
ACTA MATHEMATICA VIETNAMICA

Volume 22, Number 1, 1997, pp. 123–145
123

LP RELAXATIONS BETTER THAN CONVEXIFICATION

FOR MULTICOMMODITY NETWORK OPTIMIZATION

PROBLEMS WITH STEP INCREASING COST

FUNCTIONS

V. GABREL AND M. MINOUX

Dedicated to Hoang Tuy on the occasion of his seventieth birthday

Abstract. We address here a class of particularly hard-to-solve combina-

torial optimization problems namely multicommodity network optimiza-
tion when the link cost functions are discontinuous step increasing. The

main focus is on the development of relaxations for such problems in order

to derive lower bounds. A straightforward way of getting lower bounds is
to solve the “convexification” of the problem, i.e. a minimum cost multi-

commodity flow problem in which each link cost function is replaced by

its best lower convex approximation. We propose here an alternative re-
laxation of the problem in terms of a large scale LP model, which can be

solved by a generalized linear programming approach. Computational re-
sults on a series of test problems, typical of telecommunication networks,

are presented showing that this relaxation leads to lower bounds strictly

improving upon convexification in all the examples treated (the values of
the improvement typically ranging from 10 to 20%).

As far as we know, this is the first time a systematic way of ge-

nerating bounds better than convexification to multicommodity network

optimization problems with discontinuous step increasing cost functions is
proposed.

1. Introduction

Minimum cost multicommodity network optimization problems arise
as basic models in the context of many applications such as: telecommu-
nication networks, transportation networks and traffic analysis, logistics
etc.

Depending on the structure and/or mathematical properties of the cost
functions on the links, obtaining exact optimal solutions or good appro-
ximate solutions (with guaranteed quality) may lead to various degrees of

Received January 30, 1997

124 V. GABREL AND M. MINOUX

difficulty. One of the easiest known special cases is when all cost func-
tions are linear (with nonnegative cost per unit flow) since this reduces to
shortest path computations. The case of separable convex cost functions
(whether differentiable or nonsmooth) may also be considered as a well-
solved class, by means of linearization and decomposition techniques (see
e.g. Fratta et al. 1973, Ouorou 1995).

The case of concave (differentiable) cost functions and the linear with
fixed costs case have also been studied by various authors (for a survey
see Minoux 1989). However no practically efficient exact algorithms are
known for such problems, at least for solving practical size instances; only
good approximate solution algorithms (without a priori quality guarantee)
are available (see Minoux 1989, Ahuja et al. 1993). One of the reasons for
this situation is the lack of lower bounds of reasonable quality to direct
tree search in branch and bound approaches (even in the linear with fixed
cost case, known lower bounds may be as poor as 40% to 60% off the exact
optimum value).

We address here an even more complex class of minimum cost multi-
commodity flow problems: the case when the link cost functions are step
increasing discontinuous. As far as we know, no exact solution method
for such combinatorial optimization problems (for practical size instances)
has ever been proposed, as they appear to be out of reach of state of the
art techniques in the field. Therefore our aim in the present paper will
be to bring a first contribution to this difficult subject by addressing the
problem of building relaxations and generating lower bounds.

A first natural way for getting lower bounds could be to use “con-
vexification”: replacing each link cost function by its best lower convex
approximation, a piecewise linear convex cost multicommodity flow prob-
lem is obtained, which can be formulated and solved as a standard linear
programming problem (cf e.g. Gondran & Minoux 1979). In order to
get better lower bounds, we propose here a relaxation of the problem in
terms of a large scale LP model, the exact optimal continuous solutions
of which may be obtained by combining both column generation and con-
straint generation. Of course the resulting optimal solutions provide lower
bounds to the (unknown) exact solutions for the minimum cost multicom-
modity flow problem to be solved. Computational results are presented
on a series of test problems with structures similar to those encountered in
telecommunication networks. They show that this novel relaxation yields
lower bounds strictly improving upon convexification in all the examples
treated, the resulting improvement typically ranging from 10 to 20%.

LP RELAXATIONS 125

As far as we know, this is the first time a systematic way of gener-
ating bounds better than convexification to multicommodity network op-
timization problems with discontinuous step increasing cost functions is
proposed.

2. Problem statement and formulation

The network structure is given as a non-directed graph G = [S,U]
where S is the set of nodes and U the set of (non-directed) edges. We
denote |S| = m and |U| = n.

The problem to be considered is to decide the amount of capacity xu ≥
0 to install on each edge u of the network in order to

• satisfy a given set of multicommodity flow requirements: there are K
source-sink pairs, and for each k ∈ [1, K] a given requested flow value
dk has to be routed between the source node s(k) and the sink node
t(k),

• satisfy upper bound constraints:

∀u ∈ U : 0 ≤ xu ≤ βu,

• minimize the total cost of the network which, in terms of given indi-
vidual link cost functions Φu(xu) (u = 1, . . . , n) may be written as:

z =
∑

u∈U

Φu(xu).

Minimum cost multicommodity flow problems have been extensively
studied in the special cases where the cost functions Φu(xu) are linear
(see Kennington 1978), linear with fixed cost or nonlinear concave but
continuous or differentiable (see e.g. Minoux 1989).

We address here the minimum cost multicommodity flow problem in
the case of discontinuous step-increasing cost functions. To the best of
our knowledge, no systematic study has been carried out before to build
relaxations and derive nontrivial lower bounds for such problems.

For each edge u ∈ U in the network, we assume that we are given a
cost function Φu(xu) which is defined as follows.

Let Vu =
{

v0
u, v1

u, . . . , v
q(u)
u

}

be a finite set of values representing the
discontinuity points of the Φu functions and denote

126 V. GABREL AND M. MINOUX

γ0
u = Φu(v0

u),

γ1
u = Φu(v1

u),

γ2
u = Φu(v2

u),

.

γq(u)
u = Φu(vq(u)

u),

with 0 = v0
u ≤ v1

u ≤ v2
u ≤ · · · ≤ v

q(u)
u and 0 = γ0

u < γ1
u < γ2

u < · · · < γ
q(u)
u .

With this notation we have:

Φu(xu) = 0 if xu = 0 and ∀i = 1, . . . , q(u) : Φu(xu) = γi
u for all

xu ∈
]

vi−1
u , vi

u

]

.

Figure 1 below shows a typical cost function of this type. Note here
that the cost function Φu(xu) is not defined for values of xu greater than

βu = v
q(u)
u , therefore our model will include bound constraints of the form:

0 ≤ xu ≤ βu either explicity or implicity.

Fig. 1. A typical cost function on one link

For a given set of multicommodity flow requirements defined by a list
of source-sink pairs s(k), t(k) (k = 1, . . . , K), and a list of requirements

LP RELAXATIONS 127

dk (amount of the kth flow to be routed between s(k) and t(k)), we denote
by X ⊂ Rn

+ the polyhedron representing the set of all feasible multicom-
modity flows. Thus x = (xu)u∈U belongs to X if and only if a feasible
multicommodity flow exists when, on each edge u ∈ U , the total capacity
installed is xu (of course xu ≥ 0 on each edge u).

Several linear representations of X (as a system of linear equality and
inequality constraints involving the x variables and possibly other vari-
ables) are known, including the so-called node-arc formulation and arc-
chain formulation (for an overview, see e.g. Kennington 1978, Minoux
1989).

Later in the paper we will use the following representation of X involv-
ing the x variables only. For any λ = (λ1, . . . , λn) ∈ Rn

+, let θ(λ) denote
the quantity

θ(λ) =

K
∑

k=1

dk × `∗k(λ),

where `∗k(λ) is the length of the shortest chain joining s(k) and t(k) in
G, when each edge u ∈ U is given length λu ≥ 0 (note that θ(λ) may
be interpreted as the value of the minimum cost multicommodity flow
solution when, on each edge u, the cost function Φu(xu) is linear of the
form λuxu).

Then x = (xu)u∈U belongs to X if and only if, for all λ ∈ Rn
+, we have

(1)
∑

u∈U

λuxu ≥ θ(λ)

(see e.g. Gondran & Minoux 1979, Chapter 6).

Constraint (1) apparently gives rise to infinitely many inequalities.
However it is well known that it is enough to restrict to finitely many
λ vectors, namely those corresponding to the extreme points of the poly-
tope dual to the feasible multicommodity flow problem. Moreover, testing
whether a given x ∈ Rn belongs to X can be done in polynomial time
since this amounts to solving a linear program.

Now, using the feasible multicommodity flow polyhedron X , a possible
formulation of the minimum cost multicommodity flow problem we want
to investigate is

(P0)











Minimize
∑

u∈U

Φu(xu),

s.c. x ∈ X,

0 ≤ xu ≤ βu ∀u ∈ U .

128 V. GABREL AND M. MINOUX

We first show:

Proposition 1. Problem (P0) is equivalent to:

(P1)











Minimize
∑

u∈U

Φu(xu),

s.c. x ∈ X,

xu ∈ Vu (∀u ∈ U).

Proof. Since, ∀u ∈ U : Vu ⊆ [0, βu] (remember that βu = v
q(u)
u), (P0)

is a relaxation of (P1). So it will be enough to prove that any solution
(

x0
u

)

u∈U
to (P0) may be converted into a solution to (P1) having the same

objective function value.

For any u ∈ U there exists i ∈ [1, q(u)] such that vi−1
u < x0

u ≤ vi
u. Also

Φu(vi
u) = Φu(x0

u). By choosing x1
u = vi

u, we can see that x1 ≥ x0, hence
x1 is a feasible solution to (P1) such that Φ(x1) = Φ(x0).

In the rest of the paper we will consider Problem (P1).

3. A large scale mixed integer linear

programming reformulation

Consider any node i ∈ X and ri the amount of flow requirements to be
routed between node i and all other nodes in the network. So ri =

∑

k∈Ki

dk

where Ki =
{

k/s(k) = i or t(k) = i
}

.

Obviously, a necessary condition for x = (xu)u∈U to be a feasible solu-
tion to (P1) is that

(2)
∑

u∈ω(i)

xu ≥ ri,

where ω(i) denotes the subset of edges having i as an endpoint.

Also, for t running from 1 to δ(i) = |ω(i)|, we agree that u = αi(t) is
the index number of the tth edge in ω(i).

Since, ∀u ∈ U , Vu is a finite discrete set, then the system

(I)







∑

u∈ω(i)

xu ≥ ri,

xu ∈ Vu ∀u ∈ ω(i)

LP RELAXATIONS 129

has only finitely many distinct solutions. Each solution may be described
as a vector with δ(i) components.

We denote by Ai the matrix, the columns of which are the various
vectors solving (I). It has δ(i) rows indexed by t = 1, . . . , δ(i), and P (i)
columns, indexed p = 1, . . . , P (i). Ai

t,p denotes the entry of Ai in the tth

row and the pth column. From the definition Ai
t,p ∈ Vu, where u = αi(t).

Also, with each column p of the matrix Ai (p ∈ [1, P (i)]) we associate
a cost

γi
p =

∑

t=1...δ(i)

Φαi(t)(A
i
t,p)

(this is the part of the objective function value corresponding to the edges
in ω(i) only, when the capacities installed on those edges are the ones
appearing as the components of the pth column vector of Ai).

Now, associated with each column p of the matrix Ai, we consider a
0-1 decision variable yi

p expressing the fact that we select (yi
p = 1) or not

(yi
p = 0) the pth column of Ai to be part of the solution. The corresponding

cost of selecting one and only one of the column vectors of Ai to be part
of the solution is

P (i)
∑

p=1

γi
p × yi

p

the binary yi
p variables being constrained to satisfy

P (i)
∑

p=1

yi
p = 1.

Let x = (x1, x2, . . . , xn) be any solution of (P1). Then clearly the
subvector of x formed by the components xu with u ∈ ω(i) satisfies (I).
So there exists a 0-1 yi vector, denoted by y i, such that

(3) Aiy i =











xαi(1)

xαi(2)

...
xαi(δ(i))











and

(4) eT y i = 1

130 V. GABREL AND M. MINOUX

(e denotes the vector of all ones of appropriate dimension, here P (i)).

For convenience we introduce the δ(i)× n 0-1 matrix Bi such that:











xαi(1)

xαi(2)

...
xαi(δ(i))











= Bi ×









x1

x2
...

xn









Note that Bi is constructed as follows: for t ∈ [1, δ(i)] its only nonzero
coefficient in row t has value 1 and belongs to column αi(t).

Therefore equation (3) may be rewritten as

(5) Aiy i −Bix = 0.

Now, all the construction above may be carried out for every node
i = 1, 2, . . . , m of the network in turn. From this it is seen that, if x is any
solution to (P1), then there exist 0-1 vectors y i (i = 1, . . . , m) satisfying
the following set of constraints

(II)



























x ∈ X and

∀i = 1, . . . , m :

Aiy i −Bix = 0,

eT y i = 1,

y i ∈ {0, 1}P (i).

Note that, in the above, the requirement x ∈ V1 × V2 × · · ·×Vm would be
redundant.

Consider then the following mixed integer linear programming problem

(P2)



















































minimize z =
1

2

m
∑

i=1

P (i)
∑

p=1

γi
py

i
p,

subject to:

∀i = 1, . . . , m : Aiyi −Bix = 0, (6)

eT yi = 1, (7)

yi ∈ {0, 1}P (i), (8)

x ∈ X. (9)

Proposition 2. (P1) and (P2) are equivalent.

LP RELAXATIONS 131

Proof. Let x be any solution to (P1) and let y i (i = 1, . . . , m) be the asso-
ciated 0-1 vectors satisfying (II). We note that the cost of x :

∑

u∈U

Φu(xu)

may be rewrriten as

∑

u∈U

Φu(xu) =
1

2

m
∑

i=1

∑

u∈ω(i)

Φu(xu) =
1

2

m
∑

i=1

P (i)
∑

p=1

γi
py

i
p.

From this we conclude that for any solution to (P1) we can find a solution
to (P2) which has the same cost function value.

Conversely, for any solution to (P2), equations (6) (7) and (8) ensure
that the x vector belongs to V1 × V2 × · · · × Vm and, from the definition
of the Ai matrices, no solution in X ∩ (V1 × V2 × · · · × Vm) is excluded.
Therefore the x variables form a solution to (P1) and again the objective
function values for (P1) and (P2) are the same. This proves equivalence
between (P1) and (P2).

The number of y variables in (P2) depends on the number of nodes
(m ≥ 50 is typical in problems of pratical size), the node degrees (typically
an average of 5) and the number of discontinuity points on each edge cost
function (typically an average of 5). Therefore, an estimate of the typical
number of columns in (P2) is m×55. On the other hand, observe that the
total number of constraints (6)-(7) is limited to m + 2n.

Another aspect of the problem is that, if we want an accurate linear
description of the feasible multicommodity flow polyhedron X , a sufficient
number of linear constraints on the x variables will have to be explicitly
brought into the model. Therefore, for examples of practical size (m ≥ 50
nodes, n ≥ 80 edges, say), we can expect (P2) to be a large scale mixed
integer linear program for which there is no hope of getting guaranteed
exact optimal solutions with the best currently available techniques.

4. Large scale LP relaxations

In order to work out practically solvable LP relaxations of (P2) we will
combine two ideas:

(i) Generate and use only part of the linear inequalities (1) which define
the feasible multicommodity flow polyhedron. For convenience, the
inequalities actually appearing in the relaxed model will be written in
matrix form

(9’) Fx ≥ f,

132 V. GABREL AND M. MINOUX

where F is a known r× n matrix and f a known right handside vector
of dimension r.

(ii) Replace the integrality requirements (8) by simply yi ≥ 0 (observe that
yi ≥ 0 together with constraint (7) guarantees that each yi

p variable will
be in the range [0, 1]).

This leads to a first LP relaxation (R1) of the following general form

(P2)
′



















































minimize z =
1

2

m
∑

i=1

P (i)
∑

p=1

γi
py

i
p,

subject to:

∀i = 1, . . . , m : Aiyi −Bix = 0, (6)

eT yi = 1, (7)

yi ≥ 0, (8)

Fx ≥ f. (9’)

In Subsection 4.2, we show how to further improve relaxation (R1) by

adding valid inequalities on the y variables.

Remark. We observe here that for some instances of the problem, (P2)
′

may have a huge number of y variables. For instance, for a node i having
degree 5, if the cost function of each adjacent link of node i has 10 disconti-
nuity points, the corresponding Ai matrix may have 510 columns. In that
case the use of a column generation technique will be necessary. We show
in Appendix 1 how to solve the resulting column generation subproblem
with a dynamic programming-based approach.

4.1. Building relaxation (R1) via constraint generation

For building our first relaxation (R1) we have chosen a constraint ge-
neration approach in which the constraints (9’) consist of inequalities of
the form (1)

∑

u∈U

λuxu ≥ θ(λ).

There are generated iteratively according to a cutting plane technique.
The current step of the procedure is as follows:

1) Solve the LP problem (P2)
′ including all constraints (9’) generated

so far. Let x = (xu)u∈U be the resulting optimal solution to this LP, and
z the optimal solution value.

LP RELAXATIONS 133

2) In order to check whether x ∈ X or to generate a new constraint
(9’), we solve the following optimization subproblem:

(10)











max θ(λ),
∑

u∈U

λuxu = 1,

∀u ∈ U , λu ≥ 0.

Let λ∗ be an optimal solution to (10). If θ(λ∗) > 1, then the constraint
∑

u∈U

λ∗
uxu − θ(λ∗) ≥ 0 should be added to (P2)

′. Otherwise x = (xu)u∈U

is a feasible multicommodity flow and z is the lower bound obtained by
solving (R1).

In practice, since we are building relaxations of (P2), it will be enough
to solve (10) approximately. Indeed if we use λ, an approximate optimal
solution to (10), instead of λ∗, it remains true that, when θ(λ) > 1 the
constraint

∑

u∈U

λuxu − θ(λ) ≥ 0 is a necessary condition for feasibility.

Therefore it may be added to (P2)
′ to build an improved relaxation.

In the computational experiments of Section 5, we use a subgradient
algorithm to determine a near-optimal solution to (10).

We have θ(λ) =
∑

u∈U

λuΨu(λ) where, ∀u ∈ U , Ψu(λ) is the total flow

through edge u when, for each flow k, k = 1, . . . , K, dk is routed on the
shortest chain joining s(k) and t(k) in G, each edge u ∈ U being given
the length λu ≥ 0. We observe that Ψ =

(

Ψu(λ)
)

u∈U
is a subgradient

of function θ(λ). We state below the subgradient algorithm used in our
experiments, where T is the maximum number of iterations and η the
reduction factor of the step size at each iteration (in our experiments we
have taken T = 300 and η = 0.98).

(a) ∀u ∈ U , set λ
(0)
u ← 1

∑

u∈U

xu

, t ← 0 (iteration counter), ξ(0) ← 1√
n

(initial step size).

(b) At iteration t, let λ(t) be the current solution. Compute Ψ(λ(t)) =
(

Ψu(λ(t))
)

u∈U
(this is done via shortest path computations).

∀u ∈ U , set w
(t+1)
u ← λ

(t)
u + ξ(t) Ψu(λ(t))

‖Ψ(λ(t))‖ ,

λ(t+1) is the projection of ω(t+1) onto C =
{

∑

u∈U

λuxu = 1, λ ≥ 0
}

,

134 V. GABREL AND M. MINOUX

ξ(t+1) ← ηξ(t) and go to (c).

(c) If t < T , set t← t + 1 and go to (b).

Otherwise stop: λ is taken as the best solution obtained during the
iterations.

In the computational results shown in Section 5 we indicate, for each in-
stance solved, the number of constants (9’) generated to obtain the bound
corresponding to relaxation (R1).

4.2. An improved relaxation (R2)

We show in this subsection that we can strengthen relaxation (R1)
by including additional constraints which are valid inequalities on the yi

p

variables, thus leading to an improved relaxation (R2).

Let u be an edge linking the nodes i and j. For any xu ∈ Vu′ we denote
Ci(xu) the set of all column indices p of Ai in which the capacity installed
on edge u is equal to xu. Consider then the following constraints.

(11)
∑

p∈Ci(xu)

yi
p −

∑

p′∈Cj(xu)

yj
p′ = 0, ∀xu ∈ Vu, ∀u = (i, j) ∈ U .

Proposition 3. Constraints (11) are valid inequalities for (P2).

Proof. Let u be an edge linking the nodes i and j. If the pth column of
Ai, for which the capacity installed on edge u is xu′ is part of the solution,
then the column of Aj chosen to be part of the solution has necessarily the
same capacity xu for u. Consequently, any solution to (P2) should meet
the constraints (11).

Therefore, to set up (R2), we add all possible constraints (11) to (R1);
contraints (9’) are also added and generated according to the same pro-
cedure as described in Section 4.1. Note that the number of constraints

(11) is
n
∑

u=1
q(u) (we recall that for each u in U , q(u) denotes the number

of discontinuity points of Φu - cf. Section 2).

The computational results presented in Section 5 below include, for
each instance tested, the bound obtained with relaxation (R2), the number
of constraints (11), and the number of constraints (9’) generated for solving
the instance.

LP RELAXATIONS 135

5. Preliminary computational experiments and conclusions

We describe in this section computational experiments aimed at com-
paring the results of relaxations (R1) and (R2) with those derived from
the solution of the convexified problems.

In order to carry out our experiments, we have designed a random ge-
nerator of instances of the min cost multicommodity flow problem with
step increasing cost function resembling those encountered in real telecom-
munication network design applications. In this generator we have tried to
reproduce some of the basic characteristics of real problems in particular:

• the node degrees are usually small, typically ranging from 2 to 6;

• the graph corresponding to the physical links is usually planar or almost
planar;

• the link lengths are closely approximated by an Euclidian distance in
2-dimensions (R2).

A detailed description of the procedure used to generate our test prob-
lems (and the associated graphs G = [S,U]) is given in Appendix 2.

For solving LP relaxations (R1) and (R2) we have used CPLEX library
subroutines. We present 4 series of results for |S| = 20 (Table 1), |S| = 30
(Table 2), |S| = 40 (Table 3) and |S| = 50 (Table 4). Each table displays
results corresponding to 30 distinct generated instances of Problem (P2).
For each example solved, the tables show:

NV: number of x variables (number of links),

ND: average number of discontinuity points of function Φu(xu) ∀u ∈ U ,

LP: size of the starting linear program (P2)
′ (without any constraint

(9’)),

C1: number of generated constraints (9’) in (R1),

LB1: first lower bound obtained by solving (R1),

CY2: number of constraints (11) in (R2),

C2: number of generated constraints (9’) in (R2),

LB2: second lower bound obtained by solving (R2),

s =
LB2 − LB1

LB2
(%) (improvement of LB2 upon LB1),

LBc: optimal solution value to the convexified problem,

r =
LB2 − LBc

LB2
(%) (improvement of LB2 upon convexification).

136 V. GABREL AND M. MINOUX

Table 1. Results for |S| = 20 nodes

NV ND LP C1 LB1 CY2 C2 LB2 s LBc r

37 4.73 6932× 95 33 263.42 138 45 269.54 2.27% 200.26 25.70%
36 4.64 6016× 93 56 302.80 131 38 312.98 3.25% 253.66 18.95%
35 4.66 5179× 91 27 402.54 128 29 426.11 5.53% 282.97 33.59%
35 4.60 4645× 91 27 241.76 126 25 249.83 3.23% 215.05 13.92%
36 4.81 6677× 93 60 484.07 137 62 508.13 4.73% 438.92 13.62%
35 4.74 5333× 91 35 404.87 131 45 414.00 2.20% 324.13 21.71%
35 4.63 5048× 91 61 298.20 127 48 320.49 6.96% 248.71 22.40%
38 4.79 8140× 97 56 283.75 144 34 287.29 1.23% 268.14 6.67%
36 4.58 5299× 93 70 338.63 129 60 362.21 6.51% 271.49 25.05%
35 4.57 4865× 91 29 361.51 125 24 371.61 2.72% 254.76 31.44%
35 4.71 5616× 91 68 323.48 130 41 339.63 4.76% 279.52 17.70%
36 4.67 5754× 93 27 313.40 132 37 323.42 3.10% 259.86 19.65%
36 4.72 6355× 93 33 424.66 134 69 447.72 5.15% 343.41 23.30%
36 4.64 5719× 93 67 462.65 131 68 469.10 1.38% 419.37 10.66%
37 4.70 7208× 95 35 261.73 137 51 270.01 3.07% 236.25 12.50%
35 4.74 5786× 91 51 341.42 131 66 360.30 5.24% 299.89 16.77%
36 4.58 5734× 93 41 171.92 129 35 184.50 6.82% 151.73 17.76%
35 4.60 5069× 91 42 406.70 126 32 424.78 4.25% 334.66 21.21%
35 4.69 5435× 91 59 412.40 129 54 425.93 3.18% 354.44 16.78%
37 4.59 6120× 95 46 373.19 133 26 389.30 4.14% 312.76 19.66%
36 4.75 6348× 93 28 307.65 135 32 322.17 4.51% 265.43 17.61%
36 4.67 6350× 93 21 386.47 132 28 407.90 5.25% 303.01 25.72%
34 4.62 4459× 89 25 284.60 123 22 300.07 5.16% 242.38 19.22%
35 4.69 4840× 91 36 304.47 129 37 312.43 2.55% 264.09 15.47%
35 4.63 5064× 91 31 375.87 127 36 385.42 2.48% 357.76 7.18%
37 4.65 6816× 95 60 438.94 135 56 460.74 4.73% 400.35 13.11%
36 4.72 6292× 93 48 333.22 134 65 355.57 6.29% 293.13 17.56%
36 4.58 5673× 93 30 339.39 129 25 353.39 3.96% 273.19 22.69%
35 4.66 5210× 91 48 248.68 128 45 272.69 8.81% 216.96 20.44%
36 4.69 5985× 93 27 258.24 133 21 274.24 5.83% 213.19 22.26%

LP RELAXATIONS 137

Table 2. Results for |S| = 30 nodes

NV ND LP C1 LB1 CY2 C2 LB2 s LBc r

53 4.75 8967× 137 71 617.15 199 65 656.41 5.98% 498.03 24.13%
54 4.69 9180× 139 156 574.54 199 102 585.29 1.84% 534.32 8.71%
54 4.76 9901× 139 131 466.45 203 155 482.33 3.29% 415.91 13.77%
52 4.73 8202× 135 108 510.74 194 76 538.85 5.22% 447.84 16.89%
55 4.73 10267× 141 150 661.08 205 170 669.21 1.21% 635.09 5.10%
55 4.71 9832× 141 65 551.48 204 89 575.51 4.17% 469.33 18.45%
54 4.63 8692× 139 182 621.06 196 125 624.77 0.59% 580.45 7.09%
54 4.70 9385× 139 83 501.09 200 70 521.93 3.99% 453.02 13.20%
54 4.72 9708× 139 139 666.06 201 108 693.95 4.02% 567.70 18.19%
51 4.63 6872× 133 84 701.67 185 89 728.14 3.64% 614.10 15.66%
55 4.62 9495× 141 120 752.48 199 114 789.08 4.64% 652.06 17.36%
52 4.81 8499× 135 41 362.03 198 59 373.93 3.18% 343.23 8.21%
54 4.83 10339× 139 147 550.30 207 105 568.11 3.13% 494.89 12.89%
53 4.53 7334× 137 104 483.64 187 121 492.93 1.88% 440.26 10.69%
56 4.66 10459× 143 119 585.74 205 152 600.23 2.41% 520.49 13.28%
54 4.61 8377× 139 122 386.69 195 185 395.35 2.19% 362.76 8.24%
54 4.61 8430× 139 130 564.20 195 160 586.59 3.82% 490.53 16.38%
52 4.71 7639× 135 94 601.48 193 101 622.92 3.44% 548.50 11.95%
52 4.65 7781× 135 122 730.86 190 181 748.63 2.37% 690.08 7.82%
54 4.63 8788× 139 123 549.76 196 125 561.70 2.13% 505.84 9.94%
52 4.77 8593× 135 53 499.65 196 80 540.15 7.50% 417.11 22.78%
53 4.75 9236× 137 120 594.47 199 101 609.37 2.45% 546.52 10.31%
55 4.80 11340× 141 206 639.19 209 220 682.14 6.30 586.58 14.01%
55 4.80 10556× 141 88 697.76 209 113 714.69 2.37% 636.08 11.00%
55 4.67 10051× 141 107 658.24 202 83 689.52 4.54% 601.87 12.71%
54 4.69 9337× 139 105 436.55 199 89 460.05 5.11% 366.10 20.42%
54 4.74 9866× 139 177 667.81 202 107 689.80 3.19% 626.04 9.24%
56 4.63 9660× 143 88 389.49 203 60 403.96 3.58% 336.88 16.61%
54 4.72 9962× 139 104 626.79 201 102 659.54 4.97% 512.52 22.29%
53 4.77 8884× 137 111 749.57 200 132 759.81 1.35% 715.61 5.82%

138 V. GABREL AND M. MINOUX

Table 3. Results for |S| = 40 nodes

NV ND LP C1 LB1 CY2 C2 LB2 s LBc r

71 4.82 13187× 183 123 789.97 138 327 823.37 4.06% 719.73 12.59%
74 4.76 14495× 189 149 815.39 131 297 836.82 2.56% 744.51 11.03%
72 4.72 12995× 185 251 724.03 128 343 753.90 3.96% 600.96 20.29%
71 4.66 11965× 183 157 640.54 126 272 668.52 4.18% 569.87 14.76%
71 4.72 12024× 183 171 927.73 137 344 940.24 1.33% 905.66 3.68%
72 4.71 13188× 185 238 640.23 131 342 648.49 1.27% 621.26 4.20%
70 4.54 9369× 181 150 723.92 144 217 758.85 4.60% 596.23 21.43%
72 4.67 12764× 185 205 738.69 129 403 757.31 2.46% 687.84 9.17%
72 4.75 14874× 185 335 1120.24 125 478 1146,78 2,33% 1013.85 10.04%
73 4.74 13910× 187 194 635.01 130 366 648,42 2,07% 584.09 9.92%
71 4.72 11609× 183 188 686.29 132 317 710.09 3.46% 606.22 14.73%
73 4.79 14046× 187 260 1002.16 134 409 1038.00 3.45% 853.43 17.78%
71 4.62 11286× 183 205 953.81 131 294 976.32 2.31% 907.29 7.07%
74 4.69 13253× 189 213 867.31 137 511 986.18 1.91% 848.54 13.96%
73 4.67 12853× 187 239 837.78 131 394 863.88 3.02% 777.79 9.97%
72 4.63 12377× 185 122 817.58 129 261 855.29 4.41% 734.96 14.07%
70 4.73 11301× 181 263 859.04 126 381 888.53 3.32% 808.34 9.03%
70 4.69 10925× 181 112 594.88 129 238 608.89 2.32% 551.91 9.37%
74 4.66 12880× 189 274 925.32 133 326 968.12 4.42% 831.04 14.16%
72 4.76 13415× 185 103 417.55 135 225 438.88 4.86% 364.63 16.92%
72 4.75 13593× 185 228 641.72 132 358 664.84 3.48% 580.03 12.76%
72 4.75 13177× 185 280 766.66 123 351 777.82 1.43% 716.60 7.87%
71 4.69 11825× 183 89 689.59 129 239 728.70 5.37% 571.29 21.60%
71 4.65 11340× 183 211 763.79 127 353 775.97 1.57% 709.39 8.58%
71 4.68 11670× 183 256 671.51 135 376 673.89 0.35% 664.25 1,43%
72 4.75 12646× 185 222 938.52 134 359 952.18 1.44% 880.50 7.53%
72 4.63 11407× 185 241 798.91 129 361 817.79 2.31% 767.25 6.18%
74 4.72 13899× 189 176 565.95 128 323 578.90 2.24% 501.14 13.43%
72 4.79 13854× 185 353 694.55 133 336 710.08 2.19% 661.74 6.81%

LP RELAXATIONS 139

Table 4. Results for |S| = 50 nodes

NV ND LP C1 LB1 CY2 C2 LB2 s LBc r

91 4.81 18662× 233 313 863.94 347 239 895.69 3.54% 805.5899 10.06%
93 4.74 19030× 237 299 1098.09 348 311 1116.49 1.65% 1045.529 6.36%
93 4.73 17991× 237 362 838.90 347 452 856.81 2.09% 804.2123 6.14%
90 4.72 15974× 231 500 1166.91 335 500 1226.50 4.86% 1067.224 12.99%
94 4.74 19154× 239 342 1383.86 352 370 1429.16 3.17% 1292.874 9.54%
91 4.68 16096× 233 293 988.16 335 250 1012.74 2.43% 907.3354 10.41%
94 4.72 19028× 239 500 1218.22 350 392 1229.36 0.91% 1174.971 4.42%
89 4.72 16786× 229 195 1009.29 331 288 1112.80 9.30% 796.5293 28.42%
93 4.74 18824× 237 452 1326.19 348 500 1354.22 2.07% 1268.811 6.31%
91 4.69 16698× 233 299 1223.65 336 301 1259.19 2.82% 1136.339 9.76%
90 4.77 16485× 231 500 1137.16 339 462 1178.08 3.47% 1061.931 9.86%
93 4.70 17677× 237 500 1114.51 344 500 1119.08 0.41% 1109.636 0.84%
92 4.73 17416× 235 457 847.59 343 391 874.62 3.09% 795.2771 9.07%
89 4.61 13996× 229 316 1029.88 321 264 1057.44 2.61% 946.4389 10.50%
89 4.71 15045× 229 334 875.36 330 312 889.87 1.63% 834.1946 6.26%
89 4.72 15572× 229 418 1166.70 331 350 1176.89 0.87% 1087.305 7.61%
91 4.58 15421× 233 362 1260.22 326 345 1271.77 0.91% 1217.655 4.26%
90 4.76 17083× 231 429 1208.29 338 337 1228.44 1.64% 1141.489 7.08%
89 4.76 15869× 229 297 882.59 335 207 897.11 1.62% 828.9133 7.60%
90 4.78 17272× 231 273 983.71 340 377 1008.66 2.47% 940.5136 6.76%
94 4.66 18263× 239 478 1020.79 344 418 1042.22 2.06% 948.0095 9.04%
92 4.73 17211× 235 332 1073.07 343 430 1108.37 3.19% 987.9522 10.86%
93 4.67 17187× 237 226 820.62 341 289 850.43 3.51% 738.4644 13.17%
92 4.64 16531× 235 197 1173.22 335 218 1198.11 2.08% 1087.289 9.25%
92 4.66 16291× 235 327 912.51 337 265 950.87 4.03% 855.6042 10.02%
92 4.77 17673× 235 465 1398.40 347 496 1432.21 2.36% 1316.483 8.08%

The computational results in Tables 1-4 show that the difference be-
tween the lower bounds obtained by solving (R2) and those obtained by
solving (R1) lie in the range [0, 35%, 9.30%] with an average of 3.3%. In
all the examples treated, the number of constraints (9’) generated for buil-
ding relaxation (R2) is rather limited, ranging from an average of 50 for
20 node networks to an average of 350 for 40 node networks. (Note that
this is significantly less than the total number of constraints necessary in
a node-arc formulation of the feasible multicommodity flow problem).

140 V. GABREL AND M. MINOUX

Concerning the difference between the best relaxation (R2) and the
relaxation using convexification, we observe that (R2) is always better:
in 90% of the test examples treated the improvement over the optimal
solution to the convexified problem lies in the range 5-25% (the average
improvement is equal to 13.3%).

These results confirm the relevance of the LP model studied here to
generate relaxations significantly better than convexification.

Acknowledgements

We thank Professor E. Boros (RUTCOR/Rutgers University) for fruit-
ful discussions concerning relaxation (R2).

References

1. R. K. Ahuja, T. Magnanti and J. Orlin, Network Flows: Theory, Algorithms and
Application, Prentice Hall 1993.

2. A. A. Assad, Multicommodity network flows - A survey, Networks 8 (1978), 37-91.

3. L. Fratta, M. Gerla and L. Kleinrock, The flow-deviation method: an approach to

store-and-forward communication network design, Network 3 (1973), 97-133.

4. M. Gondran and M. Minoux, Graphes et Algorithmes, Eyrolles, Paris 1979 (3ème

édition) 1995.

5. J. L. Kennington, A survey of linear cost multicommodity network flows, Opera-

tions Research 26 (1978), 209-236.

6. M. Minoux (1983), Programmation Mathématique: Théorie et Algorithmes, Dunod,

Paris, English translation, John Wiley & Sons, New York, 1986.

7. M. Minoux, Network synthesis and optimum network design problems: Models,

solution methods and applications, Networks 19 (1989), 313-360.

8. A. Ouorou (1985), Décomposition proximale des problèmes de multiflots à critère

convexe - Application aux problèmes de routage dans les réseaux de communica-

tion, Thèse de Doctorat, Université de Clermont Ferrand, 17 novembre 1995.

Appendix 1

Solving (P2)
′ by a column generation procedure

The idea here is to explicitly handle only a few columns out of each Ai

matrix, i.e. to solve only a restricted LP, and iteratively generate negative
reduced cost columns when needed. This column generation procedure is
completed when a state has been reached where no new negative reduced
cost column can be generated. To guarantee that the procedure yields
an optimal continuous solution to the whole problem (P2)

′ we only have

LP RELAXATIONS 141

to check that the column generation subproblem can be solved exactly at
each step (see e.g. Minoux 1983, Chapter 8). We show below how to solve
this subproblem.

The columns of matrix Ai correspond to the various vectors solving
(I). Then, generating negative reduced cost columns of this matrix, or
proving that no negative reduced cost column exists, leads to solving the
following subproblem

(Q)



















minimize w =
∑

u∈ω(i)

Φu(xu)− ∑

u∈ω(i)

πuxu,

∑

u∈ω(i)

xu ≥ ri,

xu ∈ Vu ∀u ∈ ω(i),

where π =
(

πu

)

u∈ω(i)
is the vector of optimal simplex multipliers for the

current restricted LP.

This column generation subproblem can be solved exactly with a dy-
namic programming algorithm.

For solving subproblem (Q), let us first consider the following set of
problems

(Qj(E))



























minimize wj(E) =
j

∑

u=1
Φu(xu)−

j
∑

u=1
πuxu,

j
∑

u=1
xu ≥ E,

xu ∈ Vu, ∀u = 1, . . . , j,

for j running from 1 to δ(i). Here we have assumed for simplicity that the
edges in ω(i) are numbered u = 1, . . . , δ(i).

The optimal solution value w∗ of (Q) can be obtained by solving prob-
lems (Qδ(i)(E)) for all possible values of E since w∗ = min

E≥ri

{

w∗
δ(i)(E)

}

,

where w∗
δ(i)(E) is the optimal solution value of (Qδ(i)(E)).

There is a classical recurrence relation between the optimal solution
values w∗

j (E) of these different problems

(Qj(E)) : w∗
j (E) = min

xj∈Vj

{

(Φj(xj)− πjxj) + w∗
j−1(E − xj)

}

,

where it should be understood that w∗
j (E) = +∞, if there is no solution

to (Qj(E)) (in particular when E < 0).

142 V. GABREL AND M. MINOUX

So, for determining w∗, we have to solve iteratively all the problems
(Qj(E)) for j running from 1 to δ(i). This algorithm is presented in
detail in Figure 3. For solving problem (Qj(E)), we retain among all the
possible pairs of values (E′, xj) such as ∀xj ∈ Vj , ∀E′ : wj−1(E

′) 6= +∞,
E = E′ + xj , the one of minimum cost. The procedure called efficiency

(see Figure 4) deletes an optimal solution wj(E
′) of Qj(E

′) when there
exists an optimal solution wj(E) of Qj(E) such as: E > E′ and wj(E) <
wj(E

′). Indeed, if wj(E
′) is part of a solution of (Q), it is possible to

replace wj(E
′) by wj(E) in order to obtain another feasible solution with

lower cost. Thus wj(E
′) would never be part of an optimal solution to

(Q). The procedure called solution simply outputs the best solution to
(Q) by using the σj(E) pointers.

w0(0) = 0

w0(E) = +∞ ∀E = 1, . . . , ri

σj(E) = ∅ ∀E = 0, 1, . . . , ri, ∀j = 0, 1, . . . , δ(i)

for j = 1 to δ(i)

wj(E) = +∞ ∀E = 0, 1, . . . , v
q(j)
j

for xj = v0
j to v

q(j)
j

forall E such that wj−1(E) 6= +∞
if (wj(E + xj) > Φj(xj)− πjxj + wj−1(E))

wj(E + xj)← Φj(xj)− πjxj + wj−1(E))

σj(E + xj)←
{

(u, xj, σj−1(E))
}

end if

end forall

end for

efficiency (j)

end for

solution (i)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Figure 3. The dynamic programming algorithm

LP RELAXATIONS 143

forall E such as wj(E) 6= +∞
forall E′ such as wj(E

′) 6= +∞ and E′ < E

if (wj(E
′) > wj(E))

wj(E
′)← +∞

σj(E
′)← ∅

end if

end forall

end forall

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Figure 4. The procedure efficiency (j)

Appendix 2

Randomly generating realistic test problems

The generation of the test networks used in the experiments of Section
5 has been performed according to the following procedure:

1) Choose the number of nodes m; thus, the node set will be S =
{1, 2, . . . , m}.

2) Draw at random (according to a uniform distribution on [0, 1000])
the coordinates of m points in the euclidian square [0, 1000] × [0, 1000].
The points are generated iteratively as follows. Suppose k− 1 points have
been generated so far. A candidate for being the kth point is obtained
by drawing its two coordinates in [0, 1000]. This point is accepted if its
Euclidian distance to the closest point i (i ∈ {1, 2, . . . , k − 1}) is larger

than a given threshold value θ(m) (in our experiments θ(m) =
1000

5
√

m
). If

this condition is not fulfilled, a new candidate is drawn at random. At the
end of this step, we have the m nodes k = 1, . . . , m of the network given

by their integer coordinates

(

ak

bk

)

in the square [0, 1000]× [0, 1000].

3) Build the edges of a graph G on this set of nodes as follows. For each
node k, and for any angle α ∈ {α0, α1, . . . , α7} with αp = p × π

4
, denote

Sk(αp) the subset of nodes j ∈ {1, . . . , m} \ {k} such that

(aj − ak) + i(bj − bk)
√

(aj − ak)2 + (bj − bk)2
= eiσ with αp ≤ σ < αp +

π

4
·

144 V. GABREL AND M. MINOUX

For each p ∈ [0, 7] such that Sk(αp) 6= ∅, let j∗(p) be the point in
Sk(αp) closest to k (in terms of Euclidian distance), take (k, j∗(p)) in the

edge set U of G. At the end of this step we have a graph G =
[

S,U
]

.

4) Define the final graph G = [S,U] as a partial graph of G =
[

S,U
]

by

iteratively removing edges from U in order to obtain all node degrees in the
range [dmin, dmax] (where dmin and dmax are given parameters, dmin = 3
and dmax = 4 in our experiments). One iteration of the process is as
follows. Let G =

[

S,U
]

be the current graph and let d be the maximum

degree in G

d = max
i=1,...,m

{

dG(i)
}

.

If d ≤ dmax terminate; otherwise let W ⊂ U × U the set of pairs of
edges (u, v) with u = (i, j) and v = (i, k) such that

(12)
(

dG(i) = d
)

∧
((

dG(j) > dmin

)

∨
(

dG(k) > dmin

))

.

Determine in W the pair such that the angle in the euclidian plane

between the vectors

(

aj − ai

bj − bi

)

and

(

ak − ai

bk − bi

)

is smallest. Delete the

longest of the two edges u and v provided that the degree in G of both its
endpoints exceeds dmin. Otherwise, delete the other edge (note that due
to (12) at least one of the two edges may be deleted).

In all our experiments, the networks generated according to the above
construction were connected.

On the obtained network G =
[

S,U
]

, the multicommodity flow require-
ments between each node pair are defined as follows:

- draw at random a weight pi for each node i in the range [1, 20],

- compute the amount of the kth flow to be routed between each node
pair (s(k), t(k)) ∈ X ×X according to the following formula

dk =
[µ× ps(k) × pt(k)

dist(s(k), t(k))

]

,

where dist(i, j) is the Euclidian distance between nodes i and j, and µ is a
scaling factor chosen in order to make the largest flow value equal to 100.

Having obtained a graph instance G = [S,U], the cost functions Φu on
the edges have to be generated.

LP RELAXATIONS 145

To computer the upper bound βu for each variable xu′ we first de-
termine a feasible multicommodity flow in which each individual flow k
(k ∈ [1, K]) is routed on the minimum length chain between s(k) and t(k)
(in terms of euclidian distance). Then ∀u ∈ U , βu is taken to be equal to
three times the flows carried by edge u in this solution.

We now define for edge u ∈ U the associated cost function Φu(xu) in
the following way:

1) choose the number q(u) of discontinuity points (in our computational
experiments q(u) has been chosen equal to 5 for all u ∈ U),

2) draw at random q(u)−1 discontinuity points vi
u (i = 1, . . . , q(u)−1)

in the range [1, βu[, and impose v0
u = 0 and v

q(u)
u = βu,

3) computer the cost γi
u associated with each discontinuty point vi

u

(i = 0, . . . , q(u)) according to the formula

γi
u = Φu(vi

u) = a×
(

vi
u

)α × dist(u),

where α is a coefficient equal to 0.6, a is a random number chosen in
the range [0.9, 1.1] and dist(u) is the Euclidian distance between the two
endpoints of link u. However when we compute γi

u (i = 1, . . . , q(u)− 1),
if it appears that γi−1

u ≥ γi
u, we delete the discontinuity point vi

u of the
function Φu(xu).

LIPN, Université Paris 13, Institut Galilée,

Avenue J-B. Clément, 93430 Villetaneuse, France,

E-mail address: gabrel@ura1507.univ-paris13.fr

MASI, Université Paris 6,

4 place Jussieu, 75252 Paris Cedex 05, France
E-mail address: minoux@masi.ibp.fr

