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RECOGNIZING FACET DEFINING

INEQUALITIES

E. BALAS

Dedicated to Hoang Tuy on the occasion of his seventieth birthday

Abstract. We discuss a method for determining whether a valid in-

equality for a 0-1 polytope is facet defining. The method is based on a

new procedure for generating a sequence of 0-1 points on a face of the
polytope, guaranteed to be linearly independent. The sequence moves

along k-dimensional surfaces of the face, and whenever this is possible

for small k, the procedure becomes particularly simple. As a result, we
give a new sufficient condition for a valid inequality to be facet defining,

that generalizes several earlier conditions. We also give a necessary and
sufficient condition. None of these conditions is always verifiable in poly-

nomial time. yet in many situations their use has led to the discovery of

new classes of facets. We illustrate this on the case of the vertex packing
and set covering polyhedra.

1. Introduction

We consider 0-1 polytopes, i.e. bounded polyhedra of the form

P := conv {x ∈ {0, 1}n : Ax ≤ b},

where A is an arbitrary real m × n matrix and b is an arbitrary nonzero
m-vector.

We denote M := {1, . . . , m}, N := {1, . . . , n}. The i-th row and j-th
column of A are ai and aj, respectively. The dimension of P , denoted
dim P , is one less than the maximum number of affinely independent
points x ∈ P . The equality set of P is the set of inequalities aix ≤ bi

satisfied with equality by all x ∈ P ; its rank is the maximum number of
its linearly independent members. If this rank is r, then dimP = n − r.

An inequality αx ≤ α0, with α0 6= 0, is valid for P if it is satisfied by
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every x ∈ P . The face of P defined by αx ≤ α0 is F := {x ∈ P : αx =
α0}. F is proper if ∅ 6= F 6= P , improper otherwise. A facet of P is a
maximum-dimensional proper face; i.e. the face F is a facet if and only if
dim F = dim P − 1.

Given a polytope P and an inequality αx ≤ α0 satisfied by all x ∈ P

and such that αx = α0 for some (but not all) x ∈ P , it is of interest to
know whether the face F defined by the inequality is a facet. There are
two well-known methods for establishing this. The first one, sometimes
called the direct method, consists of exhibiting dim P affinely independent
points x ∈ F , which proves that F is a facet; or showing that no such set
exists, which proves the opposite. The second, or indirect, method consists
in showing that any inequality βx ≤ β0 satisfied by all x ∈ P and such
that βx = β0 whenever αx = α0, is a linear combination of αx ≤ α0 (with
positive weight) and the members of the equality set of P , in which case
F is a facet; or exhibiting some inequality with this property that is not
such a combination, in which case F is not a facet. For a discussion of
these proof methods see any of Bachem and Grötschel (1982), Pulleyblank
(1983), Schrijver (1986) or Nemhauser and Wolsey (1988). The difficulty
with the direct method does not consist in finding dim P points in F ,
which is typically easy, but in finding dimP affinely independent points
or showing that no such set of points exists, which is often hard.

In this paper we discuss a variant of the direct method, based on a pro-
cedure for generating a sequence of 0-1 points in F that are guaranteed
to be linearly independent. The procedure comes in two versions. The
first one, called 2-reduction, is straightforward but may stop short of ge-
nerating the required number of points. Nevertheless, it yields a sufficient
condition for an inequality to be facet defining, that generalizes some well
known sufficient conditions from the literature and makes it easy to prove
the facet inducing property of large classes of inequalities. The second,
more general version, called r-reduction, is always applicable, but compu-
tationally more cumbersome. It provides a weaker sufficient condition, as
well as a necessary and sufficient condition for an inequality to be facet
inducing.

The problem examined here was addressed earlier in a more general
context by Edmonds, Lovász and Pulleyblank (1982), who gave algorithm
for determining the dimension of an arbitrary polyhedron P ∗, that is poly-
nomial if the problem of maximizing a linear function over P ∗ is polyno-
mially solvable. The algorithm constructs dimP ∗ +1 affinely independent
points in P ∗ and n-dim P ∗ affinely independent equations satisfied by
every point in P ∗. By contrast, our procedure is restricted to 0-1 poly-
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topes and does not enable its user to identify the equality set of the face F

that it examines. Its focus in trying to find linearly independent points in
F is to move along k-dimensional surfaces for k = 1, 2 etc. Whenever this
is possible for a small k, the procedure is particularly simple and therein
lies its main advantage. These results were first presented at the IPCO
meeting in Waterloo (see Balas (1990)).

In recent joint work with Matteo Firschetti (Balas and Fischetti (1992)),
the approach discussed here was successfully used to answer a long-standing
open question concerning the conditions under which a facet inducing in-
equality for the monotone completion of the (symmetric or asymmetric)
traveling salesman polytope is also facet inducing for TS polytope itself.

Our paper is organized as follows. The next two sections discuss 2-
reduction and r-reduction, respectively; Section 4 takes up the case of
positive 0-1 polytopes; Sections 5 and 6 discuss application to vertex pack-
ing and set covering, respectively.

2. 2-reduction

Let αx ≤ α0 be a valid inequality for P , with α0 6= 0, αj 6= 0, j ∈ N ,
and let F := {x ∈ P : αx = α0}, FI := F ∩ {0, 1}n. We will consider
certain partitions of the index set N . A partition π := {N1, . . . , Ns} of
N is a collection of disjoint, nonempty subsets Nk of N whose union is
N . If the partition has s members (subsets), we call it an s-partition.
The trivial partition is the n-partition π = {{1}, . . . , {n}}. The improper

partition is the 1-partition π = {N}.

With any partition π = {N1, . . . , Nn} and any x ∈ FI we associate a
vector π(x) ∈ Rs, π(x) = {π1(x), . . . , πs(x)}, defined by

πk(x) =
∑

(αjxj : j ∈ Nk) k = 1, . . . , s,

and called the π-pattern of x with respect to αx ≤ α0. We will say that the
partition π = {N1, . . . , Nn} of N is 2− reducible with respect to αx ≤ α0

if there exists a pair i, j ∈ {1, . . . , s}, and a pair x, y ∈ FI , such that

(2) πk(x)

{

6= πk(y) k = i, j,

= πk(y) k ∈ {1, . . . , s} \ {i, j}.

Note that when π is the trivial partition of N , then (2) becomes

(3) αkxk

{

6= αkyk k = i, j,

= αkyk k ∈ {1, . . . , s} \ {i, j}.
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If π is 2-reducible and i, j is the pair of which relation (2) holds, we call
2-reduction the operation that replaces π with

(4) π′ := (π \ {Ni, Nj}) ∪ Nij ,

here Nij := Ni ∪ Nj .

Note that while π(x) 6= π(y), as a result of the 2-reduction we obtain
π′

k(x) = π′
k(y) for all subset indices k pertaining to the partition π′.

Consider now the following

2-reduction procedure (with respect to αx ≤ α0).

Initialization. Let π1 be the trivial partition of N , let x1 ∈ FI , and
t := 1.

Iterative Step. Given πt := {N1, . . . , Ns} and xt ∈ FI , find xt+1 ∈ FI

such that

(5) πt
k(xt+1)

{

6= πt
k(xt) k = i, j,

= πt
k(xt) k ∈ {1, . . . , s} \ {i, j},

for some pair i, j ∈ {1, . . . , s}. If no such xt+1 exists, stop. Otherwise let
Nij := N1 ∪ Nj ,

(6) πt+1 := {πt \ {Ni, Nj}) ∪ Nij ,

t := t + 1, and repeat.

Lemma 1. If πp = {N1, . . . , Ns} is the current partition of N at some

iteration p of the 2-reduction procedure, then the πp-patterns of all the

vectors xt ∈ FI , t = 1, . . . , p, used in the procedure up to iteration p, are

the same; i.e.

πp(xt) = (C1, . . . , Cs), t = 1, . . . , p,

where C1, . . . , Cs are constants independent of t.

Proof. We use induction on p. For p = 1 the statement is trivially true.
Suppose it is true for p = 1, . . . , q, and let p = q + 1 ≥ 2. If πq =
{N1, . . . , Ns}, by hypothesis we have

π
q
k(xt) = Ck for t = 1, . . . , q,

for all k ∈ {1, . . . , s}. At the (q +1)-st application of the 2-reduction step,
we have for some i, j ∈ {1, . . . , s}

π
q
k(xq+1) = Ck for k ∈ {1, . . . , s} \ {i, j},
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and

π
q
i (x

q+1) + π
q
j (xq+1) = α0 −

∑

(πq
k(xq+1) : k ∈ {1, . . . , s} \ {i, j})

= α0 −
∑

(Ck : k ∈ {1, . . . , s} \ {i, j})

= Ci + Cj .

Hence for the partition πq+1 = {N ′
1, . . . , N

′
s−1}, where the subsets N ′

1, . . . ,

N ′
s−1 come from renumbering the subsets Nk, k ∈ {1, . . . , s} \ {i, j} and

Nij = Ni ∪ Nj , we have

π
q+1
k (xt) = Ck for t = 1, . . . , q + 1 and k = 1, . . . , s − 1,

with Ck∗
= Ci + Cj for the new subset N ′

k∗

corresponding to Nij . This
completes the induction.

Theorem 2. If the 2-reduction procedure stops at iteration p, then πp is

an s-partition with s = n − p + 1, and the p vectors xt ∈ FI , t = 1, . . . , p,

used in the procedure, are linearly independent.

Proof. Since π1 is an n-partition and at every iteration the number of
subsets in the partition decreases by one, πp is an s-partition with s =
n − p + 1.

Now suppose the vectors xt ∈ FI , t = 1, . . . , p, are linearly depen-
dent. Then there exist scalars λ1, . . . , λp−1 such that xp =

∑

(xtλt : t =
1, . . . , p− 1). Let πp−1 be the (s + 1)-partition from which the s-partition
πp was obtained. Then for k = 1, . . . , s + 1,

π
p−1
k (xp) =

∑

(πp−1
k (xt)λt : t = 1, . . . , p − 1)

= Ck

∑

(λt : t = 1, . . . , p − 1),

where the second equation follows from Lemma 1.

On the other hand, by the rules of the 2-reduction procedure and from
Lemma 1,

π
p−1
k (xp)

{

6= Ck k ∈ {i, j},

= Ck k ∈ {1, . . . , s + 1} \ {i, j},

for some i, j ∈ {1, . . . , s + 1}; and so we obtain on the one hand
∑

(λt :
t = 1, . . . , p − 1) 6= 1 and on the other

∑

(λt : t = 1, . . . , p − 1) = 1, a
contradiction.
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The following corollaries are immediate consequences of Theorem 2.

Corollary 3. dim F ≥ n − s (= p − 1).

Corollary 4. If the 2-reduction procedure stops with the improper parti-

tion πn = {N}, then F is a facet of P .

Next we address the question of the complexity of 2-reduction.

Proposition 5. Given a partition π = {N1, . . . , Ns} of N , a pair i, j ∈
{1, . . . , s}, and a vector xt ∈ F , let f(n) be the complexity function of

finding xt+1 ∈ FI that satisfies (5) or showing that no such xt+1 exists.

Then the complexity of the 2-reduction procedure in O(n3f(n)).

Proof. At each iteration, the problem stated in the theorem has to be
solved at most O(n2) times, once for each pair i, j ∈ {1, . . . , s}. Since
there are at most n iterations, the statement follows.

Example 1. Let P be the convex hull of those x ∈ {0, 1}9 satisfying

5x1 + 3x2 + 2x3 + 2x4 + 2x5 + x6 + x7 + x8 + x9 ≤ 8,

4x1 + 6x2 + 4x3 + 4x4 + 4x5 + 2x6 + 2x7 + 2x8 + 2x9 ≤ 12,

and consider the inequality

3x1 + 3x2 + 2x3 + 2x4 + 2x5 + x6 + x7 + x8 + x9 ≤ 6,

obtained by adding the two inequalities that define P , dividing the re-
sulting inequality by 3, and rounding down the right side to the nearest
integer. This is a special case of Chvátal’s (1975) procedure, and the re-
sulting inequality is obviously valid for P . We want to know whether it is
facet defining.

We start with the trivial partition π1 := {{1}, . . . , {9}} and with
x1 = (1, 0, 1, 0, 0, 1, 0, 0, 0). At each iteration we take m := t (which is
an option). At the first iteration we use x2 = (1, 0, 1, 0, 0, 0, 1, 0, 0) to
obtain π2 := {{1}, . . . , {5}, {6, 7}, {8}, {9}}; etc. The sequence of vectors
xt ∈ F and partitions πt of N is listed below:

x1 = (1 0 1 0 0 1 0 0 0) π1 = {{1}, . . . , {9}}

x2 = (1 0 1 0 0 0 1 0 0) π2 = {{1}, . . . , {5}, {6, 7}, {8}, {9}}

x3 = (1 0 1 0 0 0 0 1 0) π3 = {{1}, . . . , {5}, {6, 7, 8}, {9}}

x4 = (1 0 1 0 0 0 0 0 1) π4 = {{1}, . . . , {5}, {6, 7, 8, 9}}



RECOGNIZING FACET DEFINING INEQUALITIES 13

x5 = (1 0 0 1 0 0 0 0 1) π5 = {{1}, {2}, {3, 4}, {5}, {6, . . . , 9}}

x6 = (1 0 0 0 1 0 0 0 1) π6 = {{1}, {2}, {3, 4, 5}, {6, . . . , 9}}

x7 = (0 1 0 0 1 0 0 0 1) π7 = {{1, 2}, {3, 4, 5}, {6, . . . , 9}}

x8 = (0 1 0 0 0 0 1 1 1) π8 = {{1, 2}, {3, . . . , 9}}

x9 = (1 1 0 0 0 0 0 0 0) π9 = {1, . . . , 9}.

Since π9 is the improper partition, the inequality under examination de-
fines a facet of P .

3. r-reduction

The 2-reduction procedure can be generalized to an r-reduction proce-
dure that starts with 2-reduction and continues beyond the point where
the latter fails. While the 2-reduction procedure provides a sufficient con-
dition for F to be a facet of P , this more general reduction procedure
provides a necessary and sufficient condition.

Given a partition π = {N1, . . . , Nn} of N , with {1, . . . , s} =: S, we will
say that π is r-reducible with respect to αx ≤ α0 if there exists R ⊆ S,
|R| ≥ 2, and a collection of points xt ∈ FI , t = 1, . . . , r = |R|, whose
π-patterns π(x1), . . . , π(xr) are linearly independent and satisfy

πk(xt) = Ck, t = 1, . . . , r; k ∈ S \ R

for some constants Ck.

If π is r-reducible and R is the subset of S for which (7) holds, we call
r-reduction the operation that replaces π with

(8) π′ := (π \ {Nk : k ∈ R}) ∪ NR,

where R is the subset of S used in (7) and NR := ∪(Nk : k ∈ R). Clearly,
r-reduction generalizes the operation of 2-reduction introduced in the pre-
vious section.

As in the case of 2-reduction, it is worth noting that the partition π′

obtained by (8) satisfies π′
k(x1) = · · · = π′

k(xr) for all subset indices k

pertaining to the partition π′.

We will call a partition of N valid with respect to αx ≤ α0 if it was ob-
tained from the trivial partition by a sequence of r-reduction steps (where
r may differ from one step to another).
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Reduction procedure (with respect to αx ≤ α0)

Initialization. Let π1 be the trivial partition of N , let x1 ∈ FI and
t := 1.

Iterative Step. Given πt = {N1, . . . , Ns} and xv ∈ FI , find r−1 vectors
xi ∈ FI , i = v +1, . . . , v + r− 1, 2 ≤ r ≤ s, such that the r vectors πt(xi),
i = v, v + 1, . . . , v + r − 1, are linearly independent and satisfy

(9) πt
k(xv+h) = πt

k(xv), h = 1, . . . , r − 1; k ∈ S \ R,

for some R ⊆ S := {1, . . . , s}, |R| = r.

If no such set of vectors xi ∈ FI is found, stop; otherwise let NR :=
∪(Nk : k ∈ R),

(10) πt+1 := πt \ {Nk : k ∈ R}) ∪ NR,

t := t + 1 and repeat.

We will use the following analog of Lemma 1.

Lemma 6. If πp = {N1, . . . , Ns} is the current partition of N at some

iteration p of the reduction procedure, and xt ∈ FI , t = 1, . . . , v are the

vectors used to obtain πp, then the πp-patterns of all xt, t = 1, . . . , v are

the same, i.e.

πp(xt) = (C1, . . . , Cs), t = 1, . . . , v,

where C1, . . . , Cs are constants independent of t.

Proof. Parallels the proof of Lemma 1.

We now prove for the general reduction procedure a property analogous
to the one proved in Theorem 2 for the 2-reduction procedure.

Theorem 7. Suppose the reduction procedure stops with the partition πp

after performing a sequence of p − 1 r-reductions, with r = r1, . . . , rp−1,

respectively, and let v := 1 + (r1 − 1) + · · · + (rp−1 − 1). Then πp is an

s-partition with s = n − v + 1; and the v vectors xt ∈ FI , t = 1, . . . , v =
n − s + 1, used in the procedure, are linearly independent.

Proof. Since the trivial partition has n subsets and each r-reduction re-
duces the number of subsets by r − 1, we have s = n − ((r1 − 1) + · · · +
(rp−1 −1)) = n−v +1, as claimed. Suppose now that the vectors xt ∈ FI
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used in the procedure are linearly dependent. Then there exist scalars
λt, t = 1, . . . , v, not all zero, such that

∑

(xtλt : t = 1, . . . , v) = 0. Let
πp−1 = {N1, . . . , Nm} be the partition of N from which πp was obtained

as the result of an rp−1-reduction. Then for k = 1, . . . , m,
∑

(πp−1
k (xt)λt :

t = 1, . . . , v) = 0. The rp−1 − 1 vectors used in the last reduction step are
xt ∈ F for t = v − rp−1 + 2, . . . , v and from the last equation we have for
k = 1, . . . , m,

0 =
∑

(πp−1
k (xt)λt : t = 1, . . . , v − rp−1 + 1)

(11)

+
∑

(πp−1
k (xt)λt : t = v − rp−1 + 2, . . . , v) =

= π
p−1
k (xv−rp−1+1)µ1 +

∑

(πp−1
k (xv−rp−1+j)µj : j = 2, . . . , rp−1),

where µ1 :=
∑

(λt : t = 1, . . . , v − rp−1 + 1), µj := λp−rp−1+j for j =
2, . . . , rp−1. Here the second equation follows from the fact that, according
to Lemma 6,

π
p−1
k (xt) = Ck for t = 1, . . . , v − rp−1 + 1 and k = 1, . . . , m.

But (11) contradicts the linear independence of the πp−1-patterns of
the rp−1 vectors xt ∈ FI , t = v− rp−1 +1, . . . , v used in the last reduction
step, which proves statement.

As in the case of the 2-reduction procedure, the following corollary is an
immediate consequence of Theorem 7. Let p, s and v be as in Theorem 7.

Corollary 8. dim F ≥ n − s (= v − 1).

We now state a necessary and sufficient condition for F to be facet of
P .

Theorem 9. Let π be any valid s-partition of N with respect to αx ≤ α0.

Then F is a facet of P if and only if there exist s + dimP − n vectors

x ∈ F whose π-patterns are linearly independent.

Proof. Let xt ∈ FI , t = 1, . . . , n − s + 1, be the vectors used to obtain π

from the trivial partition. Recall that the π-patterns of all vectors xt are
the same (Lemma 6), say π(xt) = (C1, . . . , Cs), t = 1, . . . , n − s + 1. We
claim that s ≥ n − dim P . This is obviously true of the trivial partition
(for which s = n), as 0 is certainly a lower bound on dim P ; and every
r-reduction step, while reducing the size of s by r− 1, also adds r− 1 new
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vectors x ∈ FI to the current linearly independent set, thereby increasing
the lower bound on dimP by the same amount. This proves the claim.

Sufficiency. Now suppose there exist p := s+dimP −n vectors x ∈ FI

whose π-patterns are linearly independent. Without loss of generality
(w.l.o.g.) we may assume that at least one of these vectors belongs to
the set of those xt, t = 1, . . . , n − s + 1, used in the reduction procedure;
on the other hand, at most one of them can belong to that set, since the
π-patterns of all vectors xt, t = 1, . . . , n− s+1, are equal to (C1, . . . , Cs).
So let xt ∈ F , t = n − s + 2, n − s + 3, . . . , n − s + p be the p − 1 vectors
whose π-patterns are different from (C1, . . . , Cs). By the same argument
as in the proof of Theorem 7, we can show that the n − s + p = dimP

vectors xt ∈ F , t = 1, . . . , n− s+p, are linearly independent. For suppose
not. Then there exist scalars λt, t = 1, . . . , n − s + p, not all zero, such
that

∑

(xtλt : t = 1, . . . , n − s + p) = 0 and hence

∑

(πk(xt)λt : t = 1, . . . , n − s + p) = 0 for k = 1, . . . , s.

This last equation yields for k = 1, . . . , s,

0 =
∑

(πk(xt)λt : t = 1, . . . , n − s + 1)

+
∑

(πk(xt)λt : t = n − s + 2, . . . , n − s + p)

= πk(xn−s+1)µ1 +
∑

(πk(xn−s+j)µj : j = 2, . . . , p),(12)

where µ1 :=
∑

(λt : t = 1, . . . , n − s + 1), µj := λn−s+j for j = 2, . . . , p.
However, equation (12) contradicts the linear independence of the π-
patters of the p vectors xt ∈ FI , t = n − s + 1, . . . , n − s + p, which
proves the sufficiency of the condition in the theorem.

Necessity. Suppose F is a facet P . Then there exists a set T of dimP

linearly independent vectors x ∈ FI . Further, without loss of generality.
We may assume that the vectors xt, t = 1, . . . , n − s + 1, used to obtain
π from the trivial partition, belong to T . Let the remaining p − 1 vectors
of T be xt, t = n − s + 2, . . . , n − s + p (= dimP ), and let X be the
(n− s + p)×n matrix whole t-th row is xt, t = 1, . . . , n− s + p. We claim
that the π-patterns of the p vectors xt, t = n − s + 1, . . . , n − s + p, are
linearly independent. For consider the (n−s+p)×s matrix Π whose t-th
row is the π-pattern π(xt) of xt for t = 1, . . . , n − s + p. Since the first
n − s + 1 rows of Π are equal, the rank of Π is determined by its last p

rows. Now suppose for the sake of contradiction that rank(Π) < p. Then
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for every subset V of S := {1, . . . , s} of cardinality p = s+dim P −n, there
exist scalars λk, k = 1, . . . , p not all zero, such that

∑

(Πkλk : k ∈ V ) = 0
where Πk is the k-th column of Π.

On the other hand, since rank(X) = dimP = n − s + p, there exists
a subset W of N of cardinality n − s + p, such that for any W ′ ⊆ W ,
∑

(Xjµj : j ∈ W ′) = 0 implies µj = 0, j ∈ W ′. We claim that w.l.o.g.
we may assume W ⊇ Nk for at least p indices k ∈ S (here Nk is the k-th
subset of the partition π). For if not, i.e. if Nk \ W 6= ∅ for more than
s − p indices k ∈ S, then |W | < n − s + p, contrary to our assumption
on |W |. Now let V ∗ be the set of those k ∈ S such that Nk ⊆ W .
Since |V ∗| ≥ p, there exists scalars λk, k ∈ V ∗, not all zero, such that
∑

(Πkλk : k ∈ V ∗) = 0, or, using the definition of Π,

0 =
∑

(

∑

(αjXj : j ∈ Nk)λk : k ∈ V ∗)

=
∑

(Xjµj : j ∈ W ′),

where µj = αjλk for j ∈ Nk and k ∈ V ∗, and where W ′ := ∪(Nk : k ∈ V ∗).

As mentioned above, the last equation implies µj = 0, j ∈ W ′, which in
turn, together with αj 6= 0, j ∈ N , implies λk = 0, k ∈ V ∗, a contradiction.
This proves that the π-patterns of the p = s + dim P − n vectors xt,
t = n − s + 1, . . . , n − s + p, are linearly independent.

We notice that for an arbitrary 0-1 polytope P , even if F is a facet of
P , the reduction procedure may stop with an s-partition π of N such that
s > n−dimP+1. This can happen if at the last iteration there exists no set
of r vectors xt ∈ FI whose π-patterns are linearly independent and satisfy
(9), for any r ∈ [2, s + dim P − n], but there exists a set of s + dimP − n

vectors in FI whose π-patterns are linearly independent without satisfying
(9). For a full dimensional polytope, however, this cannot happen, as the
next corollary shows.

Corollary 10. Let P be full-dimensional. Then F is a facet of P if and

only if the improper partition is valid with respect to αx ≤ α0.

Proof. Sufficiency follows from Corollary 8. Now suppose F is a facet of P ,
and let π be the s-partition with which the reduction procedure stops. If
s > 1, from Theorem 9 there exist s+dim P −n = s vectors x ∈ FI whose
π-patterns are linearly independent. But since P is full-dimensional, these
vectors form a set for which condition (9) of the iterative step is trivially
satisfied as it becomes vacuous (since R = S), hence a set that can be
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used for another iteration of the reduction procedure, contrary to the
assumption that the procedure has stopped with π. Thus s = 1 and the
improper partition is valid with respect to αx ≤ α0.

Example 2. Consider the same polytope P and face F as in Example 1,
but start with a different x ∈ F , say x1 = (0, 0, 1, 1, 1, 0, 0, 0, 0). Then
2-reduction is not applicable to the trivial partition π1, since there is no
vector x2 ∈ FI to satisfy condition (9) for r = 2 (with x1 in the role of
xt). The smallest r for which (9) can be satisfied is r = 4, with x2, x3, x4

and the resulting π2 shown below:

x1 = (0 0 1 1 1 0 0 0 0) π1 = {{1}, . . . , {9}}

x2 = (0 0 1 0 1 1 1 0 0)
r = 4 :

x3 = (0 0 1 0 1 1 0 1 0)

x4 = (0 0 1 0 1 0 1 1 0) π2 = {{1}, {2}, {3}, {5}, {4, 6, 7, 8}, {9}}.

At all the remaining iterations, 2-reductions are possible:

r = 2 : x5 = (0 0 1 0 1 0 1 0 1) π3 = {{1}, {2}, {3}, {5}, {4, 6, 7, 8, 9}}

r = 2 : x6 = (0 0 0 1 1 0 1 0 1) π4 = {{1}, {2}, {5}, {3, 4, 6, 7, 8, 9}}

r = 2 : x7 = (0 0 0 1 0 1 1 1 1) π5 = {{1}, {2}, {3, . . . , 9}}

r = 2 : x8 = (1 0 0 0 0 0 1 1 1) π6 = {{2}, {1, . . . , 9}}

r = 2 : x9 = (0 1 0 0 0 0 1 1 1) π7 = {1, . . . , 9}.

4. The case of positive 0-1 polytopes

In all the results so far we have assumed that the valid inequality
αx ≤ α0 defining F has no zero coefficients. While this is a genuine
restriction for a general 0-1 polytope, it is no restriction at all for positive
0-1 polytopes, as we will presently show.

By a positive 0-1 polytope we mean the convex hull of 0-1 points x

satisfying a system like Ax ≤ b or Ax ≥ b, with A ≥ 0 and b > 0. Let A
be m × n, and let

P<(A, b) := conv {x ∈ {0, 1}n : Ax ≤ b},

P>(A, b) := conv {x ∈ {0, 1}n : Ax ≥ b}.

Whenever it does not create confusion, we write P< and P> for P<(A, b)
and P>(A, b), respectively.
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It is not hard to see that P< is full dimensional if and only if aj ≤ b

for all j ∈ N , whereas P> is full dimensional if and only if aj ≤ Ae − b

for all j ∈ N . For the rest of this section we assume that P< and P> are
full dimensional.

An inequality αx ≤ α0, valid for P<, is maximal if there exists no
k ∈ N and α′

k > αk, such that

α′
kxk +

∑

(αjxj : j ∈ N \ {k}) ≤ α0

is valid for P<. Similarly, an inequality αx ≥ α0, with α0 > 0, valid for
P>, is minimal if there exists no k ∈ N and α′′

k < αk such that

α′′
kxk +

∑

(αjxj : j ∈ N \ {k}) ≥ α0

is valid for P>.

We denote by F< := {x ∈ P< : αx = α0} and F> := {x ∈ P> : αx =
α0} the faces of P< and P> defined by αx ≤ α0 and αx ≥ α0, respectively.
Further, we denote F<

I := F< ∩ {0, 1}n and F>
I := F> ∩ {0, 1}n.

Proposition 11A. A valid inequality αx ≤ α0 for P<, with α0 > 0, is

maximal if and only if for every j ∈ N there exists x ∈ F<
I such that

xj = 1.

Proposition 11B. A valid inequality αx ≥ α0 for P>, with α0 > 0, is

minimal if and only if for every j ∈ N there exists x ∈ F>
I such that

xj = 1.

Corollary 12A. If αx ≤ α0, with α0 > 0, is a maximal valid inequality

for P<, then 0 ≤ αj ≤ α0 for all j ∈ N .

The property stated in Corollary 12A does not have its exact analog
for minimal valid inequalities for P>. Thus for P> defined by the system

x1 + x2 + x3 ≥ 2, x1, x2, x3 = 0 or 1,

the inequality
−x1 + 2x2 + 2x3 ≥ 1

is both valid and minimal, although α1 = −1 < 0 and α2 = α3 = 2 > α0.
However, the following weaker property holds.

Corollary 12B. If αx ≥ α0, with α0 > 0, is a minimal valid inequality

for P> with αj ≥ 0, j ∈ N , then αj ≤ α0 for all j ∈ N .
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This situation suggests that we next examine the connection between
P<(A, b) and the associated polytope

P>(A, b̃) := conv {y ∈ {0, 1}n
∣

∣ Ay ≥ b̃ := Ae − b}

obtained by complementing the variables xj , j ∈ N , in the definition of
P<(A, b). We first note that if the inequality αx ≤ α0, valid for P<(A, b),
is maximal, it does not follow that the inequality αy ≥ αe−α0, obviously
valid for P>(A, b̃), is minimal. Indeed, 2x1 + x2 + x3 ≤ 3 is a maximal
valid inequality for the polytope P< defined by

x1 + x2 + x3 ≤ 2, x1, x2, x3 = 0 or 1,

but the corresponding inequality 2y1 + y2 + y3 ≥ 1 is not minimal for
P>(A, b̃), which is defined by

y1 + y2 + y3 ≥ 1, y1, y2, y3 = 0 or 1.

These considerations prompt us to introduce the following stronger
notion of maximality and minimality of inequalities. A valid inequality
αx ≤ α0 for P<(A, b) will be called strongly maximal if it is maximal, and

the inequality αy ≥ αe − α0 is minimal for P>(A, b̃). Similarly, a valid
inequality αx ≥ α0 for P>(A, b) will be called strongly minimal if it is

minimal, and the inequality αy ≤ αe − α0 is maximal for P<(A, b̃).

Proposition 13A. A valid inequality αx ≤ α0 for P< is strongly maximal

if and only if for every j ∈ N there exists x ∈ F<
I such that xj = 1 and

x′ ∈ F<
I such that x′

j = 0.

Proof. Follows from applying the definition and setting x′
j = 1−yj , j ∈ N .

Proposition 13B. A valid inequality αx ≥ α0 for P> is strongly minimal

if and only if for every j ∈ N there exists x ∈ F>
I such that xj = 1 and

x′ ∈ F>
I such that x′

j = 0.

Proof. Same as for Proposition 13A.

Corollary 14A. If αx ≤ α0 is a strongly maximal valid inequality for

P<, then 0 ≤ αj ≤ min{α0, αe − α0} for all j ∈ N .

Proof. If αx ≤ α0 is maximal for P< then from Corollary 12A, 0 ≤ αj ≤

α0. If, in addition, αy ≥ αe − α0 is minimal for P>(A, b̃), then from
Corollary 12B, αj ≤ αe − α0.
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Corollary 14B. αx ≥ α0 is a strongly minimal valid inequality for P>,

then 0 ≤ αj ≤ min{α0, αe − α0} for all j ∈ N .

Proof. If αy ≤ αe − α0 is maximal for P<(A, b̃), then 0 ≤ αj ≤ αe − α0

for all j ∈ N . If αx ≥ α0 is minimal for P>(A, b) with αj ≥ 0, j ∈ N ,
then αj ≤ α0 for all j ∈ N .

Proposition 15A. The inequality αx ≤ α0 defines a facet of P<(A, b) if

and only if αy ≥ αe − α0 defines a facet of P>(A, b̃).

Proof. Follows from the fact that x ∈ P<(A, b) if and only if y ∈ P>(A, b̃)
for y = e − x, and a collection of points xi ∈ P<(A, b), i = 1, . . . , t is
affinely independent if and only if the collection of point yi := e − xi,
i = 1, . . . , t, is affinely independent.

Proposition 15B. The inequality αx ≥ α0 defines a facet of P>(A, b) if

and only if αy ≤ αe − α0 defines a facet of P<(A, b).

Proof. Same as for Proposition 15A.

It follows directly from Propositions 15A and 15B, that every nontrivial
facet defining inequality for P< (for P>) is strongly maximal (strongly
minimal).

For S ⊆ N , we denote by AS the submatrix of A consisting of the
columns indexed by S.

Theorem 16A. Let αx ≤ α0 be a maximal valid inequality for P<(A, b),
and let V := {j ∈ N : αj 6= 0}. Then αx ≤ α0 defines a facet of P<(A, b)
if and only if αV xV ≤ α0 defines a facet of P<(AV , b).

Proof. Sufficiency. Suppose αV xV ≤ α0 defines a facet of P<(AV , b).
Then there exists a set of |V | linearly independent vectors xV

(i) ∈ P<(AV , b)

such that αV xV
(i) = α0, i = 1, . . . , |V |. Extending each xV

(i) to a vector

xi ∈ Rn by setting xi
j = 0, j ∈ N \ V (and xi

j = xV
(i)j , j ∈ V ) yields |V |

linearly independent vectors xi ∈ Rn such that αxi = α0, i = 1, . . . , |V |.
Further, since αx ≤ α0 is maximal, for every k ∈ N \ V there exists some
x ∈ P<(A, b) such that xk = 1, xj = 0, j ∈ N \ (V ∪ {k}), and αx = α0.
It is easy to see that the n×n matrix Z whose rows are these |V |+ |N \V |
vectors xi is of the form

X =

(

X1 0
X2 I

)

with X1 nonsingular (of order |V |) and I the identity of order |N \ V |.
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Thus the rows of X are linearly independent and αx ≤ α0 defines a facet
of P<(A, b).

Necessity. Suppose αV xV ≤ α0 does not define a facet of P<(AV , b).

Then there exists βV ∈ R
|V |
+ , β0 ∈ R+, such that every xV ∈ P<(AV , b)

satisfies βV xV ≤ β0, every xV ∈ P<(AV , b) such that αV xV = α0 satisfies
βV xV = β0, and (βV , β0) 6= λ(αV , α0) for all λ 6= 0. But then setting
β = (βV , 0) ∈ Rn, we obtain an inequality βx ≤ β0 satisfied by all
x ∈ P<(A, b) and satisfied with equality by all x such that αx = α0, with
(β, β0) 6= λ(α, α0) for all λ 6= 0. Thus αx ≤ α0 does not define a facet of
P<(A, b).

Theorem 16B. Let αx ≥ α0 be a minimal valid inequality for P>(A, b).
Then αx ≥ α0 defines a facet of P>(A, b) if and only if αV xV ≥ α0 defines

a facet of P>(AV , b − AN\V eN\V ).

Proof. From Proposition 15B, αx ≥ α0 defines a facet of P>(A, b) if and

only if αy ≤ αe − α0 defines a facet of P<(A, b̃); and αV xV ≥ α0 defines
a facet of P>(AV , b′ := b−AN\V eN\V ) if and only if αV yV ≤ αV eV −α0

defines a facet P<(AV , b̃′), where b̃′ := AV eV − b′ = Ae − b = b̃. Thus

all we have to show is that αy ≤ αe − α0 defines a facet of P<(A, b̃) if

and only if αV yV ≤ αV eV − α0 defines a facet of P<(AV , b̃). For the
case when αy ≤ αe − α0 is maximal, this was established in Proposition
16A. If αy ≤ αe − α0 is not maximal, then (since αx ≥ α0 is minimal)
αV yV ≤ αV eV − α0 is also not maximal, and so neither of them is facet
defining.

In view of Theorems 16A and 16B, in examining the conditions under
which a valid inequality is facet defining for P< or for P> we may restrict
ourselves to inequalities with strictly positive coefficients. Thus the results
of sections 2 and 3 are of general validity for P< and P> (i.e. not affected
by the restriction to inequalities with nonzero coefficients).

5. Application to vertex packing

Let P<(G) := P<(A, e) be the vertex packing polytope defined on the
(undirected) graph G = (V, E) whose edge-vertex incidence matrix is A.
In other words, P<(G) is the convex hull of incidence vectors of vertex
packings (independent sets, stable sets) of G. For S, T ⊆ V , we denote by
(S, T ) the set of edges (i, j) such that i ∈ S, j ∈ T , and we write α(G)
for the cardinality of a maximum vertex packing (i.e. the independence
or stability number) of G. A natural question to ask in connection with
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α(G) is under what conditions does the (obviously valid) inequality

(13)
∑

(xj : j ∈ V ) ≤ α(G)

define a facet of P<(G) ? Chvátal (1975) gave the following well known
partial answer to this question. Call an edge u of G α-critical if α(G −
u) = α(G) + 1, and let E∗ be the set of α-critical edges of G. Also, let
G∗ := (V, E∗).

Theorem 17 (Chvátal 1975). If G∗ is connected, then the inequality (13)
defines a facet of P<(G).

This sufficient condition can be weakened by using the concept of an
α-critical cutset, defined as a cutset (W, V \ W ) such that α(G(W )) +
α(G(V \ W )) ≥ α(G) + 1, where G(W ) is the subgraph of G induced by
W .

Theorem 18 (Balas and Zemel, 1977). If G has an α-critical cutset

(W, V \ W ) such that for T := W and T := V \ W

(i) the inequality
∑

(xj : j ∈ T ) ≤ α(G(T )) defines a facet of G(T );
and

(ii) every maximum packing of G(T ) is contained a maximum packing

of G;

then the inequality (13) defines a facet of P<(G).

The sufficient condition of Theorem 18 is not necessary for (13) to be
facet defining, as the example below shows.

Using the results of Section 2, we will now give a sufficient condition
for the inequality (13) to define a facet of P<(G), which is a direct ge-
neralization of Chvátal’s above mentioned result, and is weaker than the
condition of Theorem 18. The key to this generalization is the following.

Remark. An edge u = (i, j) is α-critical if and only if G has two maximum
vertex packings S and T , such that T = (S \ {i}) ∪ {j}.

Proof. If the condition holds, then S ∪ {j} (= T ∪ {i}) is a vertex packing
of G − u, hence u is α-critical. Conversely, if u is α-critical, then G − u

has a vertex packing Y such that |Y | = α(G) + 1 and i, j ∈ Y . Then
S := Y \ {j} and T := Y \ {i} are both maximum vertex packings in G,
with T = (S \ {i}) ∪ {j}.

It is now not hard to see that the presence of an α-critical edge (i, j)
implies the existence of a pair x, y ∈ F satisfying xi = 1−yi = yj = 1−xj,
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and xk = yk, k ∈ V \ {i, j} which is equivalent to condition (3); hence
2-reduction generalizes Chvátal’s procedure of constructing the α-critical
graph G∗ from the case where the subsets Nk of π are singletons, to the
more general case where π is a nontrivial partition.

To be specific, let G# := (V, E#) be the graph constructed as follows:

Initialization. Let S1 be a maximum vertex packing of G, let G1 :=
(V, E1), E1 = ∅, and t := 1.

Iterative Step. Given Gt = (V, Et) with connected components induced
by V1, . . . , Vs ⊆ V , find a maximum vertex packing St+1 of G such that

(14) |St+1 ∩ Vk|

{

6= |St ∩ Vk| k = i, j,

= |St ∩ Vk| k ∈ {1, . . . , s} \ {i, j},

for some pair i, j ∈ {1, . . . , s}. if no such St+1 exists, let G# := Gt and
stop. Otherwise insert into Gt an edge joining the two components Vi and
Vj , i.e. set Et+1 := Et ∪ (u, v) for some u ∈ Vi, v ∈ Vj , Gt+1 := (V, Et+1).
let t := t + 1 and repeat.

Theorem 19. If G# is connected, then
∑

(xj : j ∈ V ) ≤ α(G) defines a

facet of P<(G).

Proof. The above procedure amounts to 2-reduction, and G# is connected
if and only if the procedure stops with the improper partition. Hence the
theorem is a specialization to the vertex packing polytope of Corollary 4.

Example 3. Consider the graph G of Figure 1, obtained from the com-
plete 3-partite graph with 5 vertices in each part, K5,5,5, by inserting into
each of the three parts the edges of a 5-cycle, and deleting the edge sets
(V1, {6}), (V2, {11}), (V3, {1}). A maximum vertex packing of G contains
two vertices of Vi and one Vi+1, for some i ∈ {1, 2, 3}, or else just one
vertex of each Vi, namely 1, 6 and 11. So the inequality

∑

(xj : j = 1, . . . , 15) ≤ 3

is certainly valid. We want to know whether it defines a facet of P<(G).

Chvátal’s sufficient condition is not satisfied, since the only critical
edges are those of the three 5-cycles and thus G# is disconnected. Balas
and Zemel’s sufficient condition is also not satisfied, since G has no critical
cutset satisfying (i): although if W stands for the vertex set of a triangle
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or a pentagon of G the inequality
∑

(xj : j ∈ W ) ≤ α(G(W )) defines
a facet of P<(G(W )), in each of these cases the inequality

∑

(xj : j ∈
V \ W ) ≤ α(G(V \ W )) is not facet defining for P<(G(V \ W )).

Figure 1

We now apply the procedure that generates G#. The first four itera-
tions yield the component with vertex set {1, . . . , 5} as a path of length
4. The next eight iterations yield two more components (paths of length
4), with vertex sets {6, . . . , 10} and {11, . . . , 15}. Thus G13 has three
components with vertex sets V1, V2 and V3.

Next consider the maximum vertex packing S13 := {6, 8, 11} and S14 :=
{1, 6, 11}. We have

0 =|S13 ∩ V1| 6= |S14 ∩ V1| = 1,

2 =|S13 ∩ V2| 6= |S14 ∩ V2| = 1,

|S13 ∩ V3| = |S14 ∩ V3| = 1,

hence condition (14) is satisfied and we add to G13 an edge joining a vertex
of V1 to one of V2 in order to obtain G14. Let the two components of G14

have vertex sets V ′
1 = {1, . . . , 10} and V ′

2 = {11, . . . , 15}, and consider the
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maximum vertex packings S14 = {1, 6, 11} and S15 = {11, 13, 1}. Then

2 = |S14 ∩ V ′
1 | 6= |S15 ∩ V ′

1 | = 1,

and
1 = |S14 ∩ V ′

2 | 6= S15 ∩ V ′
2 | = 2,

hence G15 = G# is obtained from G14 by adding an edge joining a vertex of
V ′

1 to one of V ′
2 . Since G# is connected, the inequality

∑

(xj : j ∈ V ) ≤ 3
defines a facet of P<(G).

It is perhaps worth mentioning that the Chvátal rank of the inequality
of Example 3 is quite high: the rank 1 Chvátal inequality with the same
lefthand side has a righthand side of 7 instead of 3.

6. Application to set covering

Let A be an m × n 0-1 matrix and b = e. Then P>(A, e) is the set
covering polytope, i.e. the convex hull of 0-1 solutions to Ax ≥ e. A set
S ⊆ N is called a cover for A if

∑

(aj : j ∈ S) ≥ e. The incidence
vector of a cover will also be called a cover. If β(A) denotes the minimum
cardinality of a cover for A, it is of interest to know when the inequality

(15)
∑

(xj : j ∈ N) ≥ β(A),

obviously valid, defines a facet of P>(A, e). A sufficient condition for this,
analogous to Chvátal’s condition for the vertex packing polytope, can be
stated in the following terms. For i, j ∈ N , i 6= j, denote by Aij the matrix
obtained from A by removing all rows k ∈ M such that aki = akj = 1.
Call a pair i, j ∈ N β-critical if β(Aij) = β(A) − 1, and let the graph
G∗ = (V, E∗) have vertex for every i ∈ N and an edge for every β-critical
pair i, j ∈ N .

Theorem 20 (Sassano 1985). If G∗ is connected, the inequality (15)
defines a facet of P>(A, e).

Again, the sufficient condition of our Corollary 4 weakens the condition
of Theorem 20. To see this, notice the following:

Remark. A pair i, j ∈ N is β-critical if and only if there exist minimum
covers S and T for A such that T = (S \ {i}) ∪ {j}.

Proof. If such covers exist, then S\{i} (= T \{j}) is a cover for Aij , hence
the pair i, j is β-critical. Conversely, if the pair i, j is β-critical, then Aij
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has a minimum cover Y such that |Y | = β(A) − 1 and Y ∩ {i, j} = ∅.
Then S := Y ∪ {i} and T := Y ∪ {j} are minimum covers for A and
T = (S \ {i}) ∪ {j}.

As in the case of the set packing polytope, we now generate a graph
G# by the following procedure.

Initialization. Let S1 be a minimum cover for P>, let G1 = (V, E1),
with V := N and E1 := ∅, and t := 1.

Iterative Step. Given Gt with connected components induced by
V1, . . . , Vp ⊆ V , find a minimum cover St+1 such that

(16) |St+1 ∩ Vk|

{

6= |St ∩ Vk| for k = i, j,

= |St ∩ Vk| for k ∈ {1, . . . , p} \ {i, j},

for some pair i, j ∈ {1, . . . , s}. If no such St+1 exists, let G# = Gt

and stop. Otherwise insert into Gt an edge joining the two components
Vi and Vj , i.e. set Et+1 := Et ∪ (u, v) for some u ∈ V1 and v ∈ Vj ,
Gt+1 := (V, Et+1), t := t + 1, and repeat.

Theorem 21. If G# is connected, then the inequality (16) defines a facet

of P>(A, e).

Clearly, Theorem 21 is a specialization of Corollary 4. On the other
hand, the condition of Theorem 20 asserts that (16) is facet defining if
the graph G# obtained by restricting the Iterative Step of our procedure
to pairs i, j ∈ {1, . . . , p} such that Vi and Vj are singletons, is connected.
Hence the sufficient condition of Theorem 21 is a weakening of the one in
Theorem 20.
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