ACTA MATﬁEMATICA VIETNAMICA ’ 29
Volume 22, Number 1, 1997, pp. 29-51

GENERATING THE EFFICIENT OUTCOME SET
IN MULTIPLE OBJECTIVE LINEAR PROGRAMS:

THE BICRITERIA CASE
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Dedicated to Hoang Tuy on the occasion of his seventieth birthday

ABSTRACT. This article presents an algorithm called OUTSET for ge-
nerating the efficient outcome se of a multiple objective linear Program
(BX) with two objective functions, Unlike standard vector maximization
approaches to multiple objective linear programming, OUTSET does not
attempt to generate the efficient decision set for problem (BX), which can
be large and quite complicated, Instead, it directly generates the eflicient
faces of the smaller, simpler efficient outcome set. As a'result, it is expected
that in practice, the OUTSET algorithm will have the potential to allow
decision makers to solve bicriteria linear Programming problems relatively
easily and accurately, including those large-scale problems that heretofore
were too large to be amenable to standard vector maximization methods
for multiple objective linear pProgramming. '

1. INTRODUCTION

A multiple objective mathematical Programming problem (P} involves
the simultaneous maximization of p > 2, noncomparable criteria functions
Over a nonempty set in R”. Since the criteria functions are, in general,
conflicting, the “maximization” aspect of this problem is not a priori well
- defined. As a result, usually, the decision maker (DM), together with an
analyst, seeks a most preferred solution, if one exists, to the problem, i.e.,
a solution that maximizes the DM’s value function for the problem over
all feasible alternatives. Generally, this value function js not explicitly
available or computable. Mathematically, however, even in the absence
of this function, in most real-world situations it can be shown that a
most preferred solution can be found somewhere in the subset of feasible
solutions called the efficient (or nondominated) decision set. Therefore,
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many of the approaches for solving multiple objective mathematical pro-
grams generate all, or at least some, of the efficient decision set for the
DM to examine. In this way, inherent tradeoffs among the criteria are re-
vealed, and most-preferred solutions can be sought. Included among these
approaches are the vector maximization approach, interactive approaches
and several others; see, for instance Cohon [10], Evans [16], Goicoechea et
al. [19], Kuhn and Tucker [21], Luc [22], Sawaragi et al. (28], Steuer [32],
Yu [34], Zeleny [36] and references therein.

The vector maximization approach for solving problem (P) is one of the
oldest and most familiar approaches for solving the problem. In typical
procedures that use this approach, either all of the efficient decision set
of problem (P) or, substantial portions thereof, are first generated with
the aid of a computerized routine. Subsequently, the DM chooses a most
preferred solution from the generated set. | h

The efficient decision set of problem (P), however, is generally a com-
plicated, nonconvex set that grows rapidly as the size of the problem
increases. Consequently, generatihg this set in its entirety is possible in
only certain special cases; see, e.g., Benson [6], Isermann {20], Ecker et
al. [15], Bitran [9]; Yu and Zeleny [35], Villarreal and Karwan [33]. Even
in these special cases; the computational effort required to generate all
of the efficient decision set becomes rapidly unmanageable and seems to
grow exponentially with problem size; see, e.g., Evans and Steuer [17].
Marcotte and Soland [24] and Steuer (32]. Furthermore, the sheer size
of the efficient decision set becomes so huge that it becomes difficult to
describe to the DM and can overwhelm the DM to the extent that he or

she is not able to choose a most preferred solution from it [31].

In response to this, in recent years, a handful of researchers has begun
to turn their attention to the mathematics and tools for generating all
or portions of the efficient outcome set, rather than the efficient decision
set, for problem (P); see Benson [5], Benson and Sayin 8], Dauer [11,

12], Dauer and Liu [13], Dater and Saleh [14], Gallagher and Saleh [18].

Although it is also nonconvex, the efficient outcome set for problem (P)
has a size and structure that,_are.invaria,bly much smaller a;_lid simpler than
the size and stricture of the efficient decision set. This is largely due to
the fact that the officient outcome set lies the space RP of the objective
function value, rather than in the decision space R™, and p'is typically
smaller than n by factors of 10, 100, or even more; see €.g., Benson [5],

Dauer and Liu [13] and Steuer [32]. o
In this article, we present and validate an algorithm called OUTSET




GENERATING THE EFFICIENT OUTCOME SET 31

for generating the entire efficient outcome set of a multiple objective li-
near program (BX) with two objective functions. To our knowledge, this
algorithm is the first of its type. The OUTSET algorithm exploits the fact
that the dimension of the outcome set of a bicriteria linear programming
problem is at most two.

Unlike standard multiple objective linear programming algorithms (e.g.,
Armand and Malivert [1], Ecker et al. [15], Evans and Steuer {17], Iser-
mann [20], Philip [26], Steuer [31, 32], Yu and Zeleny [35], Zeleny [36]),
the OUTSET algorithm for problem (BX) generates the efficient outcome
set, rather than the efficient decision set, for the problem. There are three
important advantages that result from this approach.

First, it has been shown that in practice, decision makers base their
decisions on outcome set values rather than on values of points in the
decision set (8, 13, 14]. Hence, the output of the new algorithm is expected
“to be more beneficial to the DM than the output given by typical decision
set-based methods.

Second, it is well known that frequently many points in the efficient de-
cision set of problem (BX) are mapped by the criteria of the problem onto
a single outcome in the efficient outcome set. [2, 5, 11, 13, 14]. As a result,
by generating points directly from the efficient outcome set, OUTSET
avoids risking redundant calculations from the decision set that would be
of little or no use to the DM. '

Third, since the efficient outcome set of problem (BX) invariably has
a much simpler structure and smaller size than the efficient decision set,
the output of the OUTSET algorithm. can typically be expected to be
generated much more easily and quickly than the output of decision set-
baset methods, and with a smaller probability of overwhelming the DM.

Furthermore, as we shall see, OUTSET can be implemented with well-
known linear programming techniques. In addition, it avoids the need
for the complicated bookkeeping or backtracking required by many of the
standard multiple objective. linear programming methods (cf., e.g., Ecker
et al. [15], Evans and Steuer [17], Steuer [32]). S

As a result, it is expected-that the new OUTSET algorithm will have
the potential to allow a DM and an analyst to solve large-scale bicri-

teria linear programming problems that heretofore were too large to be
amenable to the vector maximization approach.

~ This article is organized as follows. In the next section, notation and
preliminary results are presented. The QUTSET algorithm is presented
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in Section 3. Section.4 gives a geometrically—motiva.ted proof of the con-
vergence of OUTSET. In Section 5 some practical benefits to be expected
from the algorithm are illustrated via an example. Some concluding re-
marks are given in the last section.

'2. NOTATION AND PRELIMINARIES

" Let X C R™ be a nonempty, compact polyhedron. Assume without
loss of generality that : :

X={zecR"| Az =d, 20},
‘whe;{e A is an mxn matrix of real numbers and d € R™, Let C denotea 2X
n matrix with rows ¢, cg' € R™. Then the bicriteria linear programming
problem may be written '

(BX) VMAX: Cz, st.z€ X,

The function {¢1,%), {c2,z) are called the objective fﬁnctions or criteria
of problem (BX), and X is called the feasible decision set of the problem.

Since the criteria of problem (BX) are generally conflicting, the “yec-
tor maximization” operator VMAX of problem (BX) is notf a priori well
defined. Usually, a DM, with the aid of an analyst, seeks a most preferred
solution z*, if one exists, to problem (BX); ie.,; a solution z* & X that
maximum v|{¢1, z), {c2, £)} over X, where v R2 — R is the preference (or
value) function of the DM for problem (BX). Unfortunately, the preference
functions v of the DM usually is not explicitly available or computable [28,
29, 32]. In the absence of v, to help the DM find a most preferred solu-
tion, the vector maximization approach for problem (BX) generates the
entire efficient decision set of the problem, where the efficient decision set
is defined as follows. '

|
LR
2
3
|

Definition 2.1. The efficient (or nondenominated) decision set Xg for
problem (BX) is the set of all.points £° € X for which there exists no
point z € X such that Cx 2 Cz® and Cxz # Cz°. '

The tationale for generating Xg for the DM to search for a most pre-
ferred solution in the absence of v stems from the fact that X g will contain
a most preferred solution whenever v is known to be coordinatewise non-
decreasing {cf., e.g., Benson and Aksoy [7], Soland [30] and Steuer 132]).
In practical situations, v may not be known explicitly, but, invariably, the
DM’s preferences dictate that v must be nondecreasing in its arguments.
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Direct generation of Xz, however, can be a daunting task. This is
because Xg is generally a large, complicated nonconvex set consisting of
the union of large numbers of faces of X. These faces form a connected
set, but their dimensions and locations within X can be widely [1, 5, 32,
34].

This is one of the main reasons that the algorlthm OUTSET avoids
direct generation of Xp. Instead of working in the dec131on space R™,
OUTSET works in the outcome space R2.-

Let Y = {Cz|z € X}. From Rockafellar [27], Y is a nonempty, compact
polyhedron in the outcome space R of problem (BX). We refer to Y as the
feasible outcome set (or simply, the outcome set) of problem (BX). Notice
that ¥ is the image of X under the linear mappings C. Furthermore,
it is easy to show that the image CXg of the efficient decision set Xg
under C is identical to the set of efﬁc1ent points Yg of the b1cr1ter1a linear
programming problem '

BY) S VMAX Izy,ster

where I3 denotes the 2 X 2 identity matrix (cf. Proposition 2.1 below).
The set Yg is thus also: called the efficient outcome set of problem (BX).

The algorithm OUTSET indirectly, rather than directly, generates the
efficient decision set Xz by finding the smaller, simpler efficient outcome
set Yp = CXpg instead. In particular, QOUTSET directly generates the
efficient faces of Yp one at a time, without complicated bookkeeping or
backtracking. In this way, as we shall see, generally far fewer efficient
faces need to be generated than if Xz were directly generated. Further-
more, OUTSET needs to only generate faces of Yz of dimensions zero and
one, i.e., efficient extreme points-and edges of Y. In contrast, direct face

generation of X g could require generating large numbers of faces of much
higher dimension (cf., e.g. [5, 11, 13, 14]).

In the remainder of this section, we review some preliminary results
that will be needed to develop and validate the new algorithm OUTSET.
Recall that a face of a convex set V is a convex subset F' of V such that
any closed line segment in V ‘with at least one relative interior point in
F must have both of its endpoints in F. The zero-dimensional faces of V
are called eztreme points of V.

The following result will be used frequently in the sequel. It follows
directly from the definitions.

Proposition 2.1. (a) For any y° € Yg, if 2° € X satisfies Cz° = ¢°,
then z° € Xg.
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(b) For any z° € Xg, if y° = Cz°, theny® € Yg. -

It is well known that Xz and Yg consist of unions of eﬁic1ent faces of X
and Y, respectlvely However, the image under C of an efficient face of X
need not be an efficient face of Y. In particular, large numbers of efficient
faces X5 of X may have images CXr under C that are strict subsets of
the relative interiors.of efficient faces of Y [5, 11]. However, the inverse
mapping of C successfully maps efficient faces of Y onto eﬂi(:lent fa.ces of
X, as shown by the following result.

Theorem 2.1. Let Yg be an arbitrary efficient face of Y. Then Xp =
{:c eX l Cz e YF} is an efficient face of X, and dim Xr > d1mYF

, Theorem 2.1 follows 1mmedla.tely from Theorem 3.4 in [5]. Notice that
it is rea.dlly apparent from Theorem 2.1 and the discussion precedmg it
that Yg must always contain the same number or a smaller number of
faces than Xz, and that the dimension of the facial pre-image Xp of any
efficient face Yy of Y will always be greater than or equal to the dimension
of Yp. In practice, in fact, both the numbers and the dimensions of the
faces in X can far exceed those of the faces in Y [5 11, 13).

- For each t = 1,2, let

L | - M; = max{e;, z), s.t. z € X,

let m3 equal the optimal value of the linear program

o ~ max{es, z),
Q) . s.%. {c1,2) = My,
o TE X, ‘

andlet I={beR | ma<b< Mg} For each b € I consider the linear
programmmg problem :

‘ " max{cy ),
(Ps) | s.t. {c2,z) > b,
-z € X,

and let w(b) denote the optimal value of this problem. The following
results will be used by the OUTSET algorithm to help to systematically
generate faces of Y.
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Theorem 2.2. A point z° € R™ satisfies z° € Xz if and only if z° is an
optimal solution to problem (Py) for some b e I.

Theorem 2.3. (a) The function w 1s continuous, concave and piecewsse
linear on L :

(b) For each b € I, w(b) is equal to the optimal value of the dual linear
program to problem (Py), where this dual linear program may be written

min —bu + (d, g},
(Qs) st ~cou+ ATg > ¢,
u > 0.

Theorem 2.2 is fairly well known it follows, for instance, directly from the
main result in [6]. Theorem 2.3 is a standard linear programming result.

In some cases, Xy = X may occur, i.e., problem (BX) may be complete-
ly efficient. Notice that Xg = X if and only if Yg = Y. To detect whether
or not problem (BX) is completely efficient, the linear programming test
in the following result can be used. Let e = [1,1]T € R,

Theorem 2.4. Problem (BX) is completely efficient if and only if the
optimal t of the linear program

min{d, ¢},
st. —CTy + ATy — 2= CTe,
(T) ' ATg—2z>0, '
u,z >0

s equal to 0.

Theorem 2.4 follows from [4]. From [4], since X is nonempty and com-
pact, the value of ¢ in problem (T) is always nonnegative and finite.

3. THE ALGORITEM OUTSET

From {27] and [32], since the outcome set is a nonempty, compact poly-
hedron in R2, either Y is completely efficient, ¥z is a single extreme
point of Y, or Yg consists of one or a set of connected one-dimensional
faces (edges) of Y. The algorithm OUTSET first uses simple linear pro-
gramming to detect if ¥ is completely efficient or if Yz is a singleton. If
either case is found to be true, the algorithm indicates this, provides ¥z
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as output and terminates. Otherwise, the algorithm systematically ge-
nerates and provides the edges of Y, one at a time, until all of Yg has
been found. Each edge of Yz is described by providing the coordinates
of the endpoints of the line segment in R? that the edge forms. For each
additional edge of Yz that is found, its first endpoint is identical to the
most-recently generated endpoint of the most-recently found edge of Yg.
The second endpoint of this edge is found by solving two simple linear
programming problems. Since Yz consists of a finite number of faces, the
algorithm will always be finite.

The algorithm may be stated as follows.
Algorlthm OUTSET

Step 1. Compute the 0pt1ma1 objective function value t of the lmea.r
_program (T) Ift =0,stop: Y = {Cz | z € X}. 0therw1se, conti-
nue.

Step 2. Compute Ml and Mﬁ by ﬁn’ding the optimal objective function
values for the linear program ( ) with ¢ = 1 and ¢ = 2, respectively.
Find any optimal solution z! and the optimal objective function
value ms to the linear program (Q).

Step 3. If my = Ma,stop: Y= {(My1, M3)T}. Otherwise, let b, = ma,
a1 = M, and Yg = ¢, set k =1, and continue.

Step 4. Set b = b; and & = o and find any optimal solution (uk, ") to
the linear program

max u,
(Ps,a) st —bu+{d,q) =,
~cqu + ATg > a1,
u >0,

Step 5. Find any optimal solution z*t1 to the linear program

max{cz, Z),
s.t. (c1,7) + wrles, ©) = (d,d"),
z€ X,
and set by = (cz,m k1Y) qgry = (1, zF ).
Step 6. Set Yg =Yg U Lk, where Ly is the line segment in R? w1th

.endpoints (ag,b;)T, ¢ = k,k+ 1. If beyy = Mg, stop. ‘Otherwise,
set k¥ = k + 1 and go to. Step 4.
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Step 1 of the algorithm tests problem (BX) for complete efficiency. If
t = 0 in Step 1, then, by Theorem 2.4, complete efficiency holds and
the algorithm terminates. Otherwise, by Theorem 2.4, complete effi-
ciency does not hold. In this case, the algorithm proceeds to Step 2
where the interval I = {b € lez < b £ M;} and an initial point
Y= ({en, 21, {e2,2'))T = (My,m;)T € Yg are found. I my = M,,
then from Theorem 2.2 a.nd the definitions of My and M;, Y& consists of
the single extreme point y! of ¥. When this occurs, the algorithm stops
in Step 3 with the indication that Yz = {(M1, M3)7}.

The iterative Steps 4 through 6 are executed when Yz consists of one
or more edges Ly, Ly,..., Ly of Y. As we shall see later, when Step 4 is
executed for the first tlme, the first endpoint (ay,b1)7 = (w(by),5,)7 of
L, is available from Step 3. Subsequently, as we shall see, at the beginning
of the kth execution of Step 4, the first endpoint (o, bk) of Ly € Yy is
available from the (k — 1)st execution of Step 6.

For each k£ > 1, given the first endpoint (ak,bk)T of Ly, the goal of
Steps 4-6 is to generate the second endpoint (0tkt1,b541)T of Ly and to
add Ly to the description of Yz. To accomplish this, first in Step 4 a
linear program is solved to find the values of ux € R and ¢* € R™. As we
shall see later, the values for ux and ¢* calculated in Step 4 provide the
implicit description :

(2) Li={y €Y | y1 +uys = (d¢*)}

of the efficient edge Ly of Y.

Next, giveﬁ uy and ¢*, a second linear program is solved in Step 5 for
an optimal solution z¥*1. As we shall see later, zF+! provides the second
endpoint (og41,bky1)T of Ly via the equations

apy1 = {er, 5N, bpyy = (62,$k+1)-

Furthermore, we shall see that these values of a,; and bk+1 satisfy
Okt = w(bk1.1), where by > by.

In Step 6, the edge Lj, € R? is added to Y. Notice that Ly is explicitly
described in Yr as the line segment in R? with endpoints (a;,b;)7, i =
kyk+1. If bpy1 = Mj, then, since bgiy = {c2,zF+1) and b4y > b; for
aIl {, Theorem 2.2 and the definition of M, imply that all of Y has been
identified, and the algorithm terminates. Otherwise, the generation of the
efficient edges of Yz continues with another iteration of Steps 4-6.
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Remark 3.1. From Theorem 2.2, it is possible to generate Yz by solving
linear program (P};) parametrically for all b € I. The algorithm OUT-
SET, however, does not take this approach because it is not as efficient
computationally as the approach used in OUTSET (cf. Section 5).-

4. CONVERGENCE

" In this section, we will prove via geometrically-motivated arguments
that the algorithm OUTSET is finite and always generates all of the ef-
ficient outcome set for problem (BX). To accomplish this, we must first
prove some preliminary lemmas.

Lemma 4.1. In the algorithm OUTSET, for each k > O,Imk"'l.is an
optimal solution to the linear program (P;) at b = bgy1. Furthermore, for
each k > 1, and for each b€ {b € R | by < b < bry1}, (ur,q¥) 15 an

optimal solution to the dual linear program (Qp) to problem (Py) at b = b.

Proof. Notice from Step 2 of the OUTSET algorithm that z! is an optimal
solution to problem (Q), and from Steps 2 and 3 that b; = mg, where m,
is the optimal objective function value of problem (Q). It follows that with
b = by, z! is a feasible solution to problem (P;) and {¢;,z!) = M;. From
the definition of My, we conclude that z! is an optimal solution to problem
) (Pb) at b= bl.

Now assume that k& > 1. From the definitions of bxy; and z*t?! in Step
5 of OUTSET, it follows that

(3) _ , o (025 +1) = bk+1.,

(4) R o (cl, et ) + u‘k(CZ: 1) = (d3 qk):

(5) o gkl e x

From (3) and (5), z**! is a feasible solution to problem (P;) at b = bg1.

From (3) and (4), the objectlve function value {¢y,z**1) of z**+! in this
problem satisfies

(6) {eg,z*) = —bk+1uk + (d; ¢%).

From Step 4 of OUTSET, (uk, ) is a-feasible solution to problem (Qp)
at b = bgy1. From (6), since z*+! is a feasible solution to the dual
linear. (Py) to problem (Qp) at b= bk+1_, this and duality theory of linear
programming [25] imply that z**1 and (ug,¢*) are optimal solutions to
problems (P;) and (Qy), respectively, at.b = bgti-
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From Step 4 of OUTSET, (ur,g*) is a feasible solution to problem
(Ps,o) when b = b; and o = ak. From Step 2and 3 of OUTSET, z! is a
feasible solution to problem (P;) at & = by with objective function value
{e1,z') = M;. By definition of M, this implies that «! is an optimal
solution to problem (P;) at b = by, so that w(b;) = M,. By Step 3
of QOUTSET, it follows that a; = w(b;). Furthermore, from Step 5 of
OUTSET, since z**! is an optimal solution to problem (Py) at b= bgyq,
w(bky1) = {e1,25!) = apqq. It follows that b = by and o = g = w(by)
in problem (P;,,) in Step 4 of the algorithm. |

- Since (ug, ¢*) is a feasible solution to problem (Pb,a). when b = by -and
o = a, and since o = w(by), it follows that (uk,¢*) is a feasible solution
to problem (Qj) at & = b, that satisfies

—brur + (d, qk) = w(bg).

By Theorem 2.3 (b), this implies that (ug, ¢*) is an optimal solution to
problem (Q;) at b = by. '

_ Assume now that b € R satisfles by < b < bg+1. Then, for some § € R,
b= 0bx + (1 — 0)br4.1. From Theorem 2.3(a), this implies that

w(b) > Ow(bi) + (1 — O)w(br1).

Since (uk,¢*) is an optimal solution to problem (Qs) for both b = b; and
b = bg41, this inequality may be written .

W) 2 0(~besi + (4, 6™) + (1 — ) (~bis s + (d,¢°)
= “bug + (d, ¢¥). IR

Because (ug,¢*) is a feasible solution to problem (Qy) at b = b, together

with Theorem 2.3(b), this implies that (uk,¢*) is an optimal solution to
this problem. _ ‘ O

Remark 4.1. Notice from the proof of Lemma 4.1 that in OUTSET, for
each k > 1, o = wibx). From linear programming theory [3] and Step
4 of the algorithm, this implies that for each k > 1, —uy is the right-
hand derivative of w at b;. By Theorem 2.3(a), this implies that for each
k> 1, a 8 > 0 exists such that w(b) = —buy, + (d, ¢*) for all b such that
br < b < by + 6.

Remark 4.2. For each k > 1, from Lemma 4.1 it follows that (e;,2*) =
—bug + (d, ¢*). Furthermore, from the proof of Lemma 4.1, {c3,z*) = by
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for each k > 1. It follows that for each k& > 1, {e1,zF)+ulecs, zF) = (d,q"),
so that z* is a feasible solution to the linear program solved in Step 5 of
the OUTSET algorithm. From Step 5 of the algorithm, this implies that
for each k > 1, b = {c2,z*) < {e2,2) = bpya.

Lemma 4.2. For each k > 1 the scalar uy computed in Step. 4 of the
OUTSET dlgorithm is positive.

Proof. Assume that k£ > 1 and choose b € R such that bk <b< bk + bk,

where &y is chosen as in Remark 4.1. Let z’ denote an optimal solution
to the linear program (P3) at b = b, and suppose that # maximizes {1, )
over X. Then from Step 4 of the a,lgorlthm, Remark 4.1 and the definition
of w, . . :

(7 e a) = —bu+ (d b,

where

(8) | | - —eatup + ATq" > 01

From (8), ¢* is a feasible solution to the linear program
| min{d, ¢),

st. ATq > ey + uges.

Since £ € X, £ is a feasible solution to the dual linear ﬁrogra.m to the
latter problem, which may be written ‘

max(ci,:c) + uk(c% :B),

st.z e X.
Therefore, by duality theory of linear prdgra,mming .[2'5],
(9) ' (c1,2) + urlez, 2) < (dg®).

From (7) and (9)

1)  [{er, 2 — (e1,8)] +ux[ B — (e2,8)] 2 0.
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Since_ﬁ > bg, and k > 1, Remark 4.2 implies that b > b,. Therefore,
{e2,z%) > b;. From the definitions of M;, m; and 2, since b; = my, this
- implies that

(11) o | {e1,2°) — (e1,%) < 0.

Furthermore, since £ € X, {c1,2) = Ml.a.nd b > b; = mg, the definition
of my implies that

(12) b= {e2,2) >0,

Together with (10), the inequalities (11)-(12) imply that ug > 0. O

Remark 4.3. Using Lemma 4.2, it is easy to show that the optimal value
function w(b) of problem (P}) is strictly decreasing on I.

Letﬁma 4.3. For each k > 1, the values of by and bgyy computed in the
OUTSET algorithm satisfy by < bri1. Furthermore, for.each k > 1 and
b€ R such that by < b < bry, w(b) = —buy + {d, ¢).

Proof. Assume that & > 1. From Remark 4.1, we may choose a number
b > b such that w(b) = —bug, + (d, ¢*). Then, if we let x% denote an
‘optimal solution to problem (P3) at b = b, it follows that

(13) | : (cl,xi’) = —buy + (d, ¢").

From Step 4 of OUTSET (uk, g¥) is a feasible solution to problem (Q)
at b = b. By (13), since problems (P;) and (Qs) at b = b are linear
programming duals of one another, this implies that (ux,¢*) is an optimal
solution to problem (Q;) at b= b [25]. Therefore, by the complementary
slackness property of linear programming [25], wug({ce, = ) - b) = 0. From

Lemma 4.2, this implies that (cy, z%) = b. By substituting (cs, %) for b in
(13), we obtain that :

(1,2 + ug(ez, o) = (d, ¢*):

Since z* € X , this equality implies that zb is a feasible solution for the
linear program solved in Step 5 of the algorithm. From the definitions of

z**+1 and by, in Step 5, it follows that (02,35) < bp41. Since (cz,ms) =
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b > by, this implies that bx < byy;. The second statement in the l_emma,
is an immediate consequence of Theorem 2.3(b) and Lemma 4.1. O

Remark 4.4. From Lemmas 4.1-4.3 and Remark 4.1, we see the following.
First, each execution of Steps 4-6 of the OUTSET algorithm yields the
additional linear piece of the graph of the function w given by the line
segment in R? with endpoints [bx,w(bx)] and [br41,w(bk+1)]- Second,
this line segment has slope —ux < 0 and lies on the whose equa.tlon is
given by

w(b) = —ugb + (d, ¢5).

The next result shows that this line segment corresponds to the efficient
edge L given in Step 6 of the algorithm and implicitly described by (2).

Theorem 4.1. For each k > 1, the Iine‘segment Ly given in Step 6 of
the QUTSET algorithm is an efficient face of Y, and Ly can be implicitly
described by (2).

Proof. Assume that k > 1. From Remark 4.1 and Step 6 of the algorithm,
Ly is the line segment in R? with endpoints [w(bg), bx] and [w{bky1,bx41]-
Let Fy denote the optimal solution set of the linear program (Gk) given
by )

| max(y; + unya)s
(Gk) : st.yeYy,

where uy, is generated in Step 4 of the algorithm. By Lemma 4.2, uy > 0.
From Yu [34] and linear programming theory, this implies that F is an
efficient face of Y. To prove the theorem, we w1ll show that F = Lx =

{y € Y|y +uryz = (d,¢)}. .

Towards this end, assume that {w(b),d] € Lg. Then by < b < bk-]—l
and, from Lemma 4.3, w(l;) + ukb = (d,¢*). Choose an optimal solution
z? to problem (P;) at b = b. Then, by definition of w; w(b) = (cl,xs)'.
Furthermore, from the proof of Lemma 4.3, (cz,:z:f') = b. As a result, we
see that

(14) (gl,xg) + ui{cz, 58) = (';i,qk)-

In addition, notice from the derivation of (9 (9) in the proof of Lemma 4.2
that for a.ll z€ X,

(15) 7 o A{eg,z) +ugles, z) < (d, ¢*).
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Since z¥ € X , (14) and (15) imply that {d,¢*) is the optimal value of
problem (Gg) and Fy = {y € Y| y1 + ury2 = {d, ¢*)}. Furthermore, since
w(a) + ugh = {(d, g*), where w(f:) = (cl,zs) and b = (cz,xa), we also see
that [w(s),l;] € Fy,sothat Ly C{y €Y | y1 + uxy2 = (d,¢%)}.

To conclude the proof, we must show that {'y €Y | y1 + uryr =
(d,g*}} C Lk. To show this, suppose that y € ¥ and y; + uxy2 = {d, ¢*).

First, we will show that by < ys < bg4+1. Towards this end, assume, to
the contrary, that ys fails to satisfy by < y2 < bx41. Then, either y2 > mo
or ys < ma.

Case 1. y; > mg. Then, since y € Y, y; € I must hold. By Lemma
4.3, we may choose ab € R such that by < b < bg+1, and b will satisfy
w(b) = —buy + (d, ¢*). Therefore, w'(b) = —uy will hold. From Theorem
6.1.2 in Mangasarian [23] and Theorem 2.3(a}, this implies that

- w(yz) < w(®) - urlyz —b),
or, equivalently,
(16) - w(yz) + uryz < w(b) + uzb.

Suppose that (16) holds as an equality. Since w(b) = —buy + {d,¢*),
this implies that
w(ys) + usyz = (d,¢%).

By Remarks 4.3 and 4.4, this implies that y, must satisfy b < yo < bgt1,
which is a contradiction. Therefore, (16) must hold as a strict inequality.

~ Since w(b) = —buy + {d,¢*), the fact that (16) must hold as a strict-
inequality implies that . :
(17) w(ya) + wewa < {d, g¥).
Notice by definition of w(y;) that since y € ¥, we know that y; < w(ys)
must hold. Combining this with (17), we obtain

Y1+ ugys < {d, qk),

which is a contradiction. Therefore, this case cannot hold.

Case 2. y2 < mg. From Step 3 of the algorithm, b = mgs € I. By
applying the argument used in Case 1 with [w(b;),b1] € Y playing the
role of y, we obtain '
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(18) w(by) + ugby < (d,q").

By Lemma 4.2, v > 0. Since yp < my = b1, this implies that Uy
urby. Furthermore, from the definitions of w, M1 and mq, we obtain tha
w(by) = M;. Since y € Y, by the definition of M, this implies thaf
¥1 < w(by). Combining this with (18) and the fact that upy, < b
vields the conclusion that

Y1+ urys < (dsqk>,

which is a contradiction. Therefore, this case cannot hold.

The assumption that y, fails to satisfy by, < Y2. < by has led to the
false conclusion that neither Case 1 nor Case 2 holds. Therefore, it follow
that b < y2 < bgy;.

From Lemma 4.3, since b, < y, < brt1, it follows that
w(yz) = —ugye + (d, g%).

From this and the equation y; + upy, = (d,¢"), we conclude that y; =
w(yz2). Therefore,

y1 = wlyz) = —urys + (d, qk)-

Since by < yo < bry1 and Ly is the line segment in R% with endpoints
[w(b;),b;], 7 = k,k + 1, by Remarks 4.3 and 4.4, this implies that y ¢ L.
Therefore, {y € Y| y; + urys = (d,¢*)} C Lx and the proof is complete.
O

Theorem 4.2. The algorithm QOUTSET is finite and always generates
the entive efficient outcome set ¥ of problem (BX).

Proof. As noted at the beginning of Section 3.1, since Y is a nonempty,
compact polyhedron in R?, Yz consists of either all of Y, a single extreme
point of ¥, or one or a set of connected one-dimensional faces (edges) of
Y. When Yg =Y, as explained in Section 3.1, Step 1 of the algorithm de-
tects this and the algorithm terminates. Otherwise, from Section 3.1, the
algorithm continues by executing next Steps 2 and 3. From the definition
of M) and Theorem 2.2, ({c1,3), {cq,z!)}T = (M, ms)T € Yg, where
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z! is calculated in Step 2. If my = My, Step 3 detects this and, from
Theorem 2.2 and the definitions of M; and M,, Yg consists of the single
extreme point (M, M2)T. When this occurs, the algorithm terminates in
Step 3 with the indication that Yz = {{My, M2)T}.

When Yg # Y and Yg consists of more than a single point, the algo-
rithm does not terminate in Step 1 or in Step 3. Instead, from Lemma
4.3 and Theorem 4.1, at the end of each iteration & > 1 of Steps 4-6,
the algorithm detects an additional distinct efficient edge L C R? of Yg.
Furthermore, by Theorem 2.2 and Step 6 of the algorithm, every efficient
edge of Yz will be detected if Steps 4-6 are repeated a suﬂi’t:lent number
of times. Since Y is polyhedral, it has a finite number of efficient faces
[34]. Combining the latter four observations, it follows that when Yz # Y
and Yg is not a singleton, the QUTSET algorithm is finite and generates
all of Yg. {1

5. ILLUSTRATIVE PROBLEM

- To illustrate the workmgs and benefits of the OUTSET a,lgorlthm, we
will apply to a sample bicriteria linear programming problem (BX) with
m = 10 and n = 20 which is specified as follows. Let A be given by -

= [Io: I1o],

where I1o denotes the 10 x 10 1dent1ty matrix, a.nd let d € R10 be the
vector whose entries are each equal to 1.0. For notational convenjence,
to describe the 2 x 20 matrix C, first let ¢/ € Rz, j =1,2,3, be column
vectors defined by :

g [0 o — | 0667 2 |—075
“lwo ]| T |-0333] ° " |02 |’
and let ¢* € R? be the column vector of zeroes. Then C‘ is the 2 x 20
matrix with columns one through four each equals to c! ; columns five

through eight equal to ¢® J columns nine and ten equal to ¢® and columns
11 through 20 equal to ¢*

Notice that if we view z;, j = 11,12,...,20, as slack variables, then
the feasible decision set X of this sample problem (BX) is a hypercube in
R, It is not difficult to show that in this example, this hypercube has 34
eficient extreme points, 68 efficient edges, one two-dimensional efficient
face, and two four-dimensional efficient faces. In contrast, the outcome
set Y = CX is a compact, two-dimensional polyhedron with only four
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efficient extreme points and three efficient edges. What follows is a brief
synopsis and discussion of the computations that result from using the
OUTSET algorithm to generate the efficient outcome set Yz in this ex-
ample. All points in X will be given with slack variables omited.

Step 1. The algorithm solves linear program (T) and finds that ¢ > 0.
Thus problem (BX) is not completely efficient and the algorithm
continues. '

Step 2. Two linear programs of the form (1) are solved to yield M; =
2.667 and M, = 4.500. Given this value for M;, the algorithm
next solves linear program (Q) and finds the optimal solution z!
and value m; for it given by '

(z")* = (0,0,0,0,1,1,1,1,0,0)

and mg = —1.333, respectively.

Step 3. Since m; < Ma, Yg is not a singleton. The algorithm sets
by = —1.333, o) = 2.667 and Yy = ¢ and proceeds to Step 4 with

, k=1
Steps 4-86. Duriﬁg this initial iteration of these steps, the algorithm finds
a first efficient edge L; of Y. To accomplish this, first, with b =

~1.333 and a = 2.667, the algorithm soives linear program (P o)
and finds the optimal solution (u;,q'), where u; = 1.0 and

(¢Y)T = (0,0,0,0,0.333,0.333,0.333,0.333,0,0).

Next, the hnea.r program in Step 5 is solved with k& = 1 to yield the
optlmal solut1on z? given by

(=*)T = (1,1,1,1,1,1,1,1,0,0).
From z2, the values b, = (cz,2%) = 2.667 and a2 = (¢;,2?) =

—1.333 are calculated. Then, in Step 6, the line segment L; C R?
is added to Yz, where the endpoints of L, are

2.667 : -1.333
-1.333| ’ 2.667 |-

Notice that as required by Theorem 4.1, L lies on the line {y € R%|y; +
Y2 = 1.333}. Since b, = 2.667 3 M; = 4.500, k is set equal to 2 and a
second iteration of Steps 4-6 will be performed next.
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Steps 4-8. With k = 2, the second iteration of these steps is executed
to find a second efficient edge Lo of Y. To accomplish this, first,
with b = by = 2.667 and & = az = —1.333, the algorithm finds
the optimal solution (u2,¢%) to the linear program (P o) where
uy = 2.0 and

(*)T = (1,1,1,1,0,0,0,0,0,0).

* Next, the linear program in Step 5 is solved with k = 2 to yield the
optlmal solution z® given by

(3)T (1111000000)

From z3, the values b3 = (cq,z%) = 4.0 and 0z = {e1,2%) = —4.0
are calculated. Using these results, the line segment Ly C R? is
then added to Yg, where the endpoints of L, are

| —1,333 —4.00
2.667 | ’ 4.00 |°

Notice that the line segment L lies on the line {y € R%[ y; + 2.0y =
4.00}, as required by Theorem 4.1." Since b3 = 4.0 # M, = 4.500, the
algorithm sets k& = 3 and a third iteration of Steps 4-6 will be executed
next.

Steps 4-6. With b = by = 4.0 and o = az = —4.0, the algorithm finds
the optlmal solution (us,¢%) to the linear program (P} o), where
‘Uz — 3 and :
(¢®)7 (2222000000)
With & = 3, the linear program in Step 5 is next solved to yield
(=47 = (1,1,1,1,0,0,0,0,1,1).

Then, the algorithm calculates by = {c2,z%) = 4.50 and oy =
(e1,2%) = —5.50. Using these results, the line segment Lz C R?

with endpoints ,
—4.00 —5.50
4.00 | ° 4.50

is added to Yg. Since by = 4.50 = M, at this po1nt the algorithm
terminates with Yg = {L1, L, L3}.
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Notice from this example that the computational effort required to
execute the steps of OUTSET comes primarily from solving linear pro-
gramming problems. In this case, to find the entire efficient outcome set,
14 linear programming problems were solved. Since the feasible decision
set X in this example contains 34 extreme points, 68 edges, and faces with
dimensions as large as four, to generate Xy in its entirety instead of Yg
would be expected to involve significantly more computational effort.

Also notice in this example that the output ¥z consists of three simple,
nonredudant line segments in R2. A decision maker can easily examine
and graph this output to gauge the efficient tradeoffs between {(c1,z) and
{cz, z) that are available in problem (BX). He or she can then potentially
pick a most preferred outcome y* from Yy and, with the aid of an analyst,
recover a most preferred solution z* € Xg for which Cz* = y*.

In contrast, since Xz in this example contains 34 extreme points, 68
edges, and faces of dimension as large as four, solving the example by a tra-
ditional decision-based method that generates the entire efficient decision
set X would result in as much larger, more complicated output. Many
of the points in X g would map into the same points in Y. Furthermore,
presenting Xg to the DM would be more difficult, and the DM would not
be expected to be able to choose a most preferred decision z* directly from
Xg as easily as he or she could by first examining Yz instead.

From Theorem 2.2, to generate Yz, an alternate approach in this exam-
ple is to parametrically solve the linear program (P;) by the parametric
simplex method for all b € [m3,M,] = [-1.333,4.500] (cf. [25]). This
approach, however, is expected to be less efficient computationally than
the approach used in OUTSET, because, in general, it necessitates find-
ing many more optimal bases for problem (P;) than there are efficient
faces for Y. For instance, in this example, although Yz contains only
three efficient edges, solving (P;) parametrically necessitates calculating
10 different optimal bases for (P3), b€ I. .

6. CONCLUDING REMARKS

Notice that outset does not involve complicated bookkeeping or back-
tracking. Also, notice that the QUTSET algorithm will always generate
all of Yg by solving at most (44 2F) linear programming problems, where
E is the number of efficient edges in Y. In addition, as Steps 4-6 are
repeated during the execution of OUTSET, computational savings can be
created by using the optimal solutions (ug, ¢*) and z*¥+! found in iteration
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k to the linear programs in Steps 4 and 5 as starting points for solving
these linear programs in the next iteration k-1 [25]. Furthermore, various
powerful algorithms and computer codes now exist for efficiently solving
large-scale linear programming problems [3]. These observations lead us
to expect that the new OUTSET algorithm will have the potential to solve
large bicriteria linear programming problems that heretofore, because of
their size, were not amenable to decision set-based multiple objective li-
near programming methods. Combined with the fact that, in practice, a
DM can more easily comprehend and work with the efficient outcome set
Yg than the efficient decision set X g of problem (BX}, this indicates that
the new OUTSET algorithm offers significant promise for both analysts
and decision makers involved in multiple objective decision making.
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