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OPTIMIZATION OF C-ORTHOGONAL
POSYNOMIALS

K. H. ELSTER AND R. ELSTER

Dedicated to Hoang Tuy on the occasion of his seventieth birthday

Abstract. We introduce a new class of posynomials, called c-ortho-
gonal posynomials, and we consider the corresponding c-orthogonal pro-
grams. The treatment of such programs is motivated by the fact that
c-orthogonal posynomial programs having a positive degree of difficulty
can be solved under weak assumptions, while “normal” posynomial pro-
grams with such a positive degree reduce in general the spectacular power
of geometric programming. The optimal value of an unconstrained or con-
strained c-orthogonal program is equal to the sum of (positive) coefficients
of the objectives, respectively.

Especially, using the gained results several interesting inequalities can
be proved in a simple way.

1. Introduction

In the more than 30-year history of geometric programming the treat-
ment of posynomial programs played an important role not only from the
theoretical point of view but also by their applicability for solving real-life
problems. Besides fundamental theoretical results ([1], [3], [4], [7], [10],
[12], [21], [23], [28], [29], [32]), numerous algorithms were developed and/or
tested concerning this class of geometric programming problems ([2], [5],
[8], [9], [13], [21], [27], [31], [36], [37], [41]). Moreover, it is impressive to
see a large number of papers devoted to quite different applications (cf.
[6]).

Generalizations with respect to other classes of functions, for instance
quadratic functions or so-called composite functions were considered and
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the corresponding scalar geometric optimization problems were studied
([11], [18], [19], [20], [24], [25], [26], [30], [32], [33], [34], [35], [39], [40]).
Another generalization tends to problems with more than one objective
function, so-called geometric vector optimization problems ([14]-[17]).

Also of some interest is the way of specializing the class of posyno-
mials. In the geometric programming literature one can find posynomial
programs of the following type:

min{g0(t) := t−1
1 t2t3 + t1t

−1
2 t−1

3 | t ∈ Bp}

Bp :=
{

t ∈ R3| t > 0, g1(t) :=
1
2
t1t

−2
2 t3 +

1
4
t−3
1 t32t

−2
3 +

1
4
t1t2 ≤ 1

}
.

For this optimization problem the “degree of difficulty” or “number of
degrees of freedom” which is introduced in [10] as “number of terms minus
rank A minus 1 ” is for the problem above equal to 1 (matrix A is defined
in Section 3.1). In the case that the matrix A is of full rank which means
rank A = m, where m is the number of the variables tj , j = 1, . . . ,m,
the degree of difficulty is zero, if the number of terms is equal to m + 1.
Otherwise, the degree is positive or negative and the spectacular power
of geometric programming is reduced. In that case the dual program,
described in Section 3.1, must be solved.

Even in the recent literature systematic solution methods for geometric
programming problems with a large degree of difficulty are hardly deve-
loped (see [21], [27], [41]).

Such a positive degree of difficulty can also occur for posynomial pro-
grams with functions of the type g0, g1. These posynomials have a pro-
perty which may be denoted as c-orthogonality and treated in Chapter
2. In Chapter 3, an investigation of posynomial programs including such
c-orthogonal functions will be done.

It can be shown that for unconstrained c-orthogonal posynomial pro-
grams the optimal value is equal to the sum of the (positive) coefficients
(Theorem 3.1). This assertion remains true for constrained c-orthogonal
posynomial programs under certain conditions. Duality results for pro-
grams will be given, too (Theorem 3.4, Theorem 3.5).

Some examples will demonstrate the usefulness of these results, espe-
cially the power of c-orthogonality for proving interesting inequalities.
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2. c-orthogonal posynomial

2.1. c-orthogonality

The original geometric programming problem was expressed in terms
of polynomials, i.e. functions of the type

(2.1) gk(t) =
∑

i∈[k]

ci

m∏

j=1

t
aij

j , k ∈ J0
p , m ∈ N

where J0
p := {0, 1, . . . , p}, N is the set of natural numbers, t ∈ Rm, t > 0,

[k] = {mk,mk +1, . . . , nk}, m0 := 1, mk = nk−1+1, k = 1, . . . , p, np := n,
aij and ci are reals, ci > 0 for all i ∈ [k].

Let A[k] = (aij) be the (nk −mk + 1) ×m - matrix of exponents due
to the variables tj of the function gk and c[k] = (cmk

, . . . , cnk
)T the vector

of the coefficients. Such functions may have a special property which is
defined as follows:

Definition 2.1. A posynomial gk is said to be c-orthogonal, if

(2.2) AT
[k]c[k] = 0, k ∈ J0

p .

Because of (2.2) it follows immediately

(2.3) (amkj , . . . , ankj)c[k] = 0 , j = 1, . . . , m.

This means that each c-orthogonal posynomial can be partitioned into m
c-orthogonal sub-posynomials depending on one unique variable tj :

(2.4) gj
k(tj) =

∑

i∈[k]

cit
aij

j , k = 0, 1, . . . , p, j = 1, . . . , m.

Moreover, if each sub-posynomial of a posynomial gk is c-orthogonal then,
of course, gk is c-orthogonal, too.

Therefore, the proof of c-orthogonality for a posynomial will often be
done by proving that property for all partitioned sub-posynomials. Fur-
thermore, the set of c-orthogonal posynomials is “closed” under the com-
mon operations addition and multiplication.

Theorem 2.1. If G is the set of c-orthogonal posynomials and gh, g` ∈ G,
h, ` = 0, 1, . . . , p, then
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(i)

(2.5) αgh ∈ G, α ∈ R, α > 0,

(ii)

(2.6) gh + g` ∈ G,

(iii)

(2.7) gh · g` ∈ G.

Proof.

(i) For gh we have AT
[h]c[h] = 0 and thus AT

[h]αc[h] = 0 for α ∈ R, α > 0
which means that

αgh(t) =
∑

i∈[h]

αci

m∏

j=1

t
aij

j

is c-orthogonal.

(ii) W.l.o.g. we choose h = 0, ` = 1, i.e., the posynomials

(2.8) g0(t) =
∑

i∈[0]

ci

m∏

j=1

t
aij

j , g1(t) =
∑

i∈[1]

ci

m∏

j=1

t
aij

j ,

where

(2.9) AT
[0]c[0] = 0 , AT

[1]c[1] = 0.

Since [0] ∩ [1] = ∅ and [0] ∪ [1] = {1, . . . , n0, n0 + 1, . . . , n1} we obtain the
sum of g0 and g1 according to

g(t) = g0(t) + g1(t) =
n1∑

i=1

ci

m∏

j=1

t
aij

j .

For g we have, regarding (2.9),



a11 a12 . . . a1m
...

...
...

an01 an02 . . . an0m

an0+1,1 an0+1,2 . . . an0+1,m

...
...

...
an11 an12 . . . an1m




T 


c1
...

cn0

cn0+1

...
cn1




=

= AT
[0]c[0] + AT

[1]c[1] = 0.

Thus (2.6) is fulfilled.
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(iii) Let us choose g0, g1 again according to (2.8), (2.9). Then

g0(t) · g1(t) =
n0∑

i=1

ci

m∏

j=1

t
aij

j ·
n1∑

i=n0+1

ci

m∏

j=1

t
aij

j

=
n0∑

i=1

cicn0+1

m∏

j=1

t
an0+1,j

j ·
m∏

j=1

t
aij

j

...

=
n0∑

i=1

cicn1

m∏

j=1

t
an1,j

j ·
m∏

j=1

t
aij

j .

Setting

d1 := c1cn0+1, . . . , dn0 := cn0cn0+1,

dn0+1 := c1cn0+2, . . . , d2n0 := cn0cn0+2,

...(2.10)
d(n1−1)n0+1 := c1cn1 , . . . , dn1n0 := cn0cn1 ,

and

b1j := a1j + an0+1,j , . . . , bn0,j := an0,j + an0+1,j ,

bn0+1,j := a1j + an0+2,j , . . . , b2n0,j := an0,j + an0+2,j ,

...

(2.11)

b(n1−1)n0+1,j := a1j + an1,j , . . . , bn1n0,j := an0,j + an1,j ,

we obtain the posynomial

g(t) := g0(t) · g1(t) =
n1∑

i=1

di

m∏

j=1

t
bij

j .

For g we have
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BT d =




b11 . . . b1m
...

...
bn01 . . . bn0m

...
...

b(n1−1)n0+1,1 . . . b(n1−1)n0+1,m

...
...

bn1n0,1 . . . bn1n0,m




T 


d1
...

dn0

...
d(n1−1)n0+1

...
dn1n0




=

(2.12)




b11d1 + · · ·+ bn01dn0 + · · ·+ b∗,1d∗ + · · ·+ bn1n0,1dn1n0

...
b1md1 + · · ·+ bn0mdn0 + · · ·+ b∗,md∗ + · · ·+ bn1n0,mdn1n0


 ,

where

b∗,1d∗ = b(n1−1)n0+1,1d(n1−1)n0+1,

b∗,md∗ = b(n1−1)n0+1,md(n1−1)n0+1.

Taking into consideration (2.9) - (2.11), it follows

BT d = (cn0+1 + · · ·+ cn1)A
T
[0]c[0] + (c1 + · · ·+ cn0)A

T
[1]c[1] = 0.

Thus (2.7) is satisfied.

From (2.3) and (2.7) the following assertions can be concluded imme-
diately.

Corollary 2.1. Each posynomial

g(t) ≡ α = const for all t ∈ Rm, t > 0

is c-orthogonal.

Corollary 2.2. If g is a c-orthogonal posynomial, then gn, n ∈ N, is
c-orthogonal, too.
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2.2. Examples of c-orthogonal posynomials

Example 2.1. For t ∈ R2, t > 0, we consider the following two posyno-
mials simultaneously:

g0(t) = t1 + t−1
1 ,

g1(t) = t−1
1 + 2t32 + 3t21t

−2
2 + t−5

1 .

Then

[0] = {1, 2},

c[0] =
(

c1

c2

)
=

(
1
1

)
, A[0] =

(
a11 a12

a21 a22

)
=

(
1 0
−1 0

)
,

[1] = {3, 4, 5, 6} ,

c[1] =




c3

c4

c5

c6


 =




1
2
3
1


 , A[1] =




a31 a32

a41 a42

a51 a52

a61 a62


 =



−1 0
0 3
2 −2
−5 0


 .

Because of AT
[k]c[k] = 0, k = 0, 1, both of the posynomials g0, g1 are

c-orthogonal according to Definition 2.1.

Using (2.2), we get for g0 and g1

(2.13) (a11, a21)c[0] = 0, (a12, a22)c[0] = 0,

and

(2.14) (a31, a41, a51, a61)c[1] = 0, (a32, a42, a52, a62)c[1] = 0,

respectively.

Since a32 = a41 = a62 = 0, relation (2.14) can be rewritten as

(a31, a51, a61)




c3

c5

c6


 = 0 , (a42, a52)

(
c4

c5

)
= 0.

Therefore, a partitioning of g1 into two c-orthogonal sub-posynomials ac-
cording to (2.4) is justified:

(2.15) g1
1(t1) = t−1

1 + 3t21 + t−5
1 , g2

1(t2) = 2t32 + 3t−2
2 .
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From (2.13) we conclude that g0 can be partitioned formally into the
two c-orthogonal sub-posynomials (cf. Corollary 2.1)

(2.16) g1
0(t1) = t1 + t−1

1 = g0(t), g2
0(t2) = 1 · t02 + 1 · t02 = 2 = const.

Example 2.2. The c-orthogonal of the posynomial

(2.17) g(t) =




m∑

j=1

t2j




2 


m∑

j=1

t−2
j


 , m ∈ N,

it not obvious at the first glance. Reformulation of (2.17) leads to

g(t) =




m∑

j=1

t2j + 2
∑
i<`

i,`=1,...,m

tit`







m∑

j=1

t−2
j




=




m∑

j=1

t2j







m∑

j=1

t−2
j


 + 2




∑
i<`

i,`=1,...,m

tit`







m∑

j=1

t−2
j


 .

(2.18)

The first term in (2.18) yields




m∑

j=1

t2j







m∑

j=1

t−2
j


 = m +

∑
i<`

i,`=1,...,m

(t2i t
−2
` + t−2

i t2`),

where the posynomial

g0(t) := m = mt0 = const.

is c-orthogonal according to Corollary 2.1. The c-orthogonality of the
posynomial

g1(t) = t2i t
−2
` + t−2

i t2`

is obvious by (2.3). Therefore, using Theorem 2.1, the first term in (2.18)
is c-orthogonal.
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To prove the c-orthogonality of the second term in (2.18), we simplify
in the following manner:

2




∑
i<`

i,`=1,...,m

tit`







m∑

j=1

t−2
j


 =

2




∑
i<`

i,`=1,...,m

(tit−1
` + t−1

i t`) +
m∑

j=1

(
t−2
j

∑
i<`

i,`=1,...,m
i, 6̀=j

tit`

)

 .

(2.19)

Since in (2.19)

g2(t) =
∑
i<`

i,`=1,...,m

(tit−1
` + t−1

i t`)

is a c-orthogonal posynomial by (2.3) and Theorem 2.1, it remains to show
that the posynomial

g3(t) =
m∑

j=1

(
t−2
j

∑
i<`

i,`=1,...,m
i, 6̀=j

tit`

)
, m ∈ N,

is c-orthogonal, too. For proving this property we use the idea of partition-
ing g3 into sub-posynomials. First, we consider all terms of g3 containing
t1:

g31(t) = t−2
1 t2(t3 + · · ·+ tm) + t−2

1 t3(t4 + · · ·+ tm) + · · ·+ t−2
1 tm−1tm

+ t−2
2 t1(t3 + · · ·+ tm) + t−2

3 t1(t2 + t4 + t5 + · · ·+ tm) + . . .

+ t−2
m t1(t2 + · · ·+ tm−1).

By partitioning of g31 into sub-posynomials depending only on exact one
variable tj , j = 1, . . . , m, we obtain with respect to t1:

g1
31(t1) = t−2

1 + t−2
1 + · · ·+ t−2

1 + t1 + t1 + · · ·+ t1

= [(m− 2) + (m− 3) + · · ·+ 2 + 1]t−2
1 + (m− 1)(m− 2)t1

=
(m− 1

2

)
t−2
1 + (m− 1)(m− 2)t1,
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because t−2
1 occurs in g31

(m− 1
2

)
-times and t1 occurs (m − 1)(m − 2)-

times in that sum. Taking into account (2.3), we have for g1
31

(m− 1
2

)
(−2) + (m− 1)(m− 2) · 1 = 0.

This means that g1
31 is c-orthogonal.

Analogously, one can prove the c-orthogonality of the other sub-posynomials
gj
31(tj), j = 2, . . . , m, and moreover, of all the remaining sub-posynomials

of g3.

Since both terms in (2.18) are c-orthogonal it follows by Theorem 2.1
that the posynomial (2.17) has this property, too.

Example 2.3. The posynomial

(2.20) g(t) =
( m∑

j=1

tj

)( m∑

j=1

t−1
j

)
= m +

m∑

i<`

(tit−1
` + t−1

i t`)

is c-orthogonal because of (2.3), Corollary 2.1, and Theorem 2.1.

Example 2.4. A generalization of the c-orthogonal posynomial (2.17) is
the posynomial

(2.21) h(t) := (t1 + · · ·+ tm)p(t−p
1 + · · ·+ t−p

m ), t > 0, m ∈ N, p ≥ 1.

To prove that h(t) is c-orthogonal we use the polynomial expression

(2.22) (t1 + · · ·+ tm)p =
∑

k1+···+km=p

( p

k1, . . . , km

)
tk1
1 tk2

2 . . . tkm
m ,

ki ∈ N. Then (2.21) turns to

h(t) =
∑

k1+···+km=p

( p

k1, . . . , km

)
tk1−p
1 tk2

2 . . . tkm
m

+
∑

k1+···+km=p

( p

k1, . . . , km

)
tk1
1 tk2−p

2 . . . tkm
m

...(2.23)

+
∑

k1+···+km=p

( p

k1, . . . , km

)
tk1
1 tk2

2 . . . tkm−p
m .
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Now we prove (2.3) for any sub-posynomial of h(t).

Therefore, we consider w.l.o.g. the sub-posynomial

h1(t1) =
∑

k1+···+km=p

( p

k1, . . . , km

)
tk1−p
1

+ (m− 1)
∑

k1+···+km=p

( p

k1, . . . , km

)
tk1
1 .(2.24)

To verify (2.3) we get from (2.24) and the well-known relation

(2.25)
∑

k1+···+km=p

( p

k1, . . . , km

)
= mp

the equality
∑

k1+···+km=p

( p

k1, . . . , km

)
(k1 − p) + (m− 1)

∑

k1+···+km=p

( p

k1, . . . , km

)
k1

= −p
∑

k1+···+km=p

( p

k1, . . . , km

)
+ m

∑

k1+···+km=p

( p

k1, . . . , km

)
k1 =: A.

(2.26)

Setting α := k1, we conclude from (2.26)

(2.27) A = −pmp + m

m∑
α=0

∑

α+k2+···+km=p

( p

α, k2, . . . , km

)
α.

Because of
p∑

α=0

∑

α+k2+···+km=p

( p

α, k2, . . . , km

)
α

=
p∑

α=1

α
∑

k2+···+km=p−α

p!
α!k2! . . . km!

= p

p∑
α=1

(p− 1)!
(p− α)!(α− 1)!

∑

k2+···+km=p−α

(p− α)!
k2! . . . km!

= p

p∑
α=1

( p− 1
α− 1

)
(m− 1)p−α = p

p∑
α=1

( p− 1
α− 1

)
(m− 1)(p−1)−(α−1) · 1α−1

= p((m− 1) + 1)p−1 = pmp−1,
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it follows in (2.27) immediately A = 0, whence (2.3) is satisfied. Thus,
h1(t1) is c-orthogonal.

Analogously, one can prove the c-orthogonality of the remaining sub-
posynomials hj(tj), j = 2, . . . ,m. Therefore, by Definition 2.1 the posy-
nomial h(t) id c-orthogonal.

Example 2.5. The posynomial

g(t) :=
tm1 + tm2 + · · ·+ tmm

t1t2 . . . tm
, m ∈ N,

is c-orthogonal, because for each sub-posynomial (see (2.4))

g1(t1) := tm−1
1 + (m− 1)t−1

1 ,

g2(t2) := tm−1
2 + (m− 1)t−1

2 ,

...

gm(tm) := tm−1
m + (m− 1)t−1

m ,

relation (2.3) is easy to verify:

(m− 1) · 1 + (−1)(m− 1) = 0, m ∈ N.

3. Optimization of c-orthogonal posynomials

3.1. c-orthogonal posynomial programs

For “classical” posynomial programs a duality theory is established in
[10], and refined, for instance, in [31]. The duality approach described
there is based on the inequality between the weighted arithmetic and geo-
metric mean, related to the following optimization problems:

Pp : min{g0(t) | t ∈ Bp},
Bp := {t ∈ Rm | t > 0; gk(t) ≤ 1, k ∈ Jp},(3.1)

where go, gk, k ∈ Jp := {1, . . . , p}, are given according to (2.1).

P ∗p : max
{

v(y) :=
p∏

k=0

∏

i∈[k]

( ci

yi

)yi

(λk(y))λk(y) | y ∈ B∗
p

}
,

B∗
p := {y ∈ Rm | y ≥ 0; λ0(y) = 1, AT y = 0},(3.2)
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where λk(y) =
∑

i∈[k]

yi and A =




A[0]

...
A[p]


, A[k], k ∈ J0

p , described in Section

2.1.

In the context of geometric programming, Pp is called a primal posy-
nomial program and P ∗p the corresponding dual program. For further in-
vestigations, Pp will be assumed to be c-orthogonal according to

Definition 3.1. Problem Pp is said to be a c-orthogonal posynomial
program, if all functions gk, k = 0, 1, . . . , p, are c-orthogonal.

Moreover, in [10] it was shown that the programs Pp, P ∗p are equivalent
to the following convex programs P , P ∗.

P : min{G0(x) | x ∈ B},
B := {x ∈ Rn| x ∈ P; Gk(x) ≤ 1, k ∈ Jp},(3.3)

where

(3.4) Gk(x) :=
∑

i∈[k]

cie
xi , k ∈ J0

p ,

P is the column space of the n×m-matrix A defined by

(3.5) A =




a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
. . .

...
an1 an2 . . . anm


 =




A[0]

A[1]

...
A[p]


 .

The underlying transformation from program Pp to program P can be
represented by

(3.6) tj = erj , j = 1, . . . ,m,

and

(3.7) x = Ar,

or, coordinatewise

(3.8) xi =
m∑

j=1

aijrj = ln
m∏

j=1

t
aij

j ∀i ∈ [k], k ∈ J0
p .
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The corresponding dual program is

P ∗ : max{V (y) := ln v(y) | y ∈ B∗},
B∗ = B∗

p .(3.9)

Remark 3.1. If Pp is a c-orthogonal program, then P is c-orthogonal, too.

By use of the same matrix A and the same coefficient vector c =
(
cT
[0],

. . . , cT
[p]

)T for the programs Pp and P property (2.2) is preserved.

The purpose of the following theorem is twofold: It gives the minimal
value of any c-orthogonal posynomial and will be used in Section 3.3 to
prove some well-known inequalities or to create some new ones.

Theorem 3.1. Let gk, k ∈ J0
p , be a c-orthogonal posynomial. Then

(3.10) min
t>0

gk(t) =
∑

i∈[k]

ci = gk(1, 1, . . . , 1).

Proof. Since gk is to consider on the positive orthant of Rm we have

gk(1, 1, . . . , 1) =
∑

i∈[k]

ci.

Therefore, the minimum value of any posynomial must be less or equal
than the sum of the coefficients:

(3.11) min
t>0

gk(t) ≤
∑

i∈[k]

ci.

For proving equality in (3.11) we use the c-orthogonality of gk.

With the posynomial term (cf. [10])

(3.12) ui := ci

m∏

j=1

t
aij

j , i ∈ [k],

we form the expression

∏

i∈[k]

uci
i =

∏

i∈[k]

cci
i ·

∏

i∈[k]

tai1ci
1 · · ·

∏

i∈[k]

taimci
m ,
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and obtain because of the c-orthogonality property (2.3)

(3.13)
∏

i∈[k]

uci
i =

∏

i∈[k]

cci
i t

∑
i∈[k]

ai1ci

1 · · · t
∑

i∈[k]
aimci

m =
∏

i∈[k]

cci
i .

Introducing new variables wi, i ∈ [k], according to

(3.14) ui :=
ci

c
wi, where c :=

∑

i∈[k]

ci,

the left hand side of (3.13) can be written as

∏

i∈[k]

(ci

c
wi

)ci

=
(1

c

)c

c
cmk
mk . . . c

cnk
nk w

cmk
mk . . . w

cnk
nk .

By (3.14) it follows

(3.15)
∏

i∈[k]

w
ci/c
i = c

∏

i∈[k]

c
ci/c
i ·

∏

i∈[k]

c
−ci/c
i = c.

Since the positive numbers ci/c, i ∈ [k], are normalized weights, the well-
known geometric mean-arithmetic mean inequality is valid for wi, i ∈ [k]:

∑

i∈[k]

ci

c
wi ≥

∏

i∈[k]

w
ci/c
i .

By (3.15), (3.14), (3.12) and (2.1) this inequality yields:

gk(t) =
∑

i∈[k]

ui ≥
∑

i∈[k]

ci

and
min
t>0

gk(t) ≥
∑

i∈[k]

ci.

Together with (3.11) we obtain (3.10).

Remark 3.2. Choosing k = 0 (w.l.o.g.), relation (3.10) means that the
point t0 := (1, 1, . . . , 1)T is an optimal solution of each unconstrained
c-orthogonal posynomial program Pp:

min{g0(t) | t ∈ Bp},
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(3.16) Bp := {t ∈ Rm | t > 0}.

In Theorem 3.1 nothing is said about the uniqueness of the minimizer
t0 for an unconstrained c-orthogonal posynomial program. Other optimal
solutions may exist; for instance, the problem

min{g0(t) := t21t
−2
2 + t−2

1 t22 | t ∈ R2, t > 0}

has the optimal solutions t0 = (a, a), a ∈ R, a > 0, and its minimum
value is min

t>0
g0(t) = 2.

For a constrained c-orthogonal posynomial program the following as-
sertions can be shown.

Theorem 3.2. Let the c-orthogonal program Pp be given. Then

(3.17) Bp 6= ∅ implies t̂ := (1, 1, . . . , 1)T ∈ Bp.

Proof. Suppose t̂ 6∈ Bp. Then there exists at least an index k1 ∈ Jp so
that gk1(t̂) > 1. Since each posynomial is assumed to be c-orthogonal, we
conclude according to Theorem 3.1

gk1(t) ≥ min
t>0

gk1(t) =
∑

i∈[k1]

ci = gk1(t̂) > 1,

that means there is no t satisfying gk1(t) ≤ 1 which implies Bp = ∅.
Theorem 3.3 (Weak Duality Theorem). Let Pp, P ∗p be given and let Pp

be c-orthogonal. If Bp 6= ∅ and B∗
p 6= ∅, then

(3.18) (i) g0(t) ≥ v(y) ∀t ∈ Bp, ∀y ∈ B∗
p ,

(3.19) (ii) min
t∈Bp

g0(t) ≥ max
y∈B∗p

v(y).

The proofs of (i) and (ii) are given in [10] for non c-orthogonal programs
and can be applied directly to the case of c-orthogonal programs.

A corresponding theorem is true for the programs P , P ∗.

Theorem 3.4 (Direct Duality Theorem). Let Pp, P ∗p be given and let Pp

be c-orthogonal, r · intBp 6= ∅.
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If t0 is an optimal solution of Pp, then there exists a dual optimal
solution y0 ∈ B∗

p such that

(i) y0
i =





ci∑
i∈[0]

ci
, i ∈ [0], (3.20)

λk(y0)ci, i ∈ [k], k ∈ Jp, (3.21)

(ii) g0(t0) = min
t∈Bp

g0(t) = max
y∈B∗p

v(y) = v(y0). (3.22)

Proof. (i) Since t0 is an optimal solution of Pp, we have

(3.23) g0(t0) = min
t∈Bp

g0(t) ≤ g0(t) ∀t ∈ Bp.

Therefore, using the problem P equivalent to Pp, relation (3.23) can be
written as

(3.24) G0(x0) = min
x∈B

G0(x) ≤ G0(x), ∀x ∈ B,

which means that x0 in an optimal solution of P . Hence the system

G0(x)−G0(x0) < 0, Gk(x)− 1 ≤ 0 (k ∈ Jp), x ∈ B,

is not solvable.

Since we assumed r · intBp 6= ∅, the equivalent set r · intB is nonempty,
too. It exists an x ∈ r · intB such that Gk(x) < 1 for all k ∈ Jp. Now,
applying a standard result of convex analysis (see [38], Theorem 2.1.1) it
follows the existence of a vector (u0, w0) ∈ R+ ×Rp

+, u0 6= 0, such that

u0(G0(x)−G0(x0)) +
p∑

k=1

w0
k(Gk(x)− 1) ≥ 0, ∀x ∈ B.

W.l.o.g. we assume u0 = 1 and obtain on the one hand

(3.25) G0(x) +
p∑

k=1

w0
k(Gk(x)− 1) ≥ G0(x0), ∀x ∈ B.

Because of Gk(x0)− 1 ≤ 0 it is on the other hand

(3.26) G0(x0) +
p∑

k=1

wk(Gk(x0)− 1) ≤ G0(x0), ∀wk ∈ R+,
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and thus

(3.27) G0(x0) +
p∑

k=1

w0
k(Gk(x0)− 1) = G0(x0).

Using the denotation

(3.28) L(x,w) := G0(x) +
p∑

k=1

wk(Gk(x)− 1), (x, w) ∈ B ×Rp
+,

it follows along with (3.25)-(3.27):

(3.29) L(x0, w) ≤ L(x0, w0) = G0(x0) ≤ L(x, w0), ∀x ∈ B, ∀w ∈ Rp
+,

and moreover, x0 ∈ B is a global minimizer of L(x,w0) on B × Rp
+.

Consequently, the relation

(3.30)
∂L(x,w)

∂xi

∣∣∣
x=x0
w=w0

= 0, i ∈ [k], k ∈ J0
p ,

is satisfied. Since x ∈ P is chosen according to (3.7), we obtain by (3.30)

0 =
∑

i∈[0]

∂G0(x)
∂xi

∣∣∣
x=x0

∂xi

∂rq

∣∣∣
r=r0

+
p∑

k=1

w0
k

∑

i∈[k]

∂Gk(x)
∂xi

∣∣∣
x=x0

∂xi

∂rq

∣∣∣
r=r0

,

and therefore

(3.31) 0 =
∑

i∈[0]

aiqcie
x0

i +
p∑

k=1

w0
k

∑

i∈[k]

aiqcix
x0

i , j ∈ Jm.

Dividing (3.31) by g0(t0) we conclude, regarding (3.8), the relation

0 =
∑

i∈[0]

aiq

ci

m∏
j=1

t0j
aij

∑
i∈[0]

ci

m∏
j=1

t0j
aij

+
p∑

k=1

w0
k

∑

i∈[k]

aiq

ci

m∏
j=1

t0j
aij

∑
i∈[0]

ci

m∏
j=1

t0j
aij

, j ∈ Jm.(3.32)
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Because of the assumptions r · intBp 6= ∅ and t0 an optimal solution
of Pp it follows by Theorem 3.1, Theorem 3.2 and the fact that Br ⊂ Rm

+

contains the element (1, 1, . . . , 1)T :

min
t∈Bp

g0(t) = g0(t0) =
∑

i∈[0]

ci = g0(1, 1, . . . . , 1).

That means, the optimal solution t0 can be chosen as t0 = (1, 1, . . . , 1)T .
Thus, equality (3.32) leads to

(3.33) 0 =
∑

i∈[0]

aiq
ci∑

i∈[0]

ci
+

p∑

k=1

w0
k

∑

i∈[k]

aiq
ci∑

i∈[0]

ci
, j ∈ Jm.

Hence the vector y0 with the coordinates

y0
i =





ci∑
i∈[0]

ci
, i ∈ [0], (3.34)

w0
kci∑

i∈[0]

ci
, i ∈ [k], k ∈ Jp. (3.35)

satisfies the so-called orthogonality condition of P ∗p :

(3.36) AT y = 0.

Moreover, regarding in (3.2) the denotation for λk, k ∈ J0
p , we obtain

immediately from (3.34) and (3.35)

λ0(y0) =
∑

i∈[0]

y0
i = 1,(3.37)

λk(y0) =
∑

i∈[0]

y0
i =

w0
k

∑
i∈[k]

ci

∑
i∈[0]

ci
, k ∈ Jp,(3.38)

respectively.

From (3.34) it follows

(3.39) y0
i > 0, ∀i ∈ [0].
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Since w0
k ∈ R+, from (3.35) we infer

(3.40) y0
i ≥ 0, ∀i ∈ [k], k ∈ Jp.

Thus, the vector y0 satisfying (3.36), (3.37), (3.39), (3.40) is an element
of B∗

p . Furthermore, from (3.27) we conclude

w0
k(Gk(x0)− 1) = 0, ∀k ∈ Jp,

and by (3.8) we have

(3.41) w0
k(gk(t0)− 1) = 0, ∀k ∈ Jp.

Thus, for t0 = (1, 1, . . . , 1)T it follows

(3.42) w0
kgk(t0) = w0

k

∑

i∈[k]

ci = w0
k, k ∈ Jp,

and (3.38) yields

(3.43) λk(y0) =
w0

k∑
i∈[0]

ci
, ∀k ∈ Jp,

Therefore, the vector y0 according to (3.34) and (3.35) has the presentation
(3.20) and (3.21), respectively:

y0
i =





ci∑
i∈[0]

ci
, i ∈ [0],

λk(y0)ci, i ∈ [k], k ∈ Jp.

(ii) Since

v(y0) =
∏

i∈[0]

(ci

ci

∑

i∈[0]

ci

) ci∑
i∈[0]

ci
p∏

k=1

∏

i∈[k]

( ci

ciλk(y0)

)ciλk(y0)

λk(y0)λk(y0)

=
∑

i∈[0]

ci

p∏

k=1

∏

i∈[k]

1
λk(y0)λk(y0)

λk(y0)λk(y0)

=
∑

i∈[0]

ci,



OPTIMIZATION OF C-ORTHOGONAL POSYNOMIALS 91

we have g0(t0) = v(y0). Using (3.18), we conclude v(y0) ≥ v(y) ∀y ∈ B∗
p ,

therefore (3.22) is satisfied.

Theorem 3.5 (Inverse Duality Theorem). Let Pp, P ∗p be given and let Pp

be c-orthogonal, and let r · intB∗
p 6= ∅. If y0 is an optimal solution of P ∗p ,

then there exists a primal optimal solution t0 ∈ Bp such that

(i) ci

m∏

j=1

t0j
aij =





y0
i

∑
i∈[0]

ci, i ∈ [0],

y0
i

λk(y0)
, i ∈ [k], k ∈ Jp, where λk(y0) > 0,

(ii) v(y0) = max
y∈B∗p

v(y) = min
t∈Bp

g0(t) = g0(t0).

Proof. (i) Since y0 is an optimal solution of P ∗p , we have

v(y0) ≥ v(y), ∀y ∈ B∗
p ,

and therefore
V (y0) ≥ V (y), ∀y ∈ B∗.

Hence, the system




V (y0)− V (y) < 0, (3.44)
AT y = 0, (3.45)
λ0(y)− 1 = 0, (3.46)
−λk(y) ≤ 0, ∀k ∈ Jp, (3.47)
y ∈ B∗

is not solvable.

Since the function in (3.44) and (3.47) are convex (see [10]) and the
functions in (3.45), (3.46) are affine, there exists a vector (using a standard
result of convex analysis, see [38], Theorem 2.1.1) (η0, ρ0, µ0, τ0) ∈ R+ ×
Rm ×R×Rp

+, η0 6= 0, such that

η0(V (y0)− V (y)) +
m∑

j=1

ρ0
j

( ∑

i∈[0]

aijyi +
p∑

k=1

∑

i∈[k]

aijyi

)

+ µ0(λ0(y)− 1)−
p∑

k=1

τ0
kλk(y) ≥ 0, ∀y ∈ B∗.

(3.48)
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W.l.o.g. we assume η0 = 1 and use the denotation

L∗(y, ρ0, µ0, τ0) = V (y) +A1(y) +A2(y) +A3(y),

where

A1(y) := −
m∑

j=1

ρ0
j

( ∑

i∈[0]

aijyi +
p∑

k=1

∑

i∈[k]

aijyi

)
,

A2(y) := −µ0(λ0(y)− 1) = −µ0
( ∑

i∈[0]

yi − 1
)
,

A3(y) :=
p∑

k=1

τ0
kλk(y) =

p∑

k=1

τ0
k

∑

i∈[k]

yi.

Then (3.48) yields

V (y0) ≥ L∗(y, ρ0, µ0, τ0), ∀y ∈ B∗.

Because of (3.45)-(3.47) it follows

L∗(y0, ρ, µ, τ) ≥ V (y0), ∀(ρ, µ, τ) ∈ Rm ×R×Rp
+.

Therefore, we obtain

(3.49) V (y0) = L∗(y0, ρ0, µ0, τ0),

and moreover

L∗(y0, ρ, µ, τ) ≥ L∗(y0, ρ0, µ0, τ0) = V (y0) ≥ L∗(y, ρ0, µ0, τ0),

∀(y, ρ, µ, τ) ∈ B∗ ×Rm ×R×Rp
+,

i.e. y0 ∈ B∗ = B∗
p is a global minimizer of L∗(y, ρ0, µ0, τ0) on B∗

p ×Rm×
R×Rp

+. Consequently, the relation

∂L∗(y, ρ0, µ0, τ0)
∂yi

∣∣∣
yi=y0

i

= 0, i ∈ [k], k ∈ J0
p

must be satisfied.
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Since the partial derivatives of V (y), A1(y), A2(y), A3(y) are given
according to

∂V (y)
∂yi

∣∣∣
yi=y0

i

= ln
ci

y0
i

λk(y0), i ∈ [k], k ∈ J0
p ,

∂A1(y)
∂yi

∣∣∣
yi=y0

i

= −
m∑

j=1

ρ0
jaij , i ∈ [k], k ∈ J0

p ,

∂A2(y)
∂yi

∣∣∣
yi=y0

i

= −µ0, i ∈ [0],

∂A3(y)
∂yi

∣∣∣
yi=y0

i

= τ0
k , i ∈ [k], ∀k ∈ Jp,

we obtain the formulas (taking into consideration λ0(y0) = 1):

∂L∗(y, ρ0, µ0, τ0)
∂yi

∣∣∣
yi=y0

i

=

=





ln
ci

y0
i

−
m∑

j=1

ρ0
jaij − µ0 = 0, i ∈ [0], (3.50a)

ln
ci

y0
i

λk(y0)−
m∑

j=1

ρ0
jaij + τ0

k = 0, i ∈ [k], k ∈ Jp. (3.50b)

Setting ρ0
j := −ln t0j , j = 1, . . . , m, it follows from (3.50a) and (3.50b)

(3.51a) ci

m∏

j=1

t0j
aij = eln y0

i +µ0
= y0

i eµ0 , i ∈ [0],

(3.51b) ci

m∏

j=1

t0j
aij = e

ln
y0

i
λk(y0)

−τ0
k =

y0
i

λk(y0)
e−τ0

k , i ∈ [k], k ∈ Jp,

respectively.

Summing (3.51a) and (3.51b) over all i, we get

(3.52a) g0(t0) =
∑

i∈[0]

ci

m∏

j=1

t0j
aij = eµ0
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and

(3.52b) gk(t0) =
∑

i∈[k]

ci

m∏

j=1

t0j
aij = e−τ0

k , k ∈ Jp,

respectively.

From (3.52a) it is easy to see that

g0(t0) > 0

and by the assumption τ0
k ∈ R+ for all k ∈ Jp, from (3.52b) it follows

gk(t0) ≤ 1, ∀k ∈ Jp.

So the existence of as feasible t0 ∈ Bp of the assumed c-orthogonal
program Pp is shown.

In this case, by Theorem 3.2 we conclude that (1, 1, . . . , 1) ∈ Bp.

Applying Theorem 3.1, we have (because of Bp ⊂ Rm
+ )

(3.53) min
t∈Bp

g0(t) =
∑

i∈[0]

ci = g0(t0).

Therefore, identifying t0 as minimizer, from (3.53) we conclude

(3.54)
m∏

j=1

t0j
aij = 1, ∀i ∈ [0].

Thus, (3.52a) becomes

(3.55a)
∑

i∈[0]

ci = eµ0
.

Furthermore, taking into account the feasibility of y0, from (3.49) we get

p∑

k=1

τ0
kλk(y0) = 0.

Since τ0
k ≥ 0, λk(y0) ≥ 0 for each k ∈ Jp, we obtain τ0

kλk(y0) = 0 ∀k ∈ Jp.
Hence τ0

k = 0 if λk(y0) > 0, k ∈ Jp, and in that case (3.52b) leads to

(3.55b) gk(t0) =
∑

i∈[k]

ci

m∑

j=1

t0j
aij = e−τ0

k = 1, k ∈ Jp.
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Substituting (3.55a) and (3.55b) into (3.51a) and (3.51b), respectively, it
follows assertion (i):

ci

m∏

j=1

t0j
aij =





y0
i

∑
i∈[0]

ci, i ∈ [0], (3.56a)

y0
i

λk(y0)
, i ∈ [k], k ∈ Jp, where λk(y0) > 0. (3.56b)

(ii) By (3.56a) and (3.56b) we get for dual function v of P ∗p :
(3.57)

v(y0) =
∏

i∈[0]

( ci

∑
i∈[0]

ci

ci

m∏
j=1

t0j
aij

)y0
i

p∏

k=1

∏

i∈[k]

( ci

ci

m∏
j=1

t0j
aij λk(y0)

)y0
i

λk(y0)λk(y0).

Taking into consideration that λ0(y0) = 1 and AT y0 = 0 for y0 ∈ B∗
p ,

(3.57) becomes

(3.58) v(y0) =
∑

i∈[0]

ci .

Together with (3.53) it follows

v(y0) := max
y∈B∗p

v(y) = min
t∈Bp

g0(t) = g0(t0),

and by (3.18) we have

g0(t) ≥ v(y0) = g0(t0) ∀t ∈ Bp,

which means that t0 is an optimal solution of the c-orthogonal program
Pp.

Corollary 3.1. Let the assumptions of Theorem 3.5 be satisfied. Then
the assertions

1 =





y0
i

∑
i∈[0]

ci

ci
, i ∈ [0], (3.59a)

y0
i

ciλk(y0)
, i ∈ [k], k ∈ Jp (3.59b)
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are true if and only if

(3.60)
m∏

j=1

t0j
aij = 1 ∀i ∈ [k], k ∈ Jp.

Proof. Let (3.59a), (3.59b) be satisfied. Then by (3.56a), (3.56b) it follows
immediately (3.60).

Since (3.60) is fulfilled by (3.53), from (3.56a) and (3.56b) we infer
(3.59a) and (3.59b), respectively.

Remark 3.3. For “classical” posynomial programs assertion (i) of Theorem
3.4 and Theorem 3.5 has the following presentations, respectively (see
[10]):

(i’) y0
i =





ci

m∏
j=1

t0j
aij

g0(t0)
, i ∈ [0],

λk(y0)ci

m∏
j=1

t0j
aij , i ∈ [k], k ∈ Jp,

(ii’) ci

m∏

j=1

t0j
aij =





y0
i v(y0), i ∈ [0],
y0

i

λk(y0)
, i ∈ [k], k ∈ Jp, where λk(y0) > 0.

3.2. Examples

Example 3.1. Let be given

Pp : min
{
g0(t) := 2t21t2t

3
3 + t−4

1 t−2
2 t−6

3 | t ∈ Bp

}

Bp :=
{

t ∈ R3 | t > 0, g1(t) :=
1
2
t1t

2
2t
−1
3 +

1
2
t−1
1 t−2

2 t3 ≤ 1
}

.

Since g0, g1 are c-orthogonal posynomials, the program Pp is c-orthogonal.
Moreover, because of t = (1, 1, 1)T ∈ Bp by Theorem 3.1 we get

g0(t0) =
∑

i∈[0]

ci = 3.

Therefore, t0 = t is one optimal solution of Pp. To obtain all primal
optimal solutions, we use Theorem 3.5. Solving the system AT y = 0,
λ0(y) = y1 + y2 = 1, y ≥ 0, where

AT =




2 −4 1 −1
1 −2 2 −2
3 −6 −1 1


 ,
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we get y1 =
2
3
, y2 =

1
3
, y3 = α, y4 = α.

Thus, the dual feasible set is

B∗
p :=

{
y ∈ R4 | y =

(2
3

,
1
3

, 0, 0
)T

+ α(0, 0, 1, 1)T , α ≥ 0
}

,

and for each y ∈ B∗
p we have v(y) = 3 which means that each y ∈ B∗

p is a
dual optimal solution.

Therefore, by Theorem 3.5, (i) we get

2t21t2t
3
3 =

2
3
· 3 = 2,

t−4
1 t−2

2 t−6
3 =

1
3
· 3 = 1,(3.61)

1
2
t1t

2
2t
−1
3 =

α

2α
=

1
2

,

1
2
t−1
1 t−2

2 t3 =
α

2α
=

1
2
·

Solving (3.61), we obtain the set of primal optimal solutions:

B0
p := {t0 ∈ R3 | t01 = β, t02 = β−

5
7 , t03 = β−

3
7 , β > 0}.

One can see that for β = 1 the point t is an element of B0
p . From (3.61)

it is obvious that
m∏

j=1

t0j
aij = 1, ∀i ∈ [k], k ∈ Jp.

Therefore, by Corollary 3.1 we have

1 = y0
i

∑
i∈[0]

ci

ci
=





2 · 3
3 · 2 , i = 1,

1 · 3
3 · 1 , i = 2,

1 =
y0

i

ciλk(y0)
=

y0
i

ci(y0
3 + y0

4)
=





α
1
2 · 2α

, i = 3,

α
1
2 · 2α

, i = 4.

Example 3.2. Let be given

Pp : min{g0(t) := 3t21t
−2
2 + t61t

−6
2 | t ∈ Bp},

Bp := {t ∈ R2 | t > 0, g1(t) := t−1
1 + t1 ≤ 1}.
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Since g0, g1 are c-orthogonal posynomials, the program Pp is c-orthogonal.
But Bp = ∅ because (1, 1)T 6∈ Bp (Theorem 3.2).

Example 3.3

min{g0(t) := t−1
1 t2t3 + t1t

−1
2 t−1

3 | t ∈ Bp},

Bp :=
{

t ∈ R3 | t > 0, g1(t) :=
1
2
t1t

−2
2 t3 +

1
4
t−3
1 t32t

−2
3 +

1
4
t1t2 ≤ 1

}
.

Since g0, g1 are c-orthogonal posynomials, the program Pp is c-orthogonal.
It is easy to see that t = (1, 1, 1)T ∈ Bp. Therefore by Theorem 3.1 we
have

min
t∈Bp

g0(t) =
∑

i∈[0]

ci = 2 = g0(t0).

To prove whether t0 is unique or whether a set of primal optimal solu-
tions exists we use Theorem 3.5. Solving the system

AT y =



−1 1 1 −3 1
1 −1 −2 3 1
1 −1 1 −2 0


 (y1, y2, y3, y4, y5)T = 0,

λ0(y) = y1 + y2 = 1, we get the following dual feasible set:

B∗
p :=

{
y ∈ R5 | y =

(1
2

,
1
2

, 0, 0, 0
)T

+ α(0, 0, 2, 1, 1)T , α ≥ 0
}

.

For each y ∈ B∗
p we have v(y) = 2 which means that y ∈ B∗

p is a dual
optimal solution. Since

y0
i

∑

i∈[0]

ci =
1
2
· 2 = 1, i = 1, 2,

y3
0

c3λ1(y0)
=

2α
1
2
· 4α

= 1,

y0
4

c4λ1(y0)
=

y0
5

c5λ1(y0)
=

α
1
4
· 4α

= 1.

we obtain by Corollary 3.1 relation (3.60). Solving (3.60) it follows that
t0 = (1, 1, 1)T is the unique primal optimal solution.
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3.3. Inequalities

Example 3.4. Let ABC be a triangle with the vertices A, B, C, being
centres of three outside touching balls with the radii t1, t2, t3, respectively
(Fig. 1).

Fig. 1

Introducing the angles α1 = ∠CAB, α2 = ∠ABC and α3 = ∠BCA,
the inequality

(3.62) cot2
α1

2
cot2

α2

2
+ cot2

α1

2
cot2

α3

2
+ cot2

α2

2
cot2

α3

3
≥ 27 = 33

can be proved by solving the following unconstrained c-orthogonal posy-
nomial program:

min
{

g(t) := (t1 + t2 + t3)2(t−2
1 + t−2

2 + t−2
3 ) | t ∈ R3, t > 0

}
.

By Example 2.2 it was shown that g is c-orthogonal, and applying Theorem
3.1 we get immediately

(3.63) min
t>0

g(t) = g(t0) = 27, where t01 = t02 = t03.

Therefore, inequality (3.62) is proved if its left hand side can be identified
with g(t). For that purpose we write (3.62) as

cot2
α1

2
cot2

α2

2
+ cot2

α1

2
cot2

α3

2
+ cot2

α2

2
cot2

α3

3

=
tan2 α1

2
+ tan2 α2

2
+ tan2 α3

2
tan2

α1

2
tan2 α2

2
tan2 α3

2

≥ 33.(3.64)
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Using the abbreviations

q := t1 + t2, r := t2 + t3, s := t1 + t3, v := t1 + t2 + t3,

one obtains by the cosine-theorem

cos α1 =
q2 + s2 − r2

2qs
;

together with cos 2α1 = 2 cos2 α1 − 1 it follows

cos2
α1

2
=

1 + cos α1

2
=

vt1
qs

, sin2 α1

2
=

1− sinα1

2
=

t2t3
qs

·

Thus we have
(3.65)

tan2 α1

2
=

t2t3
vt1

and analogously, tan2 α2

2
=

t1t3
vt2

, tan2 α3

2
=

t1t2
vt3

·

Then (3.64) becomes

A = v2 t1t2t3(t−2
1 + t−2

2 + t−2
3 )

t1t2t3
= (t1 + t2 + t3)2(t−2

1 + t−2
2 + t−2

3 ) = g(t).

The result t01 = t02 = t03 in (3.63) is equivalent to α1 = α2 = α3 which
means that the triangle is equilateral. For that case in (3.62) equality
holds.

Remark 3.4. Inequality (3.62) can be found in [28], p. 183, by modifying
and combining 6.23 and 6.24, or by using a comment of W. Janous in [28],
p. 169, (2’), for the case n = 0, p = 2. Of course, (3.62) and thus (3.64)
can be generalized to the inequality ([28], p. 169, (2’))

(3.66)

3∑
j=1

tanp αj

2
3∏

j=1

tanp
αj

2

≥ 3p+1, p ≥ 1.

The proof of (3.66) can be given like that one of (3.62). Taking in (3.65)

tanp αj

2
, j = 1, 2, 3, p ≥ 1,
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we conclude from (3.66)

(3.67) g(t) := (t1 + t2 + t3)p(t−p
1 + t−p

2 + t−p
3 ) ≥ 3p+1.

Because in 2.2., Example 2.4

h(t) :=
( m∑

j=1

tj

)p( m∑

j=1

tpj

)
, m ∈ N,

was shown to be a c-orthogonal posynomial, the validity of (3.67) follows
immediately by Theorem 3.1.

Moreover, using Theorem 3.1 once again, it follows

(3.68) h(t) ≥ mp+1, m ∈ N, p ≥ 1.

Inequality (3.68), rewritten, yields

(3.69)
( t1 + · · ·+ tm

m

)p

≥ m

t−p
1 + · · ·+ t−p

m

,

which means that for any p ≥ 1 the p-th power of the arithmetic mean of
the variables tj > 0, j = 1, . . . ,m, is not less than the harmonic mean of
their negative p-th powers.

Example 3.5. To prove the inequality

(3.70) 3t21 + 2t32 + t63 ≥ 6t1t2t3, ∀ti > 0, i = 1, 2, 3,

or, equivalently

(3.71) g0(t) := 3t1t−1
2 t−1

3 + 2t−1
1 t22t

−1
3 + t−1

1 t−1
2 t53 ≥ 6, ∀t > 0,

one has to check whether the posynomial g0(t) is c-orthogonal. Since

AT
[0]c[0] = 0, where AT

[0] =




1 −1 −1
−1 2 −1
−1 −1 5


 , cT

[0] = (3, 2, 1),

this property is fulfilled according to Definition 2.1. Therefore, by Theo-
rem 3.1 we conclude min

t>0
g0(t) = 6, which yields (3.71) and so (3.70).
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Example 3.6. To prove the well-known geometric mean-arithmetic mean
inequality in its most familiar form

(3.72) (x1x2 . . . xm)
1
m ≤ 1

m
(x1 + x2 + · · ·+ xm), xi > 0, m ∈ N,

first we set x
1
m
j := tj , m ∈ N. Thus, (3.72) is equivalent to the inequality

m ≤

m∑
j=1

tmj

m∏
j=1

tj

:= g(t), m ∈ N.

Since g(t) is a c-orthogonal posynomial (see Example 2.5), by Theorem
3.1 we conclude min

t>0
g(t) = m.
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