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A NOTE ON THE HILBERT-SAMUEL FUNCTION
IN A TWO-DIMENSIONAL LOCAL RING

LE TUAN HOA

1. INTRODUTION

Let (A,m) be a local Cohen-Macaulay ring of dimension d > 0 and I
an m-primary ideal. We assume throughout the paper that A/m is an
infinite field. If we denote the Hilbert-Samuel function A(A/I™) by H(n)
and the corresponding polynomial by P;(n), then P;(n) can be written in
the form:

Putw) =) (" TG —en (%) e ot

where ¢;(I) € Z and eg(I) > 0 is the multiplicity of I. We will omit I in
the notation if there is no confusion.

There are some classes of ideals I for which suitable relations between
some coefficients e; and A\(A/I) determine the whole Hilbert-Samuel func-
tion and force the associated graded ring G(I) = A/I ® I/I* @ --- of
I to have good properties. A classical example is that if eg = 1, then
e; = 0 fori >0, I = m, and A is a regular local ring. Inspired by
Kubota [Ku|, Huneke [Hu] and, independently, Ooishi [O] showed that if
AMA/JI) = ey — e1, then G(I) is a Cohen-Macaulay ring, e; = 0 for i > 1
and Hj(n) = Pr(n) for all n > 1. Recently, Sally [Sal, Sa2| showed that if
AMA/I) = eg—ej+es and eg < 2, then the reduction number 7(I) of T is less
than or equal to 2, depthG(I) > d — 1, and H;(n) = Pr(n) for alln > 1,
too. In fact, the relation A\(A/I) = ey — e1 (resp. A(A/I) =eg—e1 + €3)
can be written in the form H;(1) = P;(1) if d = 1 (resp. d = 2). Their
proofs are based on the case d = 1 and d = 2, respectively. Another result
by Huneke [Hu, Theorem 2.11] says that if d = 2 and I agrees with its
Ratliff-Rush closure I, then Hy(n) = P;(n) for all n > 1 is equivalent to
depthG(I) > 1 and r(I) < 2. From these phenomena we think that the
following question is of interest:
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Let d = 2 and assume that H;(n) = Pr(n) for all n =1,...,ng, where
no is a given positive integer. When is Hy(n) = Pr(n) for all n > 17

In this note we give some partial results to this question in the case
I = I. Then we can prove that the Hilbert-Samuel function and Hilbert-
Samuel polynomial agree for all n > 1 if they agree at n = 1, 2 (Theorem
3.3). If we only assume H;(1) = P;(1), then in the case e = 3 we can
show that Hy(n) = Pr(n) for all n > 3 and r(I) < 3 (Proposition 3.6).
Since we could not find any counterexample, we think that in this case
H;(2) = P;(2), too. As the main tool we use the local cohomology module
theory, a part of which was developed in [Sa2].

2. BACKGROUND

In this section we recall some basic facts and introduce some notations.

A Noetherian graded ring S = @®,,>05, is called standard if S is gene-
rated by S7 over Sy. Set Sy = ®,>05,. If Sy is an artinian local ring, we
denote the Hilbert function giving the length A(S,,) = As,(Sn) by hs(n)
and the corresponding Hilbert polynomial by pg(n). Then we have the
following useful formula given by Serre:

Lemma 2.1  ps(n) — hs(n) = Z(—l)”l)\(Hng(S)n).

i>0
We set .
ai(S) =max{n € Z; Hg, (5)n # 0},
where a;(5) 1= —oo if Hng (S) = 0. Recall that a homogeneous element

z of a graded ring S is said to be filter-reqular if [0 : z],, = 0 for all
n > 0. The proof of the following result is a modification of that of [Na],
Proposition 4.2 and Lemma 4.3.

Lemma 2.2. Let S be a standard graded ring over an artinian local ring
So.-

(i) If dim S =1, then for all n > 0,

A(HY, (S)a) < max{0, A(HE, (8),-1) — 1}.

(ii) If dim S = 2, then for every filter-reqular element z € Sy,

A(Hg, (S)nt1) < max{0, \(Hg, (S)n) — 1} if n>14a1(5/259),
MHY, (S)nt1) S MHS, (S)n) i n=a1(S/28).
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Proof. (i) Let z € S; be a filter-regular element of S. Set R = S/zS.
Note that if for some ¢ > 0, R; = 0, then R; = 0 for all j > i. Moreover,
without loss of generality, we may assume that Hng(S) = 0. Hence (i)
immediately follows from the following exact sequence:

0— Hg, (R)n = Ry — Hg (S)n—1 — Hg, (S)n — 0.

(ii) Set S' = S/Hg, (S). Then H§ (S) = qu;(S’). If z€ S5 is a
filter-regular element of S, then its image 2z’ in S’ is also a filter-regular

element of S’. Again set R = S/2zS. From the exact sequence

ZS+Hg+(S) S

Pl A
2S HRHS/ZS_Hng(S)JrzS_)O’

it follows that Héﬁr (8'/28') =2 Hg, (R). This means, replacing S by S’

we may assume that Hg+ (S) = 0. Then for n > a;(R) we have the exact
sequence

Let w € Ry be a filter-regular element of R. Consider the exact sequence
H?%Jr (B)n—1 = quu (R)n — (R/2R)n — H11%+ (B)n—1 = Hllﬁ (R)n — 0.

Since 14+a1(R) > 0, if H%+(R)i =0andi > 2+a1(R), then j'-IJO,—£+ (R); =0
for all j > i. Putting this in the exact sequence (1) we get the statement
(ii).

Now let A be a local Cohen-Macaulay ring. For any m-primary ideal [

there is the largest ideal I with the same Hilbert-Samuel polynomial as I.
This ideal is called the Ratliff-Rush closure of I and is defined as follows

(cf. [RR]):
I=Ju o).
i>1
Then it was shown that

Im = Jurti. o,

i>1

andf”;:I” for n > 0.
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Using this notion, Sally gave in [Sa2] a very interesting formula for
computing the components of the local cohomology Hfﬁ (R) of the Rees

algebra R = A[It] = A® It ® I*t> ® - - - for 2-dimensional rings.

From now on, if not otherwise stated, let A be a 2-dimensional local
Cohen-Macaulay ring and I an m-primary ideal. Then we have

Lemma 2.3 [Sa2, Proposition 2.4]. For alln >0,

AH%, (R)n) = Pr(n) — M(A/I7).

Lemma 2.4 [Sa2, Corollary 2.7]. For any minimal reduction x of I and
for all m > 0, we have

A2/ (zInF1 O I742)) < Pr(n) — MA/T7).

In the next section we need, as in [Sa2], some fundamental ideas from
Section 2 of Huneke’s paper [Hu|. For a minimal reduction z of I and
n > 1 set

(2) v = NI 2 I™) — NI zA) /T,

Then

Lemma 2.5. (i) For alln > 1,

vn = [Pr(n+1) — Hy(n+1)] + [Pr(n— 1) — Hy(n —1)] — 2[Pr(n) — Hy(n)].

(ii)) A(A/I) —(eg —e1) = > vp, and ez = > nu,.

n>1 n>1

Finally recall that the reduction number of I is defined as follows. Let
J be a minimal reduction of I. Set r;(I) = min{n > 0; I"*1 = JI"} and
r(I), the reduction number of I, = min{r;(I); J is a minimal reduction
of I'}.

3. RESuLTS

Recall that (A, m) is always assumed to be a 2-dimensional local Cohen-
Macaulay ring and I an m-primary ideal. For short, we also denote G([I)

by G.
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Lemma 3.1. Assume that I =1 and \(A/I) = eq — e, + e3. Then
(1) CLQ(R) == GQ(G) S 0 and /\(Hé+ (G)()) = €9.

(ii) Pr(n) = A(A/I7™) for alln > 1.
(iii) For alln >0,

ANHS (G)n) = A(IFL A1) /1Y),
MNHE, (G)n) = AT/ (IF1 + 17)).

Proof. (i) By Lemma 2.3, A(H%, (R)1) = 0 and A(H%, (R)o) = e2. It is
easy to show that A(Hg, (R)n+1) < A(Hg, (R),) for all n (see, e. g., [Sa2,
2.8]. Hence az(R) < 0. Further, note that Hp, (A), = 0 for n # 0 and
Hy (G) = H (G) (Ais considered as a graded R-module concentrated
in degree 0). From the exact sequences

0—-Ry - R—A—0,

and
0—-R:(1) - R—G—0,

we get the exact sequence
for all n > 0. Hence H(z;+(G)n = 0 for all n > 0 and /\(Hé+(G)0) =
)\(I‘IIQ{Jr (R)o) = €2.

(ii) follows from (i) and Lemma 2.3.

(iii) The first equality follows from the definition of 1", In order
to prove the second equality we use Lemma 2.1. Note that hg(n) =
AI™/I™YY) and pa(n) = Pr(n+ 1) — Pr(n). Since I = I, putting n = 0
in Lemma 2.1 we obtain

—e2 = MHg, (G)o) = AHE, (G)o) = A(He, (G)o) — e2.
Hence )\(Hé+ (G)o) =0. For n > 1, we have

AHE, (G)n) = AHE, (G)n) = Pr(n+1) = Pr(n) = X(I"/T"")
= A(I7"/I™) — NI/ [,
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Hence,

A((IPFE A I7) /174y = NP 1) AT/ 1)
AT/ = NIF /(I 0 T)
A(T?/T™) = A((I7FL 4 ™)/ I7) = AT/ (I + 1)),

MHg, (G)n)

Lemma 3.2. Ifﬁ:ﬁj:l-i—l'” for alln > p, then I" = I for alln > p.

Proof. For all n > p we have 7 :I/“:/l%—ln :I/”TF/Q—I—I” = ---. Since
Ii =TI for i > 0, we get [ = I™.

Let I be an m-primary ideal of a d-dimensional local ring A. An
element x € [ is called a superficial element for I if there exists an integer
p such that (I" : )N IP = " ! for all n > 0. A system of elements
T1,...,x¢ € I, t < d, is called a superficial sequence for I if the image of
x; is a superficial element for 1/(x1,...,z;-1)A, 1 <i <t. From the proof
of [ZS, Lemma 8.8.5] it follows that = € I is a superficial element for I if

and only if its initial form z* in G(I) is a filter-regular element of degree
1.

The following theorem gives an answer to the question posed in the
introduction and improves [Hu, Theorem 2.11].

Theorem 3.3. Let (A,m) be a Q—diTNnensional Cohen-Macaulay ring and
I an m-primary ideal. Assume that I = I. Then the following conditions
are equivalent:

(1) Hr(n) = Pr(n) forn=1, 2.

(2) Hr(n) = Pr(n) for alln > 1.

(3) grade G(I)4+ > 1 and r;(I) < 2 for any minimal reduction J of I.
Proof. Huneke [Hu] has proven the equivalence of (2) and (3). (2) = (1)
is trivial. We give here a proof of (1) = (2) and a new proof of (2) = (3).
Assume (1). Then by Lemma 3.1 (iii) Hé+(G)1 = Hé+(G)2 = 0. Let

y € I be a superficial element for I. Then we have the exact sequence of
local cohomology:

Héhr (G)n—l - H(l}'+ (G)n - Héhr (G/y*G)n - Hé‘+ (G)n—l = 07

for all n > 2. Hence Hé+ (G/y*G)2 = 0. By Lemma 2.2, Hé+(G/y*G)n =
0 for all n > 2 and Hg (G), = 0 for all n > 0. By Lemma 3.1 (ii)
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and Lemma 3.2, it follows that In = I for all n > 1. That means
Pr(n) = Hr(n) for all n > 1 and Hg+(G) = 0. By Lemma 2.4, it follows
that I3 = JI?, ie. r;(I) < 2.

As a consequence we get the following improvement of [Hu, Theorem
4.6(1)].

Corollary 3.4. Let A and I be as above. If Hr(n) = Pr(n) forn =1,2,
then G(I) is a Cohen-Macaulay ring if and only if I* NJ = JI for one
(or all) minimal reduction J of I.

Example 3.5. Of course, grade G4 > 1 is equivalent to In = I™ for all
n > 1. However, the condition Hy(n) = Pr(n) for all n > 1 does not
imply that I = I. Let us consider the following example of Sally [Sa2,
p. 546]: Let A = kl[[x,y]], where k is a field. Set I = (x%y, 25, 2y, 4°).
It was shown in [Sa2] that P;(1) = Hy(1) and I # I. In fact one can
immediately check that Pr(n) = Hy(n) for all n > 1.

What happens if we only assume H;(1) = Pr(1) in Theorem 3.37 As
mentioned in the introduction, Huneke [Hu|, Ooishi [O] (for e2 = 0) and
Sally showed that if H;(1) = P;(1) and ez < 2 then gradeG(I); > 1,
ry(I) <2 and Hr(n) = Pr(n) for all n > 1. The above example by Sally
shows that e; = 2 is the largest value of ey for this kind of results. In this
example, I # I. Can we get the same result for larger e, if we additionally
assume that I = I? Is that true for all e; if I = m? Below we give a
result towards an answer to this question in the case e; = 3.

Proposition 3.6. Let (A,m) be a 2-dimensional Cohen-Macaulay ring
and I an m-primary ideal. Assume that I =1 and N(A/I) = ey —e1 + e3
with eo = 3. Let x be a minimal reduction of I such that x is a superficial
sequence for I. Then either

(i) r2(I) <2 and gradeG(I)+ > 1 and Hi(n) = Pr(n) for alln > 1, or

(ii) ro(I) = 3, I" = I™ for all n > 3, N(I%/zI) = NI3/zI?) = 2 and
MNI3:x/I?) =1, and H;(n) = Pr(n) for all n > 3.

Proof. By Lemma 3.1 (i) and Lemma 3.1 we have
ANA/I2) = P;(2) = 3eg — 2e1 + €2 = e + 2X\(A/T) — 3.
By [V], A(A/I%) = eq + 2X\(A/I) — X\(I?/zI). Hence

A(I2/1%) = 3 — A(I?/zI).
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Since e # 0, A(I2/zI) > 0 (see [Hu,0]). If A(I2/2I) = 3, then 2 = I2.
By Lemma 3.1 and Theorem 3.3, I satisfies (i). We consider two other
cases separately.

Case 1. X(I?/zI) = 1. Then A(I2/I%) = 2 > AN(H}, (G)2) (by Lemma 3.2
(iii)). From the exact sequence

0=He, (Gh — Hg (G/2iG)1 — HE (G)o — HE (G)1 =0,

it follows that )\(HéJr(G/x{G)l) = eg = 3. By Lemma 2.2 (i) we obtain

3 if n=1,
2 n=2
3 MNHL (G Q) < ’
6 R N SN
0 n > 4.

In particular, a;(G/zG) < 3. By Lemma 2.2 (ii) and from the exact
sequence

(4) Hg (G)n-1 — He, (G)n — Hg (Gy"G)u,

we then get:

(0 if n=1,

2 2,

3 =3,

(5) HL, (G)a) <4 3 4,
2 n=>5,

1 n =0,

. 0 n>".

By Lemma 3.2 it follows that In = I" for all n > 7. Therefore, by
Lemma 2.5 (i) and Lemma 3.1 (ii), v, = 0 for all n > 8. We claim that
MIP/zl'=Y) <1foralli>2 v =vy =v3=v4=1and v; <1.

(The proof is the same as the middle of the proof of [Sa2, Theorem
3.1)). If I? = (zl,uw), with u,w € I and muw C zI, then for i > 2,
I' = (zI'" 1w lw) and mu'~tw C zI*~t. Hence A(I*/zI*"t) < 1 for all
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1> 2 and v; < 1. Let — denote the reduction mod x1A. We need to show
-2, = — -2 —4, —
that (1~ /zI) = )\(13/;[ )= A({ /gIS) = 1. From the exact sequence
0T el =T 2T - TT7 =0,
Fi i+l : . =i+l , =i .
we get that A(I /I ) = ey — ji, where j; =X /zI ). So0<j; <1
and j; = 0 implies j;+1 = 0. Thus, for large n,

NA/T") = eon—(eo—)\(A/I)—i—Zji) =egn—e; = egn—(eg—A(A/I)+3).

It follows that j; = jo = j3 = 1, which is the desired conclusion. From this
we immediately obtain that A\(I3/xzI?) = \(I*/xI?) = 1 and x;ANI* C
zI"~ ' fori=2,3,4. Therefore I' : x = I'"' fori = 2,3,4 and vy = v3 = 1.
If \(I°/zI*) = 0, then vy = 0 and v,, < 0 for n > 5. This contradicts to
the second equality in Lemma 2.5 (ii). Thus A(I°/zI?%) =1 = v,.

From Lemma 2.5 (ii) we now have vs+vg+v7 = —1 and vg 4 2v7 = —2.
Since 0 > vy = —A(IS/I%) = —A\(H}, (G)s) > —1 (by Lemma 2.5 (i) and
(5), there are two possibilities: vs = vg = 0,v7 = —1 or v5 = 1,v5 = —2
and vy = 0.

Case la. vs = vg = 0 and v; = —1. Then A(H (G)s) = 1 and,
therefore, we must have all equalities in (3) and (5). By Lemma 3.1
(ii), P(n) — Hy(n) = —A(I"/I"). Using Lemma 2.5 (i) one can de-

duce that A(I8/1°) = 1 = A(HE (G)s)s.... NI3/I%) =3 = A(HE, (G)3).

It then follows from Lemma 3.1 (iii) that I+l C I™ for n > 2 and
)\(Hg+(G)n) = A(HéJr(G)nH) for n > 2. Note that for any standard
graded ring S with ht S > 0 we always have the following exact sequence:

(6) 0— Hg, (S)n — Hg, (S/28)n — Hg, (S)n—1
— HY (S)n — HY, (S/25)n,

where z € S is a filter-regular element of S.

Applying this exact sequence to G with n = 5 we obtain the exact
sequence

Hence A(Hg, (G)s) = 2. Applying (6) to G/x7G with n = 5, we have

0— Hg (G/21G)s — Hg, (G/(a1,23)G)s — He (G/21G)a = 0.
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Therefore A\(I°/(zI* + 1°)) = )\(Hg+ (G/(x7,2%5)G)s5) = 2 which contra-

dicts to the inequality A\(I°/zI*) < 1.

Case 1b. vs = 1l,vg = —2 and v; = 0. Then Hé+(G)6 = 0 and

)‘(Hc1;+ (G)5) = 2. Now, as in Case la, applying (6) to G and to G/x}

with n = 6 we will get a contradiction that A(I¢/(zI° +I7)) = 2.
Summing up, Case 1 does not occur.

Case 2. A(I?/zI) = 2. Then A(I2/I?) = 1 > A(H}, (G)2) (by Lemma

3.1 (iii)). From the exact sequence (4) it follows that )‘(Héur (G/z7G)2) =

A(H¢, (G)2) < 1. Applying Lemma 2.2 we obtain

3 if n=1,
(7) ANHG, (Gl2i@),) <4 1 n=2,
0 n >3,
and
0 if n=1,
1 n=2,
®) PRI ES S
n=o,
0 n

If )\(Hé;+ (G)s) = 1, we must have all equalities in (7) and (8). Then
applying (6) to G and to G/x]G with n = 2 we get a contradiction that
AI?/(z] +1%)) = 3 < A[I?/al) = 2. Thus A(H{, (G),) = 0 for n > 3.
By Lemma 3.2, In = I for all n > 3. Computing vo and vs by Lemma
2.5 (ii) and (2) we get vo = 2 and vz = —1. Hence A\(I3/zI?) = 2 and
A3 : z/I?) = 1. Now applying Lemma 3.1 and [T, Proposition 3.2] we
get the statement (ii).

Remark. In fact, in (ii) of the above proposition we have )\(H(1;+ (G)2) =
)\(Hg+(G)1) =1 and Hé:+(G)n+1 = Hg+(G)n =0 for n # 1.

Further we want to complete an observation by Huneke related to the
independence of reduction numbers. Let

o(I) = max{n; I" # I"},

and
n(l) = max{n; Pr(n) # Hi(n)}.
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n(I) is called by Ooishi the postulation number of I. (We set ¢(I) = —oco

if I" = I" for all n). Huneke [Hu, Proposition 2.14] proved that if n(I) >
¢(I) 4+ 1, then r(I) does not depend on the choice of minimal reduction.
Now we will show that this is also true if n(I) < ¢(I). Thus if r;(I)
depends on J we must have n(I) = ¢(1).

Proposition 3.7. Let A be a 2-dimensional Cohen-Macaulay ring and
I an m-primary ideal. If n(I) # c¢(I), then r(I) does not depend on the
choice of minimal reduction.

Proof. By Huneke’s result we may assume that n(l) < ¢(I). Let n >
c¢:=c(I) > 0. By Lemma 2.3 we then get that )\(HJ?Lr (R),) = MI/I™).
Hence az(R) = c. Similarly to the proof of Lemma 3.1 (i) we can show
that as(G) = c. Now let n > ¢. Applying Lemma 2.1 to G we obtain

0= (Pr(n+1) = Pr(n)) = AI"/I"*") = pa(n) — h(n)
= MHg, (G)a) = MHE, (G)n).

Since Hg,, (G)n = (]/T_L\:1 NI")/ 1"+ =0, we must have Hf, (G), = 0 for
all n > c. Hence, by [T, Proposition 3.2, r;(I) = a2(G) +2 = ¢+ 2 for
any minimal reduction J of I.

Finally, let us give a partial result in the d-dimensional case. Using

Theorem 3.3 and reducing to the 2-dimensional case, as it was done in the
proof of [Sa2, Theorem 4.4], we can prove the following result

Corollary 3.8. Let (A,m) be a Cohen-Macaulay local ring of dimension
d > 2. Then the following conditions are equivalent:
(1) eo(m) —e1(m) +e2(m) = 1 and A(A/m?) = eg(m)(d+1) —e1(m)d
+ez(m)(d —1).
(2) M(A/m"™) = Pyn(n) for alln >0 and e3(m) = --- = e4(m) = 0.
(3) r(m) = 2 and G(m) is a Cohen-Macaulay ring.

REMARKS AND ACKNOWLEDGEMENT

We don’t know if the above corollary can be extended to any m-primary
ideal with I = I. This paper is a revised version of an author’s manu-
script entitled “Two notes on coefficients of the Hilbert-Samuel polyno-
mial” (Preprint 1993). The above corollary was written in that manu-
script as one of main results. But Valla has pointed to the author that
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this corollary can be also deduced from [EV, Theorem 2.1]. The author is
grateful to Elias and Valla for this and for pointing him a mistake in the
first version of this corollary.

In that version the following result was also proven: if (A, m) is an
arbitrary local ring of positive dimension then e;(m) < eg(m)(ep(m) —
1)/2. After completing the paper the author has learnt from Elias that the
same result and the same proof (using Gotzmann’s representation [Go] of
the Hilbert polynomial!) were independently discovered by Valla et al..

When this paper has been submitted, the author received a reprint of
the paper [I]. In that paper, using a completely different method, Itoh
proved Corollary 3.8 for all integrally closed ideals and a version of The-
orem 3.3 (see [I, Proposition 16 and Theorem 17]). In the preprint [B]
Blancafort was able to prove the inequality e; (1) < eq(I)(eo(I) —1)/2 for
any m-primary ideal I C A such that A/I is equicharacteristic.
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