ON THE TWO-SIDED PREDICTABLE APPROXIMATION FOR STOCHASTIC PROCESSES

NGUYEN MINH DUC

ABSTRACT. The two-sided predictable stochastic processes are introduced to show that they can approximate every bounded measurable stochastic process $(X_t(\omega), 0 < t \leq 1)$ *P*-almost surely uniformly in *t*. Consequently, it is proved that the two-sided predictable algebra also generates the product σ -field $\mathcal{B}((0,1]) \otimes \mathcal{F}$.

I. NOTATIONS AND NOTIONS

Let (Ω, \mathcal{F}, P) be the standard Wiener space with the canonical Brownian motion $(W_t, 0 \leq t \leq 1)$, \mathcal{F}_t and \mathcal{F}^t the completion of $\sigma\{W_s, s \leq t\}$ and $\sigma\{W_1 - W_s, 1 - t \leq s \leq 1\}$ respectively, and $\mathcal{F}_{(s,t]^c} = \mathcal{F}_s \vee \mathcal{F}^{1-t}$.

Put

$$\Omega^* = (0, 1] \times \Omega,$$

 \mathcal{F} = the product σ -field, that is $\mathcal{B}((0,1]) \otimes \mathcal{F}$,

 \mathcal{T} = algebra generated by $\{(s,t] \times G, s < t, G \in \mathcal{F}_{(s,t]^c}\}$ which is called the two-sided predictable algebra,

S = algebra generated by $\{(s, t] \times G, s < t, G \in \mathcal{F}\}$, which generates the product σ -field \mathcal{F}^* .

Let $(X_t, 0 < t \leq 1)$ be an integrable stochastic process, then $(X_t, 0 < t \leq 1)$ induces a signed measure on \mathcal{T} defined by

$$\lambda_X((s,t] \times G) = \int_{\Omega} (X_t - X_s) \mathbf{1}_G dP.$$

Then X is said to be an S-martingale (resp. an S-quasi-martingale) iff $\lambda_X \equiv 0$ (resp., λ_X is a measure of bounded variation) (see [D-N-S]).

Definition 1.1. The two-sided predictable stochastic processes are the simple stochastic processes of the form

Received November 8, 1995

NGUYEN MINH DUC

(1)
$$X_t = \sum_{i \ge 1} \lambda_i \mathbf{1}_{A_i}(t, \omega),$$

where λ_i 's are real numbers, $A_i \in \mathcal{T}$ for all *i*, and A_i 's are disjointed.

In this short note we shall show that every bounded measurable stochastic process $(X_t(\omega), 0 < t \leq 1)$ can be approximated *P*-almost surely uniformly in *t* by two-sided predictable stochastic processes. This result will be used to prove that \mathcal{T} also generates the product σ -field \mathcal{F}^* .

II. THE MAIN RESULTS

For $C \subset \Omega^*$ we denote by $\Pi(C)$ the projection of C on Ω and $A\Delta B$ denotes the symmetric difference of the two sets A and B. First of all we shall prove the following lemma.

Lemma 2.1. For any $A \in S$ and $\varepsilon > 0$, there exists a $B \in \mathcal{T}$ such that

$$P(\Pi(A\Delta B)) < \varepsilon.$$

Proof. Since every set in S can be written as a finite union of sets of form: $(s,t] \times G$, s < t, $G \in \mathcal{F}$, we need only to consider the case $A = (s,t] \times G$, with $G \in \mathcal{F}$. Since \mathcal{F} is generated by $\{W_u - W_v; u \ge v \ge t\} \cup \{W_t - W_u, W_u - W_s, s \le u \le t\} \cup \{W_u - W_v, v \le u \le s\}$, we can take without lost of generality $G = \bigcap_{0 \le i \le n} (W_{t_{i+1}} - W_{t_i} \in I_i)$, where $0 = t_0 < t_1 < \cdots < t_n = 1$ such that $s = t_\ell$, $t = t_{k+1}$ for some $\ell < k$, and I_i are some open intervals with rational boundaries. We can write

$$A = \bigcup_{1 \le i \le k} (t_i, t_{i+1}] \times G$$

=
$$\bigcup_{1 \le i \le k} \{ (t_i, t_{i+1}] \times (G_i \cap (W_{t_{i+1}} - W_{t_i} \in I_i)) \},$$

where

$$G_i = \bigcap_{j \neq i} (W_{t_{j+1}} - W_{t_j} \in I_j) \in \mathcal{F}_{(t_i, t_{i+1}]^c}.$$

Thus it suffices to prove our lemma for a set A of the form

$$A = (s, t] \times G, \text{ with } G = \{W_t - W_s \in I\},\$$

304

where I = (c, d) is an open interval.

Let $s = t_0 < t_1 < \cdots < t_{m+1} = t$, and define

$$\begin{aligned} G^0 &= \{ W_t - W_{t_1} \in I \}, \\ G^m &= \{ W_{t_m} - W_s \in I \}, \\ G^i &= \{ (W_t - W_{t_{i+1}} + W_{t_i} - W_s \} \in I \}, \ 0 \le i \le m - 1 \end{aligned}$$

We want to show

(2)
$$P\big(\bigcup_{0\leq i\leq m} (G^i \Delta G)\big) \to 0,$$

as $\delta := \max_i (t_{i+1} - t_i) \to 0.$

Since for any u > v, the probability for $\{W_u - W_v = c, \text{ or } d\}$ is zero and the paths of W are continuous, we have for P-a.s. W with δ small enough

 $W \in G \iff W \in G^i$, for all $0 \le i \le m$.

Therefore $W \notin \bigcup_{0 \le i \le m} \{G^i \Delta G\} P$ - a.s., if δ is small enough. This implies

$$1_{\bigcup_{0\leq i\leq m} \{G^i\Delta G\}}(W) \to 0, \ P-a.s.$$

as $\delta \to 0$. This proves (2).

To prove our lemma, we take

$$B = \bigcup_{0 \le i \le m} ((t_i, t_{i+1}] \times G^i).$$

Obviously $B \in \mathcal{T}$ since $G^i \in \mathcal{F}_{(t_i, t_{i+1}]^c}$ and

$$P(\Pi(A\Delta B)) = P\big(\bigcup_{0 \le i \le m} (G^i \Delta G)) \to 0$$

as $\delta \to 0$. q.e.d.

Remark. The idea, which is used in the proof of Lemma 2.1 and can be seen as an advantage of the two-sided predictable case, is that if we make (t-s) smaller and amaller, then $\mathcal{F}_{(s,t|^c}$ approximates \mathcal{F} .

The main result of this note is the following.

NGUYEN MINH DUC

Theorem 2.2. Suppose that $(X_t, 0 < t \leq 1)$ is a bounded measurable stochastic process. Then there exists a sequence of two-sided predictable stochastic processes of the form (1)

$$(X_t^{(n)}(\omega), 0 < t \le 1), \quad n = 1, 2, \dots$$

such that

(3)
$$\lim_{n \to +\infty} X_t^{(n)}(\omega) = X_t(\omega) \quad P\text{-almost surely, uniformly in } t \in (0,1].$$

Proof. Since S generates the product σ -field \mathcal{F}^* and the process $(X_t, 0 < \sigma)$ $t \leq 1$) is bounded, it is enough to prove (3) in the case

$$X_t(\omega) = 1_A(t,\omega),$$

where $A = (a, b] \times G$, $0 \le a < b \le 1$ and $G \in \mathcal{F}$. By Lemma 2.1 for every $n = 1, 2, \ldots$ there exists a subset $B_n \in \mathcal{T}$ such that $P(\Pi(B_n \Delta A)) < \frac{1}{2n}$. Put

$$X_t^{(n)} = 1_{B_n}(t,\omega).$$

It is clear that $X_t^{(n)}(\omega) = X_t(\omega)$ for all $(t, \omega) \notin B_n \Delta A$. On the other hand, since $\sum_{n=1}^{\infty} \frac{1}{2^n} = 1$ is finite, by the Borell-Cattelli law, it follows that for P a.s. every ω belongs only to a finite number of sets $B_n \Delta A$. Therefore for P - a.s. there exists $n_0 \in \{1, 2, ...\}$ for every ω such that for all $n \geq n_0$ we have

$$X_t^{(n)}(\omega) = X_t(\omega) \quad \text{for all } 0 < t \le 1$$

From Theorem 2.2 we can derive the following interesting result.

Corollary 2.3. The two-sided predictable algebra \mathcal{T} also generates the product σ -field \mathcal{F}^* .

Proof. Put $\sigma(\mathcal{T})$ = the σ -field generated by the algebra \mathcal{T} . Clearly, $\mathcal{T} \subset S$ implies that $\sigma(\mathcal{T}) \subset \mathcal{F}^*$. For every $A \in S$, it follows from Theorem 2.2 that the process $(1_A(t,\omega), 0 < t \leq 1)$ is $\sigma(\mathcal{T})$ -measurable. That means $A \in \sigma(\mathcal{T}).$

Therefore $S \subset \sigma(\mathcal{T})$ and thus $\mathcal{F}^* = \sigma(\mathcal{T})$.

Remark. Suppose that $(X_t, 0 \le t \le 1)$ and $(Y_t, 0 \le t \le 1)$ are right continuous, integrable processes with increasing paths, and $X_0 = Y_0 = 0$.

306

These processes induce two nonnegative measures on the product space Ω^* defined by

$$\lambda_X((s,t] \times G) = \int_{\Omega} (X_t - X_s) 1_G dP,$$
$$\lambda_Y((s,t] \times G) = \int_{\Omega} (Y_t - Y_s) 1_G dP,$$

for every $0 \le s < t \le 1$, $G \in \mathcal{F}$.

Assume that $\lambda_X = \lambda_Y$ on \mathcal{T} , i.e. $(X_t - Y_t, 0 \le t \le 1)$ is an S-martingale. Since \mathcal{T} generates the product σ -field \mathcal{F}^* , it follows from Corollary 2.3 that $\lambda_X = \lambda_Y$ on \mathcal{F}^* . Therefore for all $0 < t \le 1$ and for all $G \in \mathcal{F}$ we have

$$\int_{G} X_t dP = \int_{G} Y_t dP.$$

It means that $X_t = Y_t P$ - a.s,

Thus for P- a.s. we have $X_t = Y_t$ for all $0 \le t \le 1$. So, by methods of measure theory we have showed the uniqueness of the Doob-Meyer decomposition for anticipating processes which was formulated and proved in [D-N-S] Theorem 3.3 by using the smooth Wiener functionals.

References

1. N. M. Duc, D. Nualard and M. Sanz, *The Doob-Meyer decomposition for antici*pating processes, Stochastics and Stochastics Reports **34** (1991), 221-239.

Institute of Information Technology, Nghia Do, Tu Liem, Hanoi, Viet-Nam