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A PROPERTY OF FINITE MAXIMAL CODES

NGUYEN HUONG LAM

Abstract. We establish a property of finite maximal codes relating ex-
ponent m such that bm is in the code for some letter b to a structure
pertaining to certain specific codewords. Consequently, we are able to
propose some classes of finite codes that cannot be included in any finite
maximal codes for almost all given exponents.

1. Introdution

In this article we give a characterization of finite maximal codes and
use it to construct some classes of codes having no finite completions. For
historical notes and background references we refer mostly to the book [1]
and to the papers [2], [3], [4].

It is a simple, natural and well-expected fact that every code is included
in a maximal code on the same alphabet which is called its completion:
but it is nontrivial to discover that not every (finite) code is included in a
finite maximal one. Some constructions of such codes are shown in [2], [3]
and [4] all of which are based on a simple characterization of a special class
of finite maximal codes. Maximal codes have a remarkable property that
they are complete; and when a code is finite, completeness alone implies
maximality. Thus it is easily seen that for each letter b of the alphabet a
finite maximal code must contain bm for some (unique) positive interger m.
The construction starts by assuming beforehand for a code that it contains
a given letter b (i.e. the exponent m = 1) and also an, for another letter
a. Then it admits a so-called unambiguous pair of ZZZn and when the code
is finite maximal, the corresponding unambiguous pair turns out to be a
factorization of ZZZn. The scope of construction is to search for finite codes
with the associated unambiguous pair never completed to a factorization
of ZZZn.

The aim of this paper is to extend this kind of characterization to any
finite maximal code. Consequently, we can use it as a necessary condition
to derive finitely incompletable codes for almost all pairs of exponents m
and n. To do so, we utilize the familiar notion of multiset and come to a
counterpart of the ordinary factorization: the multifactorization.
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2. Multifactorization

First, we recall the concept of multiset. To avoid unnecessary formal-
ism, we say simply that a multiset is any abstract set whose elements can
enter several times. We often present a multiset M in an enumeration
M = {e1, e2, . . . , en−1, en} with ei’s not necessarily distinct. The number
of occurences of a given element is the multiplicity of this element in the
set. For example, the set M = {1, 2, 2, 3, 3, 3} is a multiset of possitive
intergers and the multiplicity of 3 is 3. Two multisets are considered equal
if they contain the same elements, each with equal multiplicity. Further
on, we shall use the traditional set-theoretic terminology whenever it is
clear in the context that the multisets under consideration are those with
all elements having multiplicity 1. Given a multisubset M , denote by |M |
the sum of all multiplicities of the elements in M ; when M is the ordinary
set, |M | is simply the cardinality of M . For more information one may
consult [6, Chapter VI].

Let ZZZn be the additive group of residues modulo n: elements of ZZZn

are identified with their representatives in the complete system of residues
{0, 1, . . . , n−1} modulo n. Let H and K be multisets with elements taken
from ZZZn, we say for convenience that H and K are multisubsets of ZZZn, in
notation, H ⊆ ZZZn, K ⊆ ZZZn. The multisubset H + K is to be defined as
{h+k : h ∈ H, k ∈ K} counting multiplicities. For instance, H = {0, 1, 1},
K = {2, 2, 2, 3, 3, 3, 3} ⊆ ZZZ4, so H + K = {0 + 2, 0 + 2, 0 + 2, 0 + 3, 0 +
3, 0+3, 0+3, 1+2, 1+2, 1+2, 1+3, 1+3, 1+3, 1+3, 1+2, 1+2, 1+2, 1+
3, 1+3, 1+3, 1+3} = {0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3}. We
say also that a multiset is a set of multiplicity s if each element of it has
multiplicity s.

Definition 2.1. A pair of multisubsets (H, K) of ZZZn is said to be a
multifactorization of ZZZn with multiplicity s, or for short, s-multifactorization
of ZZZn, if H + K equals to the set ZZZn of multiplicity s.

Speaking otherwise, it is the case when each residue modulo n is rep-
resented exactly s times as sum h + k taken with multiplicity of h in H
and k in K.

Example 2.1. The following multisubsets H = {0, 0, 1, 1, 4, 4, 5, 5} and
K = {0, 0, 0, 1, 2, 2, 2, 3} of ZZZ8 forms a 8-multifactorization of ZZZ8.

Remark 2.1. 1-multifactorization (s = 1) is a factoroization in its tradi-
tional sense [2], [3].
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3. Presentation of Results

Hereafter, we consider always a binary alphabet A = {a, b} of two
letters a and b; A∗ is the free monoid of words on A with the concatenation
as product. The symbol ε stands for the empty word (or the unit) of A∗.
The notation |w|, for a word w, means the length of w. Given a subset X
of A∗, we denote by X∗ the Kleene closure of X and X+ = X∗ − {ε}. A
subset C of A∗ is a code if the equality

c1 . . . ci = d1 . . . dj

with c1, . . . , ci, d1 . . . , dj ∈ C implies i = j and c1 = d1, . . . , ci = di. A
code is called maximal if every strictly larger set is not a code. Remind
also that a subset X is said to be complete, provided for all word w of A∗,
A∗wA∗ ∩X∗ 6= ∅.

Given a finite maximal code C, there must be two possitive intergers
n and m for which an and bm belong to C. Let

P = C ∩ b∗a+ = {bs1at1 , . . . , bspatp}

and
Q = C ∩ a+b∗ = {au1bv1 , . . . , auqbvq},

where si, ti, uj , vj are nonnegative intergers. Define the following multi-
subsets of ZZZn

R = {t1, . . . , tp} mod n

and
L = {u1, . . . , uq} mod n.

The main result is the following.

Theorem 3.1. For any finite maximal code C over the binary alphabet
A = {a, b} with an, bm ∈ C, the corresponding pair of multisubsets (R, L)
constitutes an m-multifactorization of ZZZn.

Remark 2. When m = 1, it is easily seen that R and L are the ordinary
set and Theorem 3.1 asserts that (R, L) is a 1-multifactorization, i.e. a
factorization of ZZZn. This is the characterization given in [3], [4].

The proof will be given in the next section with the decisive moment
singled out as an independent proposition.
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4. Proof of the main result

Let f be any word and X any subset of A∗. A word w is called f -trim
(relative to the letter b and the set X, to be precise) if w can be presented
in the form

w = bifbj = x1 . . . xk

so that x1, . . . , xk ∈ X and 0 ≤ i = |bi| < |x1|, 0 ≤ j = |bj | < |xk|.
It should be noted that an equality bj = bkfb` is possible for two pair

(i, j) and (k, `) distinct iff the occurences of f in the left and in the right
sides overlap, that is iff f ∈ b∗. Therefore, if f contains an occurence of
the letter a, i.e. f ∈ A∗aA∗, every f -trim word w is determined uniquely
by the pair (i, j). Denote the set of f -trim words by T (f).

The following proposition, originated from [5] and presented partially
as Exercise 6.3, Chapter VIII, of [1], will be a central argument in this
section.

Proposition 4.1. Let C be a finite subset of A∗ satisfying C ∩ b∗ = {bm}
and f be an arbitrary word of A∗aA∗.

(i) If C is complete, the number of f -trim words is not less than m.

(ii) If C is a code, the number of f-trim words is not more than m.

(iii) If C is a maximal code, the number of f-trim words is exactly m.

Proof of Proposition 4.1. (i) Assume for the contrary that the number of
f -trim words is < m. Let r be an interger larger than twice the maximum
of the lengths of the words of C and bxfbrfby be an fbrf -trim word. In
the representation as a product of words of C

bxfbrfby = c1 . . . ck

with x < |c1|, y < |ck|, let i be the smallest interger such that c1 . . . ci ≥
|bxf | and j be the largest one such that |c1 . . . cj | ≤ |bxfbr|. Hence, by
the choice of the large r, c1 . . . ci = bxfby and cj+1 . . . ck = bqfby with
|ci| > p > 0, |cj | > q ≥ 0 meaning that bxfbp and bqfby both are f -trim
words. Also, i < j and since bm is the unique word in C ∩ b∗, it follows
bi+1 = · · · = bj = bm and therefore r ≡ p + q mod m. Conversely, given
any pair of f -trim words bxfbp and bqfby, for large r ≡ p + q mod m
(r = p + q + km), bxfbrfby = bxfbp(bm)kbqfby is indeed an fbrf -trim
word. Remind that as f 6∈ b∗, it is represented uniquely by the pair
(x, y). This means that the total number of fbrf -trim words when r runs
through a fixed complete system of residues modulo m, does not exceed
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the number of pairs of f -trim words, thus is ≤ (m − 1)2. Consequently,
there exists a residue r such that the number of fbrf -trim words is less

or equal
(m− 1)2

m
< m − 1. It is known that the number of f -trim

words < m implies the number of hbrf -trim words < m − 1 for some
r. By descent, we comes to conclusion that there exists a word f ′, for
which the number of f ′-trim words is 0, but this obviously contradicts the
completness of C.

(ii) Let C be a code and suppose on the contrary that the number of
f -trim words equals i > m. Let further r be an integer sufficiently large
and bxfbrfby be any fbrf -trim word. By the argument just used above, as
C is code, we have a unique pair of f -trim words (bxfbp, bqfby) satisfying
p + q ≡ modm. Conversly, any pair of f -trim words (bxfbp, bqfby) yields
an fbrf -trim word bxfbrfby with r ≡ p + q mod m. It follows that the
total number of fbrf -trim words when r runs through a fixed complete
system of residues modulo m is exactly the number of distinct pairs of
f -trim words, that is i2 > mi. Hence the number of fbrf -trim words for

some residue r is > i =
mi

m
and, indeed, fbrf 6∈ b∗. Now by “ascent”

argument, we conclude that there exists a word f ′ for which the number
of f ′-trim words is > m2. But then we can single out two distinct f ′-trim
words bif ′bj and bkf ′b` so that i ≡ k mod m and j ≡ ` mod m. Because
C is a code, this is a contradiction with the fact that bif ′bj and bkf ′b` are
f ′-trim words.

(iii) is straightforward from (i) and (ii): a maximal code is complete.
The proof of Proposition 4.1 is complete.

Now we turn to the proof of the theorem 3.1. We fix a complete system
of residues modulo n, each of them is sufficiently large by value and define
Fr = {(d, e) ∈ (P, Q) : d ∈ b∗ai, e ∈ ajb∗, i+j ≡ r mod n} for a residue r.
We show that |Fr| = m. Put fr = ar. By Proposition 1 the fr-trim words
are m in number because fr 6∈ b∗. Let bxfrb

y be an arbitrary fr-trim
word, we have

bxfrb
y = c1 . . . ck

with c1, . . . , ck ∈ C; x < |c1|, y < |ck|. This implies c1 = bxai ∈ P ,
ck = ajby ∈ Q, i, j > 0 and c2 = · · · = ck−1 = an and i + j ≡ r
mod n. Since C is a code, for a given fr-trim word, the pair (c1, ck) is
unique, what we denote c1 = d(x, y), ck = e(x, y). Therefore the mapping
θr : T (fr) → Fr, given by

θr(bxfrb
y) = (d(x, y), e(x, y))
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for each fr-trim word w = bxfrb
y, is well-defined. Moreover, it is injective.

On the other hand, this mapping is surjective. In fact, given any pair
(d, e) ∈ Fr, d = bxai, e = ajby for some x, y ≥ 0, i, j > 0 such that
i + j ≡ r mod n, we have r = kn + i + j as r is large enough, and
bxai(an)kajby = bxarby = bxfrb

y. Thus

θr(bxfrb
y) = (d(x, y), e(x, y)) = (bxai, ajby) = (d, e),

showing the surjectivity of θr.

Summing up, θr is a bijection, and as consequence |T (fr)| = |Fr| = m.
Each (d, e) ∈ Fr contributes one pair (i, j) ∈ (R,L) such that i + j ≡ r
mod n meaning that counting multiplicites, there are exactly m pair (i, j)
of the multiset (R, L) with sum i + j ≡ r mod n what is to be proved.

Example 4.2. Code C = {a2, b2, b2a, bab, a2b, aba} is maximal, m = n =
2; L = {2, 0} = {0, 0} mode 2 and R = {1, 2} = {1, 0} mod 2 and forms
2-multifactorization of ZZZ2.

5. Examples: finitely incompletable codes

Theorem 3.1 provides a necessary condition for a finite maximal code.
If a finite code containing an, bm and admits the pair of multisets (P,Q)
that is never completed to an m-multifactorization of ZZZn, the code itself
cannot be completed to any finite maximal code either. Now we propose
a construction of such codes for various values of m and n.

A positive integer n is said to have property P if there exist positive
integers d, t and j such that d > j, t > j and n = dt + j. A small
arithmetical analysis will show that all positive integers have property P ,
except n = 1, 2, 3, 4, 6, 8, 12, 16 and 24.

Now given any integer m having property P , m = dt + j, d > j > 0,
t > j > 0, and n any positive integer, let H = {h1 = 0, . . . , hd} and K =
{k1 = 0, . . . , kt} form an unambigous pair (abbreviated u.a.p. henceforth)
of ZZZm [3]. This means that every residue of ZZZm is representable in at most
one way as a sum hi + hj mod m. Let further S = {r1 = 0, . . . , rp} and
T = {`1 = 0, . . . , `q} be a factorization of ZZZn, (n = pq). Remind again
that this means that every residues of ZZZn is represented in exactly one
way as a sum `i + rj mod n. Consider the subset CE consisting of the
following words
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{an bm

bh2an anbk2

. . . . . .
bhdan anbkt

bmar2 a`2bm

bh2ar2 a`2bk2

. . . . . .
bhdar2 a`2bkt

. . . . . .
bmarp a`qbm

bh2arp a`qbk2

. . . . . .
bhdarp a`qbkt}.

One checks that CE is a code, using, for example, the Sardinas-Patterson
criterion and the fact that (H, K) and (S, T ) are a.u.p. of ZZZm and ZZZn,
respectively. Clearly, the corresponding pair of multisubsets R, L of CE

are:

R = {n, . . . , n︸ ︷︷ ︸
d times

; r2, . . . , r2︸ ︷︷ ︸
d times

; rp, . . . , rp︸ ︷︷ ︸
d times

} mod n

and
R = {n, . . . , n︸ ︷︷ ︸

d times

; `2, . . . , `2︸ ︷︷ ︸
d times

; `p, . . . , `p︸ ︷︷ ︸
d times

} mod n

Evidently, (R, L) is not an m-multifactorization of ZZZn and, moreover,
we state that (R,L) is never completable to be so. As a matter of fact,
for each element x ∈ ZZZn, there exists a pair (ri, `j) ∈ (S, T ) such that
x ≡ ri + `j mod n. If we adjoin x to R, the pair (R ∪ {x}, L) represents
the residue x in t ways by the sum x+0 and in dt ways by the sum ri +`j ,
as n is of multiplicity t, ri of multiplicity d and `j of multiplicity t. Thus
the multiplicity of x in R ∪ {x} + L is dt + t > dt + j = m. As far as
adjoining x to L is concerned, by symmetry, the same remains true. So
(R,L) cannot be made into an m-multifactorization of ZZZn by adjoining
any element to it. So CE has no finite completions.

Example 5.3. For m = 10, n = 2 we choose d = 3, t = 3, j = 1, p = 1,
q = 2. Take H = {0, 1, 2}, K = {0, 3, 6} mod 10 and S = {0}, T = {0, 1}
mod 2, the code CE = {a2, ba2, b2a2, b10, a2b3, a2b6, ab10, ab3, ab6}.
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This construction yields the desired result for all m, n unless both val-
ues are of {1, 2, 3, 4, 6, 8, 12, 16, 24}. We subsequently give a more refined
example covering part of these exceptional values.

Let us say that an u.a.p. (H, K) of ZZZn is maximal if for every u.a.p.
(H ′,K ′) of ZZZn, H ⊆ H ′ and K ⊆ K ′ imply H = H ′ and K = K ′. For
the sake of clarity, we reproduce here an auxiliary statement from [4].

Claim. Given positive integers n, d.t. j such that t ≥ 2, d > j and
n = dt + j, let (H, K) be an u.a.p. of ZZZn satisfying K = {0, 1, . . . , d− 1},
{0, d} ⊆ H and |H| = t. Then (H,K) is a maximal u.a.p. of ZZZn.

Proof of Claim. (Sketch.) For every x 6∈ H∪K, the fact that (H∪{x},K)
is not an u.a.p. is evident. It will be shown that (H,K ∪ {x}) is not an
u.a.p. either. Let h0 = x0d + j0, . . . , ht−1 = xt−1d + jt−1 be elements of
H with 0 ≤ j0, . . . , jt−1 < d. Because 0, 1, . . . , d− 1 ∈ K, it follows that

x0 = 0, x1 = 1, . . . , xt−1 = t− 1.

Put x = rd + j′, j′ < d (r ≤ t). Then the following three equalities show
that (H,K ∪ {x}) is not an u.a.p.

x + d = d + (j − j′) mod n

if r = t, so that j′ < j;
x = kr + (j′ − jr)

if r < t and j′ ≥ jr; and

x + d = kr + d− (jr − j′)

if r < t and j′ < jr.

Explicit computation shows that each n > 6 satisfies the claim, that
is there exists a maximal u.a.p. (H, K) of ZZZn subject to the restrictions
anounced in it. For such n and (H, K) and for every m with an integral
factorization m = pq, let CF to be defined as:

{an bm

ban anbp

. . . . . .
bp−1an anbp(q−1)}

⋃
h∈H,h 6=0

{bmah, bah, . . . , bp−1ah} ⋃
k∈K,k 6=0

{akbm, akbp, . . . , akbp(q−1)}.
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The codity of CF is verified readily by Sardinas-Patterson criterion, tak-
ing the u.a.p. (H, K) into account. Evidently, the multisets R and L asso-
ciated to CE are the set H and K each element of which counted with the
multiplicity p and q respectively: R =

⋃
h∈H

{h, . . . , h}︸ ︷︷ ︸
p times

, L =
⋃

k∈K

{k, . . . , k}︸ ︷︷ ︸
q times

.

As (H, K) is not a factorization, (R, L) is not an m-multifactorization of
ZZZn. If (R, L) were embedded into an m-multifactorization (R′, L′), we
may assume that there is some x in R′ but not in R, thus not in H, as
H + K does not cover the whole ZZZn. The maximality of (H, K) implies
that there exist i ∈ ZZZn, h1 ∈ H, k1, k2 ∈ K. So that i = h1 + k1 = x + k2

mod n. But then the multiplicity of i in R′+L′ is at least pq (multiplicity
of the sum h1 +k1) plus q (multiplicity of x+k2) which is ≥ m+1: a con-
tradiction. Thus (R, L) cannot be completed to any m-multifactorization
of ZZZn and consequently CF has no finite completions.

This construction is possible for those m and n where at least one of
them is not 1, 2, 3, 4 or 6.

Example 5.4. Let m = 4, n = 8, take d = 3, t = 2, t = 2; p = q = 2;
R = {0, 3}, L = {0, 1, 2}. Then

CF = {a8, b4, ba8, b4a3, ba3, a8b2, ab4, ab2, a2b4, a2b2}.

In closing, we should note that the few values m and n that remain
are relatively small so that they could possibly lend themselves to an
individual treatment.
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