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ON A CLASS OF SINGULAR INTEGRAL EQUATIONS
WITH ROTATIONS

NGUYEN MINH TUAN

Abstract. The paper deals with the singular integral equation

a(t)ϕ(t) + b(t)[(S + M)P`ϕ](t) = f(t),

where a(t) =
m∏

i=1

(t− αi)ris(t).

We will reduce the equation to the well-known Riemann boundary
value problem and then describe all solution of the indicate problem in a
closed form.

1. Introduction

Let Γ be a Liapunov curve on the complex plane C and X be either
Lp(Γ) (1 < p < ∞) or Hµ(Γ) (0 < µ < 1). It is well-known that the
singular integral operator of Cauchy’s type

(Sϕ)(t) =
1
πi

∫

Γ

ϕ(τ)
τ − t

dτ

has the property S2 = I, where I is the identity operator (see [7]). The
Noetherian theory of singular integral equations of Cauchy’s type

(1) aϕ + bSϕ + Kϕ = f

was started with works of Noether and Carleman in 1921, and then it was
developed by many others (see [5], [6] and references there). A reason that
this theory attracts a lot of attention is that there is a relation between
Riemann boundary value problems of analytic functions and equations of
the form (1). The operator S such as the simple-layer and double-layer
potentials in Neumann’s and Dirichlet’s problems plays an important role
in theory of boundary value problems. In [2], N. V. Mau considered the
operator
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(2) (Sn,kϕ)(t) =
1
πi

∫

Γ

τn−k−1tk

τn − tn
ϕ(τ)dτ,

where n, k are nonegative integers, 0 ≤ k ≤ n−1 and proved that if n 6= 1
then S3

n,k = Sn,k (note that S1,0 = S). Moreover, he also investigated
equations of the form

(3) a(t)ϕ(t) + b(t)(Sn,kϕ)(t) + (Nn,kϕ)(t) = f(t)

under the assumption a(t) 6= 0 on Γ. Like the singular integral equations
of Cauchy’s type, (aϕ + bSn,kϕ) is called a singular part and Nn,kϕ is
called a regular part of equation (3). In this paper, we study equation
(3) in the case when the function a(t) has isolated zero-points on Γ. Our
method is to reduce equation (3) to a system of singular integral equations
of Cauchy’s type whose matrix is diagonal. Theorem 4.2 indicates that
the solvability of (3) depends on the solvability of the `-th equation in the
reduced system. Remark 4.2 at the end of this paper shows that complete
equations induced by Sn,k may be reduced to an equation of the form (3).

2. Two Lemmas on multiplicative operator
and projections

Let Γ = {t : |t| = 1} and X = Hµ(Γ) be the Hölder space on Γ.
Consider the following operator in X (see [1])

(Sϕ)(t) =
1
πi

∫

Γ

ϕ(τ)
τ − t

dτ,(4)

(Wϕ)(t) = ϕ(ε1t),(5)

(Mϕ)(t) =
1
πi

∫

Γ

m(τ, t)ϕ(τ)dτ,(6)

where ε1 = exp(2πi/n) (n is a positive integer) and m(τ, t) is a given
function satisfying the Hölder’s condition in (τ, t) ∈ Γ× Γ.

Denote by P1, P2, . . . , Pn the projections induced by the operator W .
In the sequel we shall need the following identities (see [1], [2])
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(7)





Pi = 1
n

n∑
j=1

εn−1−j
i W j+1

PiPj = δijPj , i, j = 1, 2, . . . , n

W k =
n∑

j=1

εk
j Pj , k = 0, 1, 2, . . . , n

SPj = PjS = Sn,j , j = 1, 2, . . . , n,

where δij is the Kronecker’s symbol. For every a ∈ X we write (Kaϕ)(t) =
a(t)ϕ(t).

Lemma 2.1. Suppose that a ∈ X is fixed. Then for every pair (k, j),
k, j ∈ {1, 2, . . . , n}, there exists an element b ∈ X such that PkKaPj =
KbPj (such a function b = b(t) will be denoted by akj(t)).

Proof. From (5)-(7) we get

PkKaPj =
1
n

n∑
ν=1

εn−1−ν
k W ν+1KaPj

=
1
n

n∑
ν=1

εn−1−ν
k a(εν+1t)W ν+1Pj

=
1
n

n∑
ν=1

εn−1−ν
k a(εν+1t)

n∑
µ=1

εν+1
µ PµPj

=
( 1

n

n∑
ν=1

εj−k
ν+1a(εν+1t)

)
Pj = akj(t)Pj ,

where

(8) akj(t) =
1
n

n∑
ν=1

εj−k
ν+1a(εν+1t).

Putting akj(t) = b(t), we obtain b ∈ X and PkKaPj = KbPj .

Lemma 2.2. Let a ∈ X be fixed. Then for every pair (k, j), k, j ∈
{1, 2, . . . , n}, the above identity yields

PkKakj
= Kakj

Pj ,

where akj(t) is defined by (8).
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Proof. For any ϕ ∈ X, we have

(PkKakj
ϕ)(t) = Pkakj(t)ϕ(t) =

1
n

n∑
ν=1

εn−1−ν
k W ν+1akj(t)ϕ(t)

=
( 1

n

n∑
ν=1

εn−1−ν
k W ν+1

)( 1
n

n∑
µ=1

εj−k
µ+1a(εµ+1t)

)
ϕ(t)

=
1
n

n∑
ν=1

[ 1
n

n∑
µ=1

εj−k
µ+1ε

j−k
ν+1a(εµ+1εν+1t)

]
εk−j

ν+1ε
n−1−ν
k W ν+1ϕ(t)

=
1
n

n∑
ν=1

akj(t)ε
k−j
ν+1ε

n−1−ν
k W ν+1ϕ(t)

= akj(t)
[ 1
n

n∑
ν=1

εn−1−ν
j W ν+1

]
ϕ(t)

= akj(t)(Pjϕ)(t)

= (Kakj
Pjϕ)(t).

Thus PkKakj
≡ Kakj

Pj . The proof is complete.

3. Reducing equation (3) to a system of
singular integral equations

Now we consider the following equation in X

(9) a(t)ϕ(t) + b(t)[(S + M)P`ϕ](t) = f(t),

where a, b, f ∈ X are given and S, M , P` (1 ≤ ` ≤ n) are the operators
defined by (4), (5), (6), (7). Suppose that the function a(t) has isolated
zero-points on Γ, i.e.

a(t) =
m∏

i=1

(t− αi)ris(t),

where αi ∈ Γ, ri, i = 1, 2, . . . , m, are positive integers and s(t) is a non-
vanishing function on Γ (∗). Without loss of generality we may assume
that s(t) = 1.

(∗) The idea of this assumption was posed by Prof. Ng. V. Mau
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Lemma 3.1. Suppose that the function m(τ, t) satisfies the condition
m(τ, t) = m(ε1τ, t) = m(τ, ε1t). Then ϕ ∈ X is a solution of (9) if and
only if {ϕk = Pkϕ, k = 1, 2, . . . , n} is a solution of the following system

(10) a∗(t)ϕk(t) + b∗k`(t)(S + M)ϕ`(t) = f∗k (t), k = 1, 2, . . . , n,

where

a∗(t) =
n∏

j=1

a(εj+1t)

b∗k`(t) =
1
n

n∑

j=1

ε`−k
j+1b(εj+1t)

n∏
µ6=j
µ=1

a(εµ+1t)(11)

f∗k (t) =
1
n

n∑

j=1

εn−1−j
k f(εj+1t)

n∏
µ6=j
µ=1

a(εµ+1t).

Proof. Since ϕ ∈ X is the solution of (9), it follows

n∏
µ=1

a(εµ+1t)ϕ(t)+b(t)
n∏

µ=1
µ6=(n−1)

a(εµ+1t)(S + M)P`ϕ =

= f(t)
n∏

µ=1
µ 6=(n−1)

a(εµ+1t).(12)

It is clear that Ka∗Pk = PkKa∗ , (a∗(t) is defined by (11)). Applying the
projections Pk, k = 1, 2, . . . , n to both sides of (12) and using Lemma 2.1
we obtain

a∗(t)Pkϕ +
[ 1
n

n∑

j=1

ε`−k
j+1b(εj+1t)

n∏
µ=1

µ6=(n−1)

a(εµ+1εj+1t)
]
(S + M)P`ϕ

=
1
n

n∑

j=1

εn−1−j
k f(εj+1t)

n∏
µ=1

µ 6=(n−1)

a(εµ+1εj+1t).(13)

It is easy to see that

n∏
µ=1

µ6=(n−1)

a(εµ+1εj+1t) ≡
n∏

µ=1
µ6=j

a(εµ+1t) for any j ∈ {1, 2, . . . , n}.
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Hence, (13) is equivalent the following system

a∗(t)Pkϕ + b∗k`(t)(S + M)P`ϕ = f∗k (t), k = 1, 2, . . . , n.

Thus (P1ϕ,P2ϕ, . . . , Pnϕ) is a solution of (10).

Conversely, suppose that there exists ϕ ∈ X such that

a∗(t)Pkϕ + b∗k`(t)(S + M)P`ϕ = f∗k (t), k = 1, 2, . . . , n.

Summing by k (k = 1, 2, . . . , n) we obtain

(14) a∗(t)ϕ(t) +
n∑

k=1

b∗k`(t)(S + M)P`ϕ =
n∑

k=1

f∗k (t).

From (11) we get

n∑

k=1

b∗k`(t) =
n∑

k=1

1
n

n∑

j=1

ε`−k
j+1b(εj+1t)

n∏
µ6=j
µ=1

a(εµ+1t)

=
n∑

j=1

[ 1
n

n∑

k=1

ε`−k
j+1

]
b(εj+1t)

n∏
µ6=j
µ=1

a(εµ+1t)

=
n∑

j=1

δj(n−1)b(εj+1t)
n∏

µ6=j
µ=1

a(εµ+1t)(15)

= b(t)
n∏

µ=1
µ6=(n−1)

a(εµ+1t).

Similarly,

(16)
n∑

k=1

f∗k (t) = f(t)
n∏

µ=1
µ6=(n−1)

a(εµ+1t).

The identities (14), (15), (16) together give

n∏
µ=1

a(εµ+1t)ϕ(t) + b(t)
n∏

µ=1
µ6=(n−1)

a(εµ+1t)(S + M)P`ϕ =

= f(t)
n∏

µ=1
µ 6=(n−1)

a(εµ+1t).
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This implies
a(t)ϕ(t) + b(t)(S + M)P`ϕ = f(t).

The proof is complete.

Lemma 3.2. If (ϕ1, ϕ2, . . . , ϕn) is a solution of the system (10) then
(P1ϕ1, P2ϕ2, . . . , Pnϕn) is also its solution.

Proof. Suppose that (ϕ1, ϕ2, . . . , ϕn) is a solution of (10). Applying the
projections Pk to both sides of the equations (10) we have

(17) a∗(t)Pkϕk + Pkb∗k`(t)(S + M)ϕ`(t) = Pkf∗k (t).

The following identities hold

Pkb∗k`(t) =
1
n

n∑

i=1

εn−1−i
k W i+1 1

n

n∑

j=1

ε`−k
j+1b(εj+1t)

n∏
µ6=j
µ=1

a(εµ+1t)

=
1
n

n∑

i=1

[ 1
n

n∑

j=1

ε`−k
j+1ε

`−k
i+1 b(εj+1εi+1t)×

×
n∏

µ6=j
µ=1

a(εµ+1εi+1t)
]
εn−1−i
k εk−`

i+1 W i+1(18)

=
1
n

n∑

i=1

b∗k`(t)ε
n−1−i
` W i+1 = b∗k`(t)P`,

Pkf∗k (t) =
1
n

n∑

i=1

εn−1−i
k W i+1 1

n

n∑

j=1

εn−1−j
k f(εj+1t)

n∏
µ 6=j
µ=1

a(εµ+1t)

=
1
n

n∑

i=1

εn
k

[ 1
n

n∑

j=1

ε
n−(j+i+2)
k f(εj+i+2t)

n∏
µ6=j
µ=1

a(εj+i+2t)(19)

=
1
n

n∑

i=1

f∗k (t) = f∗k (t).

Substituting (18), (19) in (17) we obtain

a∗(t)Pkϕk + b∗k`(t)(S + M)P`ϕ` = f∗k (t), k = 1, 2, . . . , n.

Therefore (P1ϕ1, P2ϕ2, . . . , Pnϕn) is a solution of (10). The lemma is
proved.
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4. The solvability of equation (3)

Theorem 4.1. Suppose that the function m(τ, t) satisfies the assumption
of Lemma 3.1

(i) If (ϕ1, ϕ2, . . . , ϕn) is a solution of (10), then

ϕ =
n∑

i=1

Piϕi

is a solution of equation (9).

(ii) If ϕ ∈ X is a solution of (9) then (P1ϕ1, P2ϕ2, . . . , Pnϕn) is a
solution of (10).

Proof. (i) By Lemma 3.2, (P1ϕ1, P2ϕ2, . . . , Pnϕn) is also a solution of
(10). We put

ϕ =
n∑

i=1

Piϕi.

It is clear that Pkϕ = Pkϕk. It means that (P1ϕ,P2ϕ, . . . , Pnϕ) is a
solution of (10). Hence, we have

a∗(t)Pkϕ + b∗k`(t)(S + M)P`ϕ = f∗k (t), k = 1, 2, . . . , n.

Summing by k of both sides of the last equations and using (15), (16) we
obtain

a∗(t)ϕ(t) + b(t)
n∏

µ=1
µ6=(n−1)

a(εµ+1t)(S + M)P`ϕ = f(t)
n∏

µ=1
µ6=(n−1)

a(εµ+1t).

Thus
a(t)ϕ(t) + b(t)(S + M)P`ϕ = f(t).

(ii) The conclusion follows immediately from Lemma 3.1. The proof is
complete.

Remark 4.1. Theorem 4.1 shows that it is sufficient to solve the system
(10) in the given space X = Hµ(Γ).

We set

Ω = {ε−1
µ+1αi, µ = 1, 2, . . . , n; i = 1, 2, . . . ,m}
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{g(t)}(k,t0) =
dkg(t)
dtk

∣∣∣
t=t0

.

Theorem 4.2. Suppose that the function m(τ, t) satisfies the assumption
of Lemma 3.1. Then the equation (9) has a solution in X if and only if
the equation

(20) a∗(t)ϕ(t) + b∗``(t)(S + M)ϕ = f∗` (t)

has a solution ϕ0(t) satisfying the following conditions

(21) {f∗k (t)− b∗k`(t)(S + M)ϕ0(t)}(k,ti) = 0,

where ti ∈ Ω, k = 0, 1, 2, . . . , ri, i = 1, 2, . . . , m.

Proof. Since ϕ ∈ X is a solution of (9), it follows from Lemma 2.1 that
the system (10) has a solution (P1ϕ,P2ϕ, . . . , Pnϕ). It means that P`ϕ is
the solution of the `-th equation of (10)

a∗(t)P`ϕ(t) + b∗``(t)(S + M)P`ϕ = f∗` (t),

i.e. the equation (20) has solutions. Let ϕ0(t) be a certain solution of (20).
Since (10) has solutions it follows that for every k = 1, 2, . . . , n, ϕk(t) is a
solution of the equation

(22) a∗(t)ϕk(t) = f∗k (t)− b∗k`(t)(S + M)ϕ0(t).

The left side of (22) is a function having zero of order ri at ti = ε−1
µ+1αi ∈ Ω.

Hence, the condition (21) is necessary. Conversely, if ϕ0(t) is a finite
solution of (20) and (21) holds, then it is easy to see that (10) has a
solution (ϕ1, ϕ2, . . . , ϕn), where ϕi ∈ X. Theorem 4.1 follows that

ϕ =
n∑

i=1

Piϕi

is the solution of (9). The proof is complete.

We set

D+ = {z ∈ C : |z| < 1}
D− = {z ∈ C : |z| > 1}.

Denote by H+(D+), H−(D−) the sets of all analytic functions in D+, D−

respectively.
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Corollary. Suppose that the function

M(τ, t) =
b∗``(t)

a∗(t) + b∗``(t)
m(τ, t)

admits an analytic continuation on D+ with each variable (τ, t) and sat-
isfies M(τ, t) = M(ε1τ, t) = M(τ, ε1t). Then the equation (9) is solvable
in a closed form.

Proof. Consider the `-th equation of (10)

(23) a∗(t)ϕ`(t) + b∗``(t)(Sϕ`)(t) + b∗``(t)(Mϕ`)(t) = f∗` (t).

Put

Φ`(z) =
1
πi

∫

Γ

ϕ`(τ)
τ − z

dτ, z ∈ C \ Γ.

According to Sokhotski-Plemelij formula (see [5]), equation (23) is reduced
to the following boundary value problem
(24)

Φ+
` (t)− b∗``(t)

a∗(t) + b∗``(t)
MΦ−` (t) =

a∗(t)− b∗``(t)
a∗(t) + b∗``(t)

Φ−` (t) +
f∗` (t)

a∗(t) + b∗``(t)
·

From Lemma 2 in [5] (p.186) and the assumption for M(τ, t), it follows
that (24) is the Riemann boundary value problem for analytic functions.
Denote by (Ψ+

` (z), Ψ−` (z)) a solution of (24). We have

Φ−` (t) = Ψ−` (t)

and

Φ+
` (t)− b∗``(t)

a∗(t) + b∗``(t)
(MΦ−` )(t) = Ψ+

` (t).

Hence, using Sokhotski-Plemelij formula, the solution of (24) is of the form

(25) ϕ`(t) = Φ+
` (t)− Φ−` (t) = Ψ+

` +
b∗``(t)

a∗(t) + b∗``(t)
(MΨ−` )(t)−Ψ−` (t).

Thus, from Theorems 4.1 and 4.2 we conclude that

(i) If neither equation (24) has solutions nor solutions ϕ`(t) of the form
(25) do satisfy condition (21), then equation (9) has no solutions.
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(ii) If there exists ϕ`(t) of the form (25) satisfying conditions (21), then
equation (9) is solvable in a closed form. Solutions of (9) are given by the
following formula

ϕ(t) =
n∑

k=1

(Pkϕk)(t),

where ϕ`(t) is defined by (25) and ϕk(t), 1 ≤ k 6= ` ≤ n, are defined
clearly from system (10).

Remark 4.2. The complete singular integral equation induced by Sn,j is
of the form

(26) a(t)ϕ(t) + b(t)(Sn,jϕ)(t) + c(t)(S2
n,jϕ)(t) = f(t).

From (7) it follows S2
n,j = Pn,j . Thus (26) is of the form (9).
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