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A REMARK ON DIFFERENTIAL OPERATORS
OF INFINITE ORDER

HA HUY BANG

Abstract. In this paper we give a necessary and sufficient condition for
a linear differential operator of infinite order to act invariantly in the space
of distributions with compact support.

Let P (ξ) be a polynomial in ξ. The solvability and related problems of
the differential equation

P (D)h = f

in the space E ′ = E ′(Rn) of distributions with compact support have been
studied by B. Malgrange, L. Hörmander, V.P. Palamodov and others (see,
for example, [1-3]).

The aim of this paper is to study the same problems for differential
operators of infinite order. Let {aα} be a sequence of complex numbers.
We put

A(D) =
∑

α≥0

aαDα

and consider the solvability in E ′ of the equation

(1) A(D)h = f .

To study (1) we have to understand the action of the symbol A(D)h on
test functions ϕ ∈ C∞(Rn). The first thought came to our mind is that:
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< A(D)h, ϕ > = < h,
∑

α≥0

(−1)|α|aαDαϕ > ,

but the series
∑

α≥0

(−1)|α|aαDαϕ(x), in general, does not converge. There-

fore, we have to define < A(D)h, ϕ > by other ways. We present here one
of the possible solutions:

Definition 1. By A(D)h we denote the weak limit of the sequence

(2)
∑

|α|≤N

aαDαh, N →∞ ,

i.e., if it converges in σ(E ′, E) to some g ∈ E ′.
Define now conditions on {aα} so that sequence (2) converges in

σ(E ′, E) for all h ∈ E ′. It follows from the definition of the Fourier trans-
form that

〈 ∑

|α|≤N

aαDαh, ϕ
〉

=
〈( ∑

|α|≤N

aαξα
)
ĥ(ξ) , (F−1ϕ)(ξ)

〉

for any ϕ ∈ C∞. Therefore, if sequence (2) weakly converges to g, then

〈
(

∑

|α|≤N

aαξα)ĥ(ξ) , (F−1ϕ)(ξ)
〉
→ 〈

ĝ(ξ), (F−1ϕ)(ξ)
〉

, N →∞

for all ϕ ∈ C∞(Rn). Hence, for ϕ(x) = e−ixη, η ∈ Rn we get

(F−1ϕ)(ξ) = (2π)−nδ(ξ − η)

and then ( ∑

|α|≤N

aαηα
)
ĥ(η) → ĝ(η) , N →∞ .

Putting h = δ, i.e., ĥ(η) ≡ 1, we obtain

lim
N→∞

( ∑

|α|≤N

aαηα
)

= ĝ(η)

for any η ∈ Rn. Then A(ξ) =
∑

α≥0

aαξα is an entire function.
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So, in order that the sequence (2) converge s in σ(E ′, E) for all h ∈ E ′, it
is necessary that A(ξ) =

∑
α≥0

aαξα is an entire function, and if g ∈ E ′ is the

weak limit of the sequence
∑

|α|≤N

aαDαh,N → ∞, then A(ξ)ĥ(ξ) = ĝ(ξ)

for all ξ ∈ Rn.

We define now conditions so that A(D) acts invariantly in E ′.
Theorem 1. Let A(ξ) be an entire function. Then A(D) acts invariantly
in E ′ if and only if there exist numbers C,M, r < ∞ such that

(3) |A(z)| ≤ C(1 + |z|)M exp(r|Imz|) , z ∈ Cn .

Proof. (⇒). Put h(x) = (2π)−nδ(x). Then F [A(D)h] = A(ξ)ĥ(ξ) =
A(ξ) ∈ F (E ′). Therefore, by Paley-Wiener-Schwartz theorem [1, p. 220],
we get (3).

(⇐). Let the entire function A(z) satisfy (3). Then for any h ∈ E ′ it
follows from the Paley-Wiener-Schwartz theorem that

|ĥ(z)| ≤ C1(1 + |z|)M1 exp(r1|Imz|) , z ∈ Cn

for some numbers C1,M1, r1 < ∞. Therefore, taking into account that

|A(z)ĥ(z)| ≤ CC1(1 + |z|)M+M1exp((r + r1)|Imz|) , z ∈ Cn

and Paley-Wiener-Schwartz theorem we get what we have to show. The
proof is complete.

Further, let K be a compact in Rn. Denote by E ′(K) the space of
distributions with support contained in K.

We define now conditions on entire function A(ξ) so that A(ξ)ĥ(ξ) ∈
F [E ′(K)] for all h ∈ E ′(K).

Theorem 2. Let A(ξ) be an entire function and K - a compact in Rn.
In order that A(ξ)ĥ(ξ) ∈ F [E ′(K)] for all h ∈ E ′(K), it is necessary and
sufficient that A(ξ) is a polynomial.

Proof. We only need to prove the necessity. We shall begin by showing
that for any r > 0 there exist numbers L,M < ∞ such that

(4) |A(z)| ≤ L(1 + |z|)Mexp(r|Imz|) , z ∈ Cn .
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Assume the contrary, that there is a number r > 0 such that for any m ≥ 1
there exists a point zm ∈ Cn such that

(5) |A(zm)| ≥ m(1 + |zm|)mexp(r|Imzm|) , m ≥ 1 ,

where zm = (zm
1 , . . . , zm

n ), zm
k = xm

k + iym
k , k = 1, . . . , n.

On the other hand, it follows from A(ξ)ĥ(ξ) ∈ F [E ′(K)] and Paley-
Wiener-Schwartz theorem that

(6) |A(z)ĥ(z)| ≤ C(1 + |z|)NexpH(Imz) , z ∈ Cn

for some constants C, N < ∞, where H(t) – the support function of K.

Further, by virtue of the continuity of A(z) we can assume that (5)
holds for |ym| > 0,m ≥ 1. We represent

zm = xm + iym , ym = |ym|ym/|ym| , m ≥ 1

and take from {ym/|ym|} a convergent subsequence. For simplicity of
notation we may assume that {ym/|ym|} converges to some point y∗.
Clearly, |y∗| = 1.

We choose η ∈ K such that

(7) H(y∗) = sup
t∈K

ty∗ = ηy∗ .

Taking into account of h(x) = (2π)−nδ(x − η) ∈ E ′(K) and ĥ(ξ) =
exp(−iηξ), and combining (5) and (6), we get

m(1 + |zm|)mexp(r|Imzm|)exp(−iηzm)

= m(1 + |zm|)mexp(r|ym|)exp(ηym)

≤ |A(zm)ĥ(zm)|
≤ C(1 + |zm|)NexpH(ym)

= C(1 + |zm|)Nexp
(
sup
t∈K

|ym| ym

|ym| t
)

= C(1 + |zm|)Nexp
(
sup
t∈K

|ym|(y∗t + (
ym

|ym| − y∗)t)
)

.(8)

Put m0 = max{C, N}. Then it follows from (8) that for m ≥ m0

exp (r|ym|+ ηym) ≤ exp
(
sup
t∈K

|ym|(y∗t + (
ym

|ym| − y∗)t
)

,
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which is equivalent to

r|ym|+ ηym ≤ sup
t∈K

|ym|
(
y∗t + (

ym

|ym| − y∗)t
)

= |ym| sup
t∈K

(
y∗t + (

ym

|ym| − y∗)t
)

, m ≥ m0 .

Therefore, by virtue of (7) we get for m ≥ m0

r +
ym

|ym| ≤ sup
t∈K

(
y∗t + (

ym

|ym| − y∗)t
)

≤ sup
t∈K

y∗t + sup
t∈K

(
ym

|ym| − y∗)t

= ηy∗ + sup
t∈K

(
ym

|ym| − y∗)t .

By letting m →∞ we have

r + ηy∗ ≤ ηy∗

because of

sup
t∈K

( ym

|ym| − y∗
)
t ≤ ∣∣ ym

|ym| − y∗
∣∣ sup

t∈K
|t| → 0 , m →∞ .

Therefore, r ≤ 0, which is impossible. So we have proved (4).

It follows from (4) and Paley-Wiener-Schwartz theorem that A(ξ) is the
Fourier transform of a distribution with the support contained in the ball
B(0, r). Then since r > 0 is arbitrarily chosen, we get that the distribution
F−1A concentrates on the origin {0} of coordinates. Therefore,

< F−1A,ϕ >=
∑

|α|≤k

bαDαϕ(x) , ϕ ∈ Ck(Rn)

by virtue of Theorem 2.3.4 [1, p. 64], where k is the order of the distribu-
tion F−1A. Hence,

A(ξ) =
∑

|α|≤k

bαξα ,

i.e., aα = bα, |α| ≤ k and aα = 0, |α| > k, because A(ξ) is an entire
function. So we have proved the necessity.
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Remark. Let K be an arbitrary compact in Rn. It follows from the
obtained results that if A(D) is a differential operator of infinite order
then A(D) cannot act invariantly in E ′(K). Furthermore, let f ∈ E ′(K)
(or ∈ E ′) and A(ξ) be an entire function of exponential type. Then,
clearly, equation (1) has a solution in E ′(K) (E ′ resp.) if and only if
f̂(ξ) = A(ξ)g(ξ), where F−1g ∈ E ′(K) (E ′ resp.).
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