P ⊂ N, P 6= ∅} be a closed covering of X. Then there exists

Q ⊂ N and S ⊂ {P ⊂ N | P 6= ∅} such that

(i) ∂Q(X) ∩
⋂

S∈S

FS 6= ∅,

(ii) S ∪ {{p} | p 6∈ Q} is balanced.
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Proof. For T ⊂ N let eT =
∑

t∈T

et.

Let Π(x) = {eT | x ∈ FT}. Then Π is continuous, Π(x) 6= ∅ and 0 6∈
Π(x) for all x ∈ X . We obtain Q and a ∈ ∂Q(X), and {σq | q ∈ Q} ⊂ Π(a)
such that the ep (p 6∈ Q) and the σq (q ∈ Q) form a basis for the system
in 2.4 (ii). Now σq = eT (q) for some T (q) ⊂ N .

Clearly {{p} | p 6∈ Q}∪{T (q) | q ∈ Q} is balanced. Also it follows that
for any q we have a ∈ FT (q).

This finishes the proof.

3. Approximation of fixed points

3.1. To a multifunction F : X →> X we associate a Boolean vector
labeling according to

σ ∈ Π(x) ⇔ ∃y ∈ F (x) with

{

x �p y if σp = 1,

x �p y if σp = 0.

It is easy to verify that the above labeling Π is continuous whenever X is
(sequentially) compact and F has a closed graph.

3.2. In order to explain the result of 2.8 in terms of multifunctions we
first introduce some terminology.

A set S ⊂ X dominates T ⊂ X with respect to ordering � whenever
t ≺ s for any t ∈ T and s ∈ S, which we shall write as T ≺ S.

Ordering � is said to separate T and S if either T ≺ S or S ≺ T .

3.3. We now return to Theorem 2.8 again and we suppose that the labeling
Π originates from a multifunction F : X →> X as described in 3.1.

The condition 0 ∈ Π(a) clearly means that F (a) dominates a with
respect to none of the orderings involved.

Statement (ii) means that for some y ∈ F (a) we have a �q y for
all q ∈ Q. This clearly implies y ∈ CQ(a). Since a ∈ ∂Q(X) and the
nondegeneracy assumptions are assumed to be valid we conclude that
y = a in this case. Thus statement (ii) implies that a is a fixed point of
F . Also in this case we obtain that a is dominated by F (a) with respect
to none of the orderings in O.

Statement (iii) provides, for any p 6∈ Q, the existence of y ∈ F (a)
satisfying y �p a, while to each q ∈ Q there are x, z ∈ F (a) with a �q x
and a �q z.
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Again we conclude that F (a) dominates a with respect to none of the
orderings in O. Moreover, in this case, none of the orderings in Q separates
a and F (a).

We summarize the above in the next theorem.

3.4. Theorem. Suppose X is a separable, sequentially compact topo-

logical space and F : X →> X is a multifunction with closed graph and

non empty images. Then for any set O of orderings which multiply orders

X in a nondegenerate manner there exists a ∈ X which is dominated by

F (a) with respect to none of the orderings involved. Moreover, there exists

a coalition Q with a ∈ ∂Q(X) while none of the orderings indexed by Q
separates a from F (a).

4. Remarks on the Euclidean case

4.1. We now consider a compact set X in Euclidean space and a multi-
function F : X →> X with non empty images and closed graph. If we
also assume the images F (x) to be convex we know by the Hahn-Banach
theorem that for a /∈ F (a) a linear functional exists which separates a
from F (a). There is indeed even a set of such functionals which is open
in the dual space.

Now any linear functional u obviously defines a continuous complete
ordering on X by x � y if u(x) ≤ u(y), in fact any continuous functional
does.

In the next we assume that O is a set of orderings induced by linear
functionals. Notice that, because of convexity of the sets {a} ∪C0

Q(a) the
nondegeneracy assumption on the cones is trivially fulfilled, in case X is
convex. Even in this case, the nondegeneracy assumption on the Pareto
boundaries might be violated however. This heavily depends on the shape
of X and the mutual dependence of the functionals involved. The troubles
caused by this mutual dependence however, can be overcome by a slight
perturbation of these functionals. Intuitively it is clear that a “randomly”
chosen set of linear functionals will do.

The next lemma provides the argument.

Lemma. If O ⊂ Rn is such that any subset of less than n + 1 elements

consists of linearly independent vectors, then (Rn,O) is multiply ordered

nondegenerately.
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Proof. We need only show the implication

C0
Q(0) = ∅ ⇒ CQ(0) = {0}.

Let Q = {u1, . . . , uN}. Since C0
Q(0) = ∅, the system xui > 0 (i ≤ N)

is infeasible, whence by Gordan’s Transposition theorem 0 is a nontrivial
nonnegative combination of the ui (i ≤ N):

∑

i≤N

λiui = 0; λ ≥ 0; λ 6= 0.

After rearrangement of indices we obtain

∑

i≤M

λiui = 0; λi > 0 (i ≤ M),

for some M ≤ N . Because of our assumptions on O we have M ≥ n + 1.

Now for y ∈ CQ(0) we have

{

yui ≥ 0 (i ≤ M),
∑

i≤M

λiyui = 0; λi > 0 (i ≤ M),

leaving us with yui = 0 (i ≤ M). Since {ui, . . . , uM} must contain a basis
of Rn we conclude y = 0.

Remark. It is left to the reader to show that a set O satisfying the
conditions of the above lemma nondegenerately multiply orders the n-
dimensional sphere.

4.2. By now it is seen that for a given set S the set of points s dominated
by S with respect to none of the orderings in O approximates the closed
convex hull of S, whenever the density of O increases.

4.3. We now show that our results simply that a fixed point of a graph
closed multifunction F with non empty convex images can be approxima-
ted by Boolean vector labeling, in the nondegenerate case.

Let O be a set of linear functionals which is countable and dense in
the dual space. Suppose O = ∪Om with Om finite and Om ⊂ Om+1. We
assume that each Om multiply orders X nondegenerately. For each Om we
select a grid Am ⊂ X in such a way that for any agreement α : Q → Am

the points in the set {x ∈ X | α(q) �q x for all q ∈ Q} have mutual

distance at most
1

m
· Here the nondegeneracy assumptions are essential.
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In [4] it is shown that for a fixed Q and an increasing sequence Gk of
grids with a dense union the #(Q) points of the agreements on Q become
arbitrarily close when k increases. This is carried out in the abstract
topological setting of [4]. In our situation this means that for Q ⊂ Om a
grid Gm(Q) exists such that the #(Q) points of the agreements on Q have

mutual distance at most
1

m
· This property remains true for a refinement of

Gm(Q). Now let Am be the common refinement of the Gm(Q) (Q ⊂ Om).

Figure 2

{s ∈ R2| ∀ �∈ O ∃y ∈ S y � s} approximates the closed convex hull of S.

Next we notice that the analysis of the equation in 2.4 (ii) which was
carried out in 2.5, 2.6 and 2.7 is also valid for equation 2.3 (ii) with only
changing Π(a) into π(α(Q)).

Consequently, we obtain for each m a coalition Qm ⊂ Om and agree-
ment αm : Qm → Am with the property that

either (*) there exists zm ∈ αm(Qm) and Zm ∈ F (zm) with zm �q Zm

for all q ∈ Qm.

or (**) for each p ∈ Om there exists ym ∈ αm(Qm) and Ym ∈ F (ym)
with Ym �p ym.



196 HANS VAN MAAREN

Next we select for each m some xm ∈ αm(Qm). Since a converging sub-
sequence of (xm) exists we may assume that limxm = x. We shall show
that x ∈ F (x).

First assume that (*) is the case infinitely many times. Considering the
corresponding subsequence we conclude x = limxm = limZm and hence
x ∈ F (x).

Now suppose that (**) holds infinitely many times. If x 6∈ F (x) there
is a linear functional p ∈ O such that F (x) dominates x with respect
to ordering �p. Since p ∈ Om for sufficiently large m we might as well
assume that p ∈ Om for all m. Now apply (**) for this specific p and use
standard topological arguments to obtain the contradicting fact that F (x)
cannot possibly dominate x with respect to ordering �p.

4.4. We emphasize that the above procedure is only considered to point
out the possibilities of Boolean vector labeling. From the viewpoint of
efficiency there are serious troubles to deal with. First, as is known, com-
putation with primitive sets causes difficulties with respect to storage.
Also, the pivot steps, leading from one agreement to another, become
more complicated (considered as a combinatorial problem, see also [6])
with increasing number of functionals involved.

A surprising feature however is the fact that the LP-pivot steps are
independent of the multifunction:

These steps only perform the exchange of an n-dimensional 0, 1-vector
with a vector from a set of n such vectors (here n denotes the number of
functionals involved).

The above observation is of some computational theoretic interest: if
we assume that, for fixed n, all possible pivots of this form have been
carried out once and hence are known in advance an actual run of our
algorithm only requires function evaluations to control the pivots on the
set of agreements, precisely as in the case of integer labeling.

As mentioned earlier in the introduction, an algorithm using vector
labeling might be artificially replaced by one using integer labeling. This
is done by converting an n-dimensional problem into a (k(n + 1) + k)-
dimensional one (as in [8]), where k is the number of points of the grid (or
the number of vertices of a triangulation). We emphasize again that this
approach is artificial: the actual calculations are based on n-dimensional
pivoting using vector labeling.

In our approach an increase in dimension is caused by increasing the
number of orderings used. However the pivots leading from one argreement
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to another, are performed within the same space all the time.

In cases where the sets F (x) have a specific polyhedral form (e.g.
{y | Ay ≤ b(x)}) increase of dimension is even unnecessary.

It also appears that the approximation, described in 4.3, only depends
on the convergence of the sequence xm. There are no “weights” of convex
combinations which have to converge, as in the case of vector labeling.

4.5. In the specific case of 1.4, where the functionals represent the
barycentric coordinates, there is a slight intersection of the ideas of Boolean
vector labeling, as described here and the (2n+1 − 2)-ray algorithm of [1].

Both ideas are based on the full exploration of the assigned 0, 1-vectors.
In the latter case, however, these vectors are used to modify the underlying
simplicial subdivision and do not affect the pivot steps directly. It should
be mentioned again that the above resemblance is only present when the
number of functionals involved equals dimX + 1.

4.6. This last remark poses an interesting question. The Boolean vector
labeling algorithm might operate on a k dimensional space using an n×n
LP pivot scheme, in case n orderings are selected. The algorithms based
on simplicial subdivision are only possible in case k + 1 = n.

In order to avoid the use of modified primitive sets it seems natural to
transform such a so called (k, n)-pivoting algorithm, which is only possible
using agreements, into a (n − 1, n)-pivoting algorithm, which might also
be performed using triangulations.

Sofar, the author was not successful in establishing such a transforma-
tion.
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