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ON THE GEOMETRIC COMPOSED VARIABLE
AND THE ESTIMATE OF THE STABLE DEGREE
OF THE RENYI’S CHARACTERISTIC THEOREM

TRAN KIM THANH, NGUYEN HUU BAO

1. Introduction

Let X1, X2, . . . be nonnegative independent identically distributed ran-
dom variable, P{Xj > x} = F (x), F (x) = 1 − F (x), and E(Xj) =∫

R

xdF (x) < +∞, j = 1, 2, . . . and let N be independent of Xj , j =

1, 2, . . . with the geometric distribution function, i.e.

P{N = k} = p(1− p)k−1, k = 1, 2, . . . (0 < p < 1).

In [1], the random variable z =
N∑

j=1

Xj is called the geometric composed

variable of Xj−s. Put

(1.1) G(x) = P{z ≤ x}, Gp(x) = P{pz ≤ x} and Gp(x) = P{pz > x}.

Renyi [3] characterized the exponential distribution by proving the fol-
lowing two assertions:

(i) lim
p→0

Gp(x) = e−x,

(ii) Gp(x) = F (x) ↔ F (x) = e−x.

We will consider the stability of this theorem.

Suppose that ϕ(t), ϕz(t) and ϕfz(t) are characteristic functions of F (x),
G(x), Gp(x), respectively. Then, if a(z) =

pz

1− qz
, (q = 1 − p) is the

generating function of N , we have (see [2])
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ϕz(t) = a[ϕ(t)] =
pϕ(t)

1− qϕ(t)
,

(1.2)
ϕpz(t) = ϕz(pt) = a[ϕ(pt)] =

pϕ(pt)
1− qϕ(pt)

·

We will distinguish two cases:

1. F (x) is a ε-exponential distribution, i.e., ∃T (ε) > 0, T (ε) → ∞
when ε → 0, such that

(1.3) |ϕ(t)− ϕ0(t)| ≤ ε, ∀t : |t| ≤ T (ε),

where

(1.4) ϕ0(t) =
1

1− it
·

2. Gp(x) = P{pz ≤ x} is the ε-exponential distribution function, i.e.,
∃T (ε) > 0, T (ε) →∞ when ε → 0, such that

(1.5) |ϕpz(t)− ϕ0(t)| ≤ ε ∀t; |t| ≤ T (ε),

where ϕpz(t) and ϕ0(t) are the characteristic functions from (1.2) and
(1.4).

2. Stability theorems

Theorem 2.1. Assume that F (x) is a ε-exponential distribution function.
Then we have

(i) |ϕpz(t)− ϕ0(t)| ≤ ε

p
, ∀t : |t| ≤ T (ε)

p
;

(2.1)
(ii) λ(Gp; F0) = max

{ ε

2f
;

1
T (ε)

}
(with T (ε) as above),

where F0(x) is the exponential distribution function and Gp(x) as in (1.1)
and

λ(Gp; F0) = min
T>0

{
max

[
max
|t|≤T (ε)

1
2
|ϕpz − ϕ0(t)|; 1

T (ε)
]}
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Proof. (i) From (1.2), (1.4), we have the following estimations

|ϕpz(t)− ϕ0(t)| = |ϕz(pt)− ϕ0(t)|(2.2)

=
∣∣∣ pϕ(pt)
1− qϕ(pt)

− ϕ0(t)
∣∣∣

=
∣∣∣ pϕ(pt)
1− qϕ(pt)

− 1
1− it

∣∣∣

=
∣∣∣pϕ(pt)− it.pϕ(pt)− 1 + qϕ(pt)

[1− qϕ(pt)](1− it)

∣∣∣ ·

Let r(t) = ϕ(t) − ϕ0(t). According to (1.3), there exists T (ε) with
T (ε) → +∞ when ε → 0 such that |r(t)| ≤ ε ∀t : |t| ≤ T (ε). Therefore

(2.3) |r(pt)| = |ϕ(pt)− ϕ0(pt)| ≤ ε ∀t : |t| ≤ T (ε)
p

·

Hence, from (2.2), we get

|ϕpz(t)− ϕ0(t)| =
∣∣∣ (1− ipt)[ϕ0(pt) + r(pt)]− 1

(1− it)[1− qϕ(pt)]

∣∣∣

=
∣∣∣1− ipt

1− it

∣∣∣ ·
∣∣∣ r(pt)
1− qϕ(pt)

∣∣∣

=

√
1 + p2t2√
1 + t2

· |r(pt)|
|1− qϕ(pt)| ·

Notice that
√

1 + p2t2 ≤ √
1 + t2 and ∀z ∈ C, 1− q ≤ 1− q|z| ≤ |1− qz|.

So,
0 < 1− q ≤ 1− q|ϕ(pt)| ≤ |1− qϕ(pt)|.

Thus,

(2.4)

√
1 + p2t2√
1 + t2

· |r(pt)|
|1− qϕ(pt)| ≤

|r(t)|
1− q

≤ ε

1− q
=

ε

p
∀t : |t| ≤ T (ε)

p
·

(ii) Since F (x) is a ε-exponential distribution function, by (1.3) we can
find T (ε) such that

(2.5) max
|t|≤T (ε)

|ϕ(t)− ϕ0(t)| ≤ ε.
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Using (2.4), we obtain

max
{

max
|t|≤T (ε)

1
2
|ϕpz(t)− ϕ0(t)| ; 1

T (ε)

}

≤ max
{

max
|t|≤T (ε)

p

1
2
|ϕpz(t)− ϕ0(t)| ; 1

T (ε)

}

≤ max
{ ε

2p
;

1
T (ε)

}
·

Therefore,

λ(Gp; F0) < max
{ ε

2p
,

1
T (ε)

}
·

This completes the proof of Theorem 2.1.

Theorem 2.2. Assume that µ0 = E|xj | < +∞ and F (x) is the ε-
exponential distribution function with T (ε) as in (2.5) which satisfies the
condition T (ε) = 0(ε−α) (for some α and ε sufficiently small). Then

ρ(Gp;F0) < C1ε
α + C2ε|lnε|,

where C1, C2 are the constants independent of ε and

ρ(Gp, F0) = sup
x∈R1

|Fp(x)− F0(x)|.

Proof. At first, since F0(x) is exponential distribution function,

F ′0(x) =
{

e−x, x ≥ 0,

0, x < 0.

Hence, sup
x

F ′0(x) = 1. Using Esseen’s inequality (see [1]) with q(x) and

F0(x) we get

ρ(Gp; F0) <
1
π

T (ε)∫

−T (ε)

∣∣∣ϕpz(t)− ϕ0(t)
t

∣∣∣dt +
24

πT (ε)
sup
x∈Ω

|F ′0(x)|

= I +
24

πT (ε)
,
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where T (ε) is defined by (1.3). Hence

I =
1
π

T (ε)∫

−T (ε)

∣∣∣ϕpz(t)− ϕ0(t)
t

∣∣∣dt

=
1
π

[ ∫

|t|≤δ

. . . dt +
∫

δ<|t|<T (ε

. . . dt
]

=
1
π

(I1 + I2),

for some number δ, 0 < δ < T (ε), which will be chosen later.

In order to estimates I1, we put

I∗1 =
∫

|t|≤δ

∣∣∣ϕpz(t)− 1
t

∣∣∣dt,

(2.7)

I∗∗1 =
∫

|t|<δ

∣∣ϕ0(t)− 1
t

∣∣dt.

Then we have

(2.8) I1 ≤ I∗1 + I∗∗1 .

Since there exist the moments µ0 = E|xj | = 1; j = 1, 2, . . . , there exist
also the moments µz = E|z| and µpz = E|pz|. Hence

|ϕz(t)− 1| ≤ µz|t|, ∀t ∈ R;

|ϕpz(t)− 1| ≤ µpz ∀t ∈ R.

Therefore

I∗1 ≤
∫

|t|≤δ

µpz|t|
|t| dt = 2µpzδ,

(2.9)
I∗∗1 ≤

∫

|t|≤δ

µ0|t|
|t| dt = 2δ (µ0 = 1).

Using (2.8), (2.9), we obtain

I1 < 2(1 + µpz)δ.
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In order to estimate I2, we notice that if F (x) is a ε-exponential func-

tion, then from (2.1) with T ′(ε) =
1
p
T (ε), and T ′(ε) > T (ε) (so that

|ϕpz(t)− ϕ0(t)| ≤ ε

p
∀|t| ≤ T ′(ε)), we get

I2 ≤
∫

δ<|t|<T (ε)

| . . . |dt

≤ ε

p

∫

δ<|t|<T ′(ε)

1
|t|dt

=
2ε

p

T ′(ε)∫

δ

dt

t
=

2
p
εln

(T ′(ε)
δ

)
·

If we choose δ = εβ for some β > 0, we will have the following estima-
tions:

I1 ≤ 2(1 + µpz)εβ , I2 ≤ 2
p
ε
∣∣∣lnT ′(ε)

εβ

∣∣∣ ·

By using (2.6), we conclude that

ρ(Gp;F0) ≤ I +
24

πT (ε)

≤ 1
π

(I1 + I2) +
24

π + T (ε)

≤ 1
π

[
2(1 + µpz)εβ

]
+

2
pπ

ε
∣∣∣lnT ′(ε)

εβ

∣∣∣ +
24

πT (ε)
= K(ε),

where K(ε) → 0 when ε → 0.

If T (ε) = 0(ε−α), then T ′(ε) =
T (ε)

p
= 0(ε−α) and

K(ε) = C1ε
β + C2ε

∣∣∣ln C3

εα+β

∣∣∣ + C4ε
α,

where C1, C2, C3, C4 are the constants independent of ε. Since 0 < δ <
T (ε) we can choose β > α. Then

K(ε) < C1ε
α + C2ε|lnε−2β |+ C4ε

α < ξ1ε
α + ξ2ε|lnε|.
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This completes the proof of Theorem 2.2.

Theorem 2.3. Assume that Gpz(x) is a ε-exponential distribution func-
tion for some sufficiently small ε. Then

(i) F (x) is a
( ε

p− qε

)
- exponential distribution function

(2.10)
(ii) λ(F ; F0) ≤ max

{ ε

2(p− qε)
;

1
pT (ε)

}
,

where T (ε) is defined as in the definition of the ε-exponential function
Gpz(x).

Proof. (i) According to the hypothesis, for a given ε, there exists T = T (ε)
such that

|ϕpz(t)− ϕ0(t)| = |r(t)| ≤ ε ∀t : |t| ≤ T (ε),
(2.11) ∣∣∣r

( t

p

)∣∣∣ ≤ ε ∀t : |t| ≤ pT (ε).

By (1.2) we have

ϕpz(t) =
pϕ(pt)

1− qϕ(pt)
,

ϕ(pt) =
ϕpz(t)

p + qϕpz(t)
,

and

ϕ(u) =
ϕpz

(u

p

)

p + qϕpz

(u

p

) ·

Hence,
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|ϕ(u)− ϕ0(u)| =
∣∣∣

ϕpz

(u

p

)

p + qϕpz

(u

p

) −
1

1− iu

∣∣∣

=
∣∣∣
ϕpz

(u

p

)− iuϕpz

(u

p

)− p− qϕpz

(u

p

)

(1− iu)
[
p + qϕpz

(u

p

)]
∣∣∣,

(2.12)

∣∣∣

[
r
(u

p

)
+ ϕ0

(u

p

)]
(p− iu)− p

(1− iu)
[
p + qϕpz

(u

p

)]
∣∣∣ =

|p− iu|
∣∣r(u

p

)∣∣

(1− iu)
[
p + qϕpz

(u

p

)]

≤
∣∣r(u

p

)∣∣
∣∣p + qϕpz

(u

p

)∣∣ ·

We notice that for all complex numbers u,

|u| ≥ max{|Imu|; |Reu|}.

Therefore,

∣∣p + qϕpz

(u

p

)∣∣ =
∣∣p + q

[
r
(u

p

)
+ ϕ0

(u

p

)]∣∣

=
∣∣p +

qp2

p2 + u2
+ qr

(u

p

)
+ iu

pq

p2 + u2

∣∣

≥ Re
{
p +

qp2

p2 + q2
+ qr

(u

p

)
+ iu

pq

p2 + u2

}∣∣

≥ p− q
∣∣Rer

(u

p

)∣∣(2.13)

≥ p− qε, ∀u : |u| ≤ pT (ε).

From (2.11), (2.12) and (2.13) we can derive (2.10).

(ii) This follows directly from (2.10) and the definition of the metric
λ(., .).
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