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ON A CLASS OF NONLINEAR ELLIPTIC EQUATIONS
AND BOUNDARY VALUE PROBLEMS

IN THE LIMIT DOMAIN

HOANG QUOC TOAN

Abstract. In this paper we study the boundary value problem for a class
of high order nonlinear elliptic equations in the bounded domain G0 with
smooth boundary Γ0 in the space Rn where the domain G0 is considered

as a limit (in some sense) of the family of domain {Gt} which depend

smoothly on a parameter t ∈ [0, T ] in S. G. Krein’s sense when t tends
to 0.

1. Introduction

Let G0 be a bounded domain with sufficiently smooth boundary γ0

in the space Rn. Let us consider a differential elliptic operator L(x, D)
of order 2m and a system {Bj(x,D)} of linear differential expressions of
order mj , j = 1, 2, . . . ,m, mj ≤ 2m − 1, with smooth coefficients in the
domain G0. We consider the following boundary-value problem:

L(x,D)u(x) = h(x, u) + f(x) on G0(1.1)

Bj(x,D)u(x) = gj(x) on Γ0 (j = 1, 2, . . . , m)(1.2)

where h(x, u) is an expression of u(x) and x, f(x) and gj(x) (j = 1, 2, . . . , m)
are functions given on G0.

In the linear case, results on boundary value elliptic problems in general
form are well-known. These results and their methods have been extended
to classes of nonlinear equations. Among the methods used for nonlinear
differential equations, the iterative method is the best known one which
has often worked for “regularization” of the problems. Results of this
nature may be found in [1-5].

The aim of the present paper is to study the existence and the unique-
ness of solution of the problem (1.1) (1.2) under suitable hypothesis for
h(x, u) and f(x) is a function of a space with weight Hs

a(G0) (see [10]).
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First of all let us mention some results which will be applied to our
arguments. We consider in the domain G0 a family of domains {Gt} with
boundaries {Γt} smoothly depending on a parameter t ∈ [0, T ] in S. G.
Krein’s sense (see [6] and [7]), where 0 < T < 1. Assume further that

(1.3) Gt → G0 as t → 0

(Therefore (1.1) (1.2) is called the boundary value problem in the limit
domain!).

Assumption I. Assume that in each domain Gt, for t ∈ [0, T ], the bound-
ary value problem

L(x, D)u(x) = f(x) on Gt(1.4)

Bj(x, D)u(x) = gj(x) on Γt(1.5)

(j = 1, 2, . . . , m)

is a boundary value elliptic problem. Furthermore, for u(x) ∈ H2m+s(Gt),
s ≥ 0, the following a priori estimate

(1.6)
∥∥u

∥∥
H2m+s(Gt)

≤ C
{∥∥Lu

∥∥
Hs(Gt)

+
m∑

j=1

∥∥Bju
∥∥

H2m+s−mj− 1
2 (Γt)

}

holds, where C is a constant.

It follows readily from the a priori estimate (1.6) that the problem
(1.4)-(1.5) in each domain Gt for t ∈ [0, T ] has a unique solution.

Let us first make the following remark.

Remark. In general, the constant C in the a priori estimate (1.6) depends
on t ∈ [0, T ], i.e. C = C(t) for t ∈ [0, T ].

Throughout this paper we assume that the function C(t) in (1.6) is
constant.

Let A0 denote a unbounded operator defined by the problem with ho-
mogeneous boundary value condition in the limit domain G0:

L(x,D)u(x) = f(x) on G0,

Bj(x,D)u(x) = 0 on Γ0, (j = 1, 2, . . . , m).

For s ≥ 0 we set

H2m+s
Γ0

(G0) =
{

u(x) ∈ H2m+s0(G0) : Bj(x, 0)u(x) = 0 on Γ0

}
.
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Then A0 is an operator mapping from H2m+s
Γ0

(G0) to Hs(G0) according
to the following formula

(1.7) H2m+s
Γ0

(G0) 3 u(x) 7→ A0u = Lu ∈ Hs(G0).

From that the operator A0 is invertible, and we denote by A−1
0 its

bounded inverse operator. There is the following estimate:

(1.8)
∥∥u

∥∥
H2m+s(G0)

≤ ‖A−1
0 ‖S ·

∥∥Lu
∥∥

Hs(G0)
,

for u(x) ∈ H2m+s
Γ0

(G0) and s ≥ 0, where ‖A−1
0 ‖S is the norm of the

operator A−1
0 .

For a ≥ 0 we denote by HS
a (G0), s ≥ 0, the set of all functions f(x)

defined in G0 such that their restrictions to each domain Gt for t ∈ (0, T ]
belong to HS(Gt) (see [9] and [10]) and the following condition holds:

(1.9)
∥∥f

∥∥
Hs

a(G0)
= sup

0<t≤T
ta

∥∥f
∥∥

Hs(Gt)
< +∞.

We have proved (see [10]) that for f(x) ∈ Hs
a(G0), a ≥ 0, s ≥ 0, the

quantity
∥∥f

∥∥
HS

a (G0)
defines a norm in HS

a (G0). Moreover, we have

(i) Hs(G0) ⊂ Hs
a(G0), a ≥ 0, ∀s ≥ 0,

(ii) f(x) ∈ Hs(Gt) if f(x) ∈ Hs
a(G0) t ∈ (0, T ].

It may happen that as t → 0,
∥∥f

∥∥
Hs(Gt)

tends to the infinity provided
that ∥∥f

∥∥
Hs(Gt)

≤ G.t−a (t → 0).

Thus, in a neighborhood of the boundary Γ0 these functions may be un-
bounded.

Furthermore, the space HS
a (G0) defined as above can be considered as

a Sobolev-Slobodeski’s space with weight.

2. Boundary-value problem in the limit domain

Let f(x) ∈ Hs
a(G0), a > 0, gj(x) = H2m+s−mj (G0),

j = 1, 2, . . . , m, s ≥ 0. We consider the following boundary-value problem
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in the domain G0:

L(x,D)u(x) = f(x) in G0,(2.1)

Bj(x,D)u(x) = gj(x) on Γ0, (j = 1, 2, . . . , m).(2.2)

Definition 2.1. A function u(x) ∈ H2m+s(G0), s ≥ 0, is said to be a
solution of the problem (2.1)-(2.2) if the following conditions are satisfied:

lim
t→0

∥∥Lu− f
∥∥

Hs(Gt)
= 0,

(2.3)
∥∥Bju− gj

∥∥
H2m+s−mj− 1

2 (Γc)
= 0, (j = 1, 2, . . . ,m).

Recall that if f(x) ∈ Hs
a(G0), then its restriction to Gt belongs to Hs(Gt)

for t ∈ (0, T ].

Let us denote by u(t, x) the unique solution of the problem (1.4) (1.5)
in the domain Gt for t ∈ (0, T ]:

L(x, D)u(t, x) = f(x) in Gt,

Bj(x, D)u(t, x) = gj(x) on Γt, (j = 1, 2, . . . , m).

Then u(t, x) ∈ H2m+s(Gt) and the following estimate holds:

(2.4)
∥∥u

∥∥
H2m+s(Gt)

≤ C
{∥∥f

∥∥
Hs(Gt)

+
m∑

j=1

∥∥gj

∥∥
H2m+s−mj− 1

2 (Γt)

}
,

where C is a constant, s ≥ 0.

Moreover, for a > 0 we have

∥∥u
∥∥

H2m+s(Gt)
≤ C.t−a

{
ta

∥∥f
∥∥

Hs(Gt)
+

m∑

j=1

∥∥gj

∥∥
H2m+s−mj− 1

2 (Γt)

}
,

for t ∈ (0, T ].

Under the hypothese f(x) ∈ Hs
a(G0), a > 0, from the last inequality

we obtain the following estimate for the solution u(t, x)

(2.5)
∥∥u

∥∥
H2m+s(Gt)

≤ C(t)
{∥∥f

∥∥
Hs

a(G0)
+

m∑

j=1

∥∥gj

∥∥
H2m+s−mj (G0)

}
,
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for s ≥ 0, where C(t) satisfies the asymptotic estimate

(2.6) C(t) = 0(t−a), t → 0, a > 0.

On the other hand, as indicated in [7], the solution u(t, x) can be ex-
tended to a function in H2m+s(G0)

ut(t, x) = Rtu(t, x)

by an operator of extension Rt. Moreover, the operator of extension
Rt can be always chosen as linear operator mapping from H2m+s(Gt)
to H2m+s(G0) which is uniformly bounded in norm for all t ∈ (0, T ],
0 ≤ 2m + s ≤ N , where N is a sufficiently large natural number.

Under the stated assumption we have prove (see in [9], [10]) that if

f(x) ∈ Hs
a(G0), gj(x) ∈ H2m+s−mj (G0),

j = 1, 2, . . . , m, for s ≥ k0+1, 2m+s ≤ N and k0 =
[ a

1− a

]
+1, 0 < a < 1,

then ut(t, x) is considered as an abstract function defined in the domain
(0, T ]×G0 with values in the space H2m+s−(k0+1)(G0) which satisfies the
following estimate

∥∥uτ − ut

∥∥
H2m+s−(k0+1)(G0)

≤ C.|t− τ |
{∥∥f

∥∥
Hs

a(G0)

+
m∑

j=1

∥∥gj

∥∥
H2m+s−mj (G0)

}
,(2.7)

for all τ, t ∈ (0, T ], where C is constant.

It follows readily from (2.7) that there exists a limit

(2.8) lim
t→0

ut(t, x) = u0(x) in H2m+s−(k0+1)(G0)

i.e.
lim
t→0

∥∥ut − u0

∥∥
H2m+s−(k0+1)(G0)

= 0.

Finally, we have the following theorem on the existence and the uniqueness
of the solution of the problem (2.1)-(2.2) (see [9], [10]).
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Theorem 2.1. Let f(x) ∈ Hs
a(G0), gj(x) ∈ H2m+s−mj (G0), j =

1, 2, . . . ,m, s ≥ k0 + 1, k0 =
[ a

1− a

]
+ 1, 0 < a < 1. Then the func-

tion u0(x) ∈ H2m+s−(k0+1)(G0) defined by (2.8) is the unique solution of
the problem (2.1)-(2.2), and there is the following estimates:

(2.9)
∥∥u0

∥∥
H2m+s−(k0+1)(G0)

≤ C
{∥∥f

∥∥
Hs

a(G0)
+

m∑

j=1

∥∥gj

∥∥
H2m+s−mj (G0)

}
,

where C is a constant.

3. Boundary-value problem for nonlinear elliptic equations

Let f(x) ∈ Hs
a(G0), gj(x) ∈ H2m+s−mj (G0),

j = 1, 2, . . . , m, s ≥ k0 + 1, k0 =
[ a

1− a

]
+ 1, 0 < a < 1.

We consider in G0 the following problem:

L(x,D)u(x) = h(x, u) + f(x) in G0,(3.1)

Bj(x,D)u(x) = gj(x) on Γ0, (j = 1, 2, . . . ,m)(3.2)

under suitable hypotheses for h(x, u) as follows.

Assumption II. Assume that the expression h(u, x) satisfies the following
conditions:

(i) For u(x) ∈ Hs(G0), h(x, u) ∈ Hs(G0), s ≥ 0,

(ii) For u(x), v(x) ∈ Hs(G0),

(3.3)
∥∥h(., u)− h(., v)

∥∥
Hs(G0)

≤ M.
∥∥u− v

∥∥
Hs(G0)

,

where M is a positive constant such that

(3.4) E = M‖A−1
0 ‖s < 1.

Definition 3.1. A function u(x) ∈ H2m+s(G0) is called a solution of the
problem (3.1)-(3.2) if

lim
t→0

∥∥Lu− h(., u)− f
∥∥

Hs(Gt)
= 0,
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∥∥Bju− gj

∥∥
H2m+s−mj− 1

2 (G0)
= 0 (j = 1, 2, . . . , m).

In the sequel, the solution u(x) of the problem (3.1) (3.2) will be written
in the following form

u(x) = v(x) + u0(x),

where u0(x) is the unique solution of the problem (2.1) (2.2), and v(x) is
a solution of the following problem:

L(x,D)v(x) = h(x, v + u0) on G0,(3.5)

Bj(x,D)v(x) = 0 on Γ0, (j = 1, 2, . . . , m).(3.6)

Recall that the existence and the uniqueness of the solution u0(x) have
been proved by Theorem 2.1 and this solution is defined by (2.8).

Now we will prove analogous result for the problem (3.5)-(3.6).

Theorem 3.1. Under assumption II the problem (3.5)-(3.6) has a unique
solution v(x) ∈ H2m+s−(k0+1)(G0).

Proof. The main tool for our proof will be the iterative method. By Theo-
rem 2.1, the function u0(x) which has been defined by (2.8) is the unique
solution of the problem (2.1) (2.2) in H2m+s−(k0+1)(G0), s− (k0 +1) ≥ 0,
k0 =

[ a

1− a

]
+ 1.

For simplicity of notation we put s0 = s − (k0 + 1). Then s0 ≥ 0,
and u0(x) ∈ H2m+s0(G0), hence u0(x) ∈ Hs0(G0). Therefore, under
assumption II, h(x, u0) ∈ Hs0(G0).

Let v1(x) be a unique solution of the following boundary-value elliptic
problem.

L(x,D)v1(x) = h(x, u0) on G0,

Bj(x,D)v1(x) = 0 on Γ0, (j = 1, 2, . . . ,m).

Then v1(x) ∈ H2m+s0(G0). Therefore, v1(x) together with v1(x) + u0(x)
belong to Hs0(G0).

Let v2(x) be the unique solution of the problem:

L(x,D)v2(x) = h(x, v1 + u0) on G0,

Bj((x,D)v2(x) = 0 on Γ0, (j = 1, 2, . . . , m).
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Similarly as above, we inductively define a sequence {vn(x)} (n = 1, 2, . . . ),
where vn(x) is the unique solution of the problem:

L(x,D)vn(x) = h(x, vn−1 + u0) in G0,

Bj(x,D)vn(x) = 0 on Γ− 0, (j = 1, 2, . . . ,m).

We remark that for all n, vn(x) ∈ H2m+s0(G0), hence vn − vn−1 ∈
H2m+s0(G0). Therefore, from the estimate (1.8) we have

(3.7)
∥∥vn − vn−1

∥∥
H2m+s0 (G0)

≤
∥∥A−1

0

∥∥
s0

∥∥L(vn − vn−1)
∥∥

Hs0 (G0)
,

for n = 2, 3, 4, . . . . Applying (3.7) and (3.3) for n = 2 one sees that
∥∥v2 − v1

∥∥
H2m+s0 (G0)

≤
∥∥A−1

0

∥∥
s0

.
∥∥L(v2 − v1)

∥∥
Hs0 (G0)

≤
∥∥A−1

0

∥∥
s0

.
∥∥h(., v1 + u0)− h(., u0)

∥∥
Hs0 (G0)

≤
∥∥A−1

0

∥∥
s0

.M.
∥∥(v1 + u0)− u0

∥∥
Hs0 (G0)

i.e. we have

(3.8)
∥∥v2 − v1

∥∥
H2m+s0 (G0)

≤ M.
∥∥A−1

0

∥∥
s0

.
∥∥v1

∥∥
Hs0 (G0)

.

Applying the estimates (3.7), (3.3) and (3.8) successively we have
∥∥v3 − v2

∥∥
H2m+s0 (G0)

≤ ∥∥A−1
0

∥∥
s0

.
∥∥L(v3 − v2)

∥∥
Hs0 (G0)

≤
∥∥A−1

0

∥∥
s0

.
∥∥h(., v2 + u0)− h(., v1 + v0)

∥∥
Hs0 (G0)

≤
∥∥A−1

0

∥∥
s0

.M.
∥∥v2 − v1

∥∥
Hs(G0)

≤ (M.
∥∥A−1

0

∥∥
s0

)2.
∥∥v1

∥∥
Hs0 (G0)

.

In the same way, for n = 4, 5, . . . , we obtain the estimate

(3.9)
∥∥vn − vn−1

∥∥
H2m+s0 (G0)

≤ (M.
∥∥A−1

0

∥∥
s0

)n.
∥∥v1

∥∥
Hs0 (G0)

.

Observe further that:
∥∥v1

∥∥
H2m+s0 (G0)

≤ ∥∥A−1
0

∥∥
s0

.
∥∥Lv1

∥∥
Hs0 (G0)

=
∥∥A−1

0

∥∥
s0

.
∥∥h(., u0)

∥∥
Hs0 (G0)

.

Then the estimate (3.9) can be written as follows:

(3.10)
∥∥vn − vn+1

∥∥
H2m+s0 (G0)

≤ En
∥∥A−1

0

∥∥
s0

.
∥∥h(., u0)

∥∥
Hs0 (G0)

,
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for n = 1, 2, . . . ,

where

(3.11) E = M
∥∥A−1

0

∥∥
s0

< 1.

The inequality (3.10) allows us to estimate differences vn − vm of the
functions vn and vm of the sequence {vn} according to the norm in the
space H2m+s0(G0).

First of all, it holds that
∥∥vn − vm

∥∥
H2m+s0 (G0)

≤ ∥∥vn − vn+1

∥∥
H2m+s0 (G0)

+
∥∥vn+1 − vn+2

∥∥
H2m+s0 (G0)

+ · · ·+ ∥∥vm−1 − vm

∥∥
H2m+s0 (G0)

.

Applying the estimates (3.10) to each member in the right hand side of
the last inequality we obtain, for m > n,

∥∥vn − vm

∥∥
H2m+s0 (G0)

≤ En
∥∥A−1

0

∥∥
s0

.
∥∥h(., u0)

∥∥
Hs0 (G0)

+ En+1
∥∥A−1

0

∥∥
s0

.
∥∥h(., u0)

∥∥
Hs0 (G0)

+ · · ·+ Em−1
∥∥A−1

0

∥∥
s0

.
∥∥h(., u0)

∥∥
Hs0 (G0)

≤ En(1 + E + · · ·+ Em−n−1 + . . . ).
∥∥A−1

0

∥∥
s0

.
∥∥h(., u0)

∥∥
Hs0 (G0)

.

By condition (3.4) it follows that

(3.12)
∥∥vn − vm

∥∥
H2m+s0 (G0)

≤
∥∥A−1

0

∥∥
s0

1− E .En
∥∥h(., u0)

∥∥
Hs0 (G0)

for all n, m (m > n).

The estimate (3.12) shows that
{
vn(x)

}
, n = 1, 2, . . . , is a fundamental

sequence in the space H2m+s0(G0). Therefore, there exists a limit

(3.13) lim
n→+∞

vn = v in H2m+s0(G0),

i.e.
lim

n→+∞
∥∥vn − v

∥∥
H2m+s0 (G0)

= 0.

In the sequel we will prove that the function v(x) defined by (3.13) is
a unique solution of the problem (3.5) (3.6).
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It is clear that

∥∥h(., vn + u0)− h(., v + u0)
∥∥

Hs0 (G0)
≤ M.

∥∥vn − v
∥∥

Hs0 (G0)
.

Further, we have

L(x,D)vn(x) = h(x, vn−1 + u0),

for n = 2, 3, . . . . Therefore,

∥∥L(x,D)v(x)− h(x, v + u0)
∥∥

Hs0 (G0)

≤ ∥∥L(x,D)v(x)− L(x, D)vn

∥∥
Hs0 (G0)

+
∥∥h(., vn−1 + u0)− h(., v + u0)

∥∥
Hs0 (G0)

≤ C
∥∥vn − v

∥∥
Hs0+2m(G0)

+ M.
∥∥vn−1 − v

∥∥
Hs0 (G0)

,

where C is a constant.

Letting n → +∞ and using (3.13) we obtain from the last estimate the
following equality

L(x,D)v(x) = h(x, v + u0) in Hs0(G0).

In other words, v(x) is a solution of the equation (3.5). We now verify the
boundary condition (3.6).

First, it is obvious that

∥∥Bj(x,D)vn(x)−Bj(x, D)v(x)
∥∥

H2m+s0−mj− 1
2 (Γ0)

≤ C
∥∥vn−v

∥∥
H2m+s0 (G0)

,

where C is a constant, n = 1, 2, . . . ; j = 1, 2, . . . , m.

Therefore, from these inequalities we get, as n → +∞,

lim
n→+∞

∥∥Bj(x,D)vn(x)−Bj(x,D)v(x)
∥∥

H2m+s0−mj− 1
2 (Γ0)

= 0.

Since Bj(x,D)vn(x) = 0 on Γ0 for all n ≥ 1, it follows that

Bj(x,D)v(x) = 0 on Γ0.

In other words, v(x) satisfies the conditions (3.6).
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Thus, we have proved that v(x) is a solution of the boundary value
problem (3.5)-(3.6).

To complete the proof it remains to show the uniqueness of the solution
v(x).

To this end, suppose that ṽ(x) ∈ H2m+s0
Γ0

(G0) is a solution of the
equation (3.5), i.e.,

L(x,D)ṽ(x) = h(x, ṽ + u0) on G0,

such that ṽ(x) 6≡ v(x). By applying the estimate (1.8) to v(x) − ṽ(x) ∈
H2m+s0

Γ0
(G0) we have

∥∥v − ṽ
∥∥

H2m+s0 (G0)
≤ ∥∥A−1

0

∥∥
s0

.
∥∥L(v − ṽ)

∥∥
Hs0 (G0)

≤ ∥∥A−1
0

∥∥
s0

.
∥∥h(., v + u0)− h(., ṽ + u0)

∥∥
Hs0 (G0)

≤ M.
∥∥A−1

0

∥∥
s0

.
∥∥v − ṽ

∥∥
Hs0 (G0)

≤ M
∥∥A−1

0

∥∥.
∥∥v − ṽ

∥∥
H2m+s0 (G0)

.

Since
∥∥v − ṽ

∥∥
H2m+s0 (G0)

6= 0, it follows that

E =
∥∥A−1

0

∥∥
s0

.M ≥ 1,

which contradicts the hypothese (3.4). The proof of the theorem 3.1 is
completes.

Theorem 3.2. For 0 < a < 1, k0 =
[ a

1− a

]
+ 1, let

f(x) ∈ Hs
a(G0), gj(x) ∈ H2m+s−mj (G0),

j = 1, 2, . . . , m, s ≥ k0 + 1. Let u0(x) be the unique solution of the
problem (2.1)-(2.2) in H2m+s−(k0+1)(G0), and v(x) the unique solution of
the problem (3.5)-(3.6) in H2m+s−(k0+1)(G0). Then the function

(3.14) u(x) = v(x) + u0(x)

is a solution of the problem (3.1)-(3.2) in H2m+s−(k0+1)(G0).

Proof. According to Theorems 2.1 and 3.1, the unique solution u0(x) of
the problem (2.1)-(2.2) has been defined by (2.8) and the unique solution
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v(x) of the problem (3.5)-(3.6) has been defined by (3.13). Both of them
belong to H2m+s0(G0) with s0 = s− (k0 + 1) ≥ 0.

Let us consider the function u(x) = v(x) + u0(x). It is obvious that

Lu = L(v + u0) = Lv + Lu0 = h(x, v + u0) + Lu0

= h(x, u) + Lu0.

Therefore, for t ∈ (0, T ] in the domain Gt we have

Lu− h(x, u)− f(x) = h(x, u) + Lu0 − h(x, u)− f(x)

= Lu0 − f(x).

Then ∥∥Lu− h(., u)− f
∥∥

Hs0 (Gt)
=

∥∥Lu0 − f
∥∥

Hs0 (Gt)
.

On the other hand, since u0(x) ∈ H2m+s0(G0) is the solution of the prob-
lem (2.1)-(2.2) in the sense of the definition 2.1, from (2.3) we get

lim
t→0

∥∥Lu0 − f
∥∥

Hs0 (Gt)
= 0.

Therefore
lim
t→0

∥∥Lu− h(., u)− f
∥∥

Hs0 (Gt)
= 0.

We have thus proved that u(x) = v(x) + u0(x) satisfies the equation
(3.1) (in the sense of the definition 3.1).

Moreover, it is clear that

Bj(x,D)u(x) = Bj(x,D)v(x) + Bj(x,D)u0(x) = 0 + gj(x) = gj(x) on Γ0

for j = 1, 2, . . . ,m. Thus, the function u(x) = v(x) + u0(x) satisfies the
condition (3.2). This completes the proof of Theorem 3.2.

Remark. We can estimate the solution u(x) = v(x)+u0(x) of the problem
(3.1) (3.2) as follows. Firstly, using (3.10), (3.11) for v(x) we have

∥∥v(x)
∥∥

H2m+s0 (G0)
≤

∥∥v − vn

∥∥
H2m+s0 (G0)

+
∥∥vn − vn1

∥∥
H2m+s0 (G0)

+ · · ·+
∥∥v2 − v1

∥∥
H2m+s0 (G0)

+
∥∥v1

∥∥
H2m+s0 (G0)

≤
∥∥v − vn

∥∥
H2m+s0 (G0)

+ (En−1 + En−2 + · · ·+ E + 1)
∥∥v1

∥∥
H2m+s0 (G0)

≤ ∥∥v − vn

∥∥
H2m+s0 (G0)

+

∥∥A−1
0

∥∥
s0

1− E · ∥∥h(., u0)
∥∥

Hs0 (G0)
.
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Letting n → +∞ we get

∥∥v
∥∥

H2m+s0 (G0)
≤

∥∥A−1
0

∥∥
s0

1− E ·
∥∥h(., u0)

∥∥
Hs0 (G0)

.

Finally, for u(x) = v(x) + u0(x) we obtain

∥∥u
∥∥

H2m+s0 (G0)
≤ ∥∥u0

∥∥
H2m+s0 (G0)

+

∥∥A−1
0

∥∥
s0

1− E
∥∥h(., u0)

∥∥
Hs0 (G0)

,

where E = M.
∥∥A−1

0

∥∥
s0

< 1.

Theorem 3.3. Under the hypotheses of Theorem 3.2 the function u(x)
which has been defined by (3.14) is the unique solution of the problem
(3.1)-(3.2).

Proof. We only have to prove the uniqueness of the solution u(x) = v(x)+
u0(x). Suppose that there is another any solution ũ(x) ∈ H2m+s0(G0) of
the problem (3.1)-(3.2), such that ũ(x) 6≡ u(x). Then

lim
t→0

∥∥Lũ− h(., ũ)− f
∥∥

Hs0 (Gt)
= 0,

∥∥Bj ũ− gj

∥∥
H2m+s0−mj− 1

2 (Γ0)
= 0 (j = 1, 2, . . . ,m),

we have
u(x)− ũ(x) ∈ H2m+s0

Γ0
(G0).

By applying (1.8) to the function u(x)− ũ(x) we get

(3.15)
∥∥u− ũ

∥∥
H2m+s0 (G0)

≤
∥∥A−1

0

∥∥
s0

.
∥∥L(u− ũ)

∥∥
Hs0 (G0)

.

On the other hand, we have

∥∥L(u− ũ)
∥∥

Hs0 (G0)
≤

∥∥L(u− ũ)
∥∥

Hs0 (G0−Gt)
+

∥∥L(u− ũ)
∥∥

Hs0 (Gt)

(3.16)

≤ ∥∥L(u− ũ)
∥∥

Hs0 (G0−Gt)

+
∥∥Lu− h(., u)− f + [h(., u)− h(., ũ)]− [Lũ− h(., ũ)− f ]

∥∥
Hs0 (Gt)

≤ ∥∥L(u− ũ)
∥∥

Hs0 (G0−Gt)
+

∥∥Lu− h(., u)− f
∥∥

Hs0 (Gt)

+
∥∥h(., u)− h(., ũ)

∥∥
Hs0 (Gt)

+
∥∥Lũ− h(., ũ)− f

∥∥
Hs0 (Gt)

.
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Recall that under the definition 3.1,

lim
t→0

∥∥Lu− h(., u)− f
∥∥

Hs0 (Gt)
= 0,

lim
t→0

∥∥Lũ− h(., ũ)− f
∥∥

Hs0 (Gt)
= 0.

Moreover, lim
t→0

∥∥L(u − ũ)
∥∥

Hs0 (G0−Gt)
= 0 because L(u − ũ) ∈ Hs0(G0).

Therefore, from (3.16) we obtain, as n → +∞,

(3.17)
∥∥L(u− ũ)

∥∥
Hs0 (G0)

≤ ∥∥h(., u)− h(., ũ)
∥∥

Hs0 (G0)
.

Combining (3.15) and (3.17) gives
∥∥u− ũ

∥∥
H2m+s0 (G0)

≤
∥∥A−1

0

∥∥
s0

∥∥h(., u)− h(., ũ)
∥∥

Hs0 (G0)
.

Applying (3.3) to the right hand side of the last estimate we have
∥∥u− ũ

∥∥
H2m+s0 (G0)

≤ M
∥∥A−1

0

∥∥
s0

∥∥u− ũ
∥∥

Hs0 (G0)

≤ M
∥∥A−1

0

∥∥
s0

∥∥u− ũ
∥∥

H2m+s0 (G0)
.

It follows that
E = M

∥∥A−1
0

∥∥
s0
≥ 1,

which contradicts the hypothesis (3.4). The proof of the theorem 3.3 is
complete.
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