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WEAK EXTENSION OF FRECHET-VALUED
HOLOMORPHIC FUNCTIONS ON COMPACT SETS

AND LINEAR TOPOLOGICAL INVARIANTS

LE MAU HAI

Abstract. It is shown that every holomorphic function on a nuclear
Frechet space E with values in a Frechet space F is of uniform type if

E has the linear topological invariant (Ω̃) and F has the linear topo-

logical invariant (DN) respectively. Based on the obtained result the
equivalence of the holomorphicity and the weak holomorphicity of Frechet-

valued functions on L̃-regular compact subsets in a nuclear Frechet space
is established.

1. Introdution

Let E be a Frechet space with a fundamental system of semi-norms
{ ‖ · ‖k }. For each subset B of E, we define ‖ · ‖∗

B
: E∗ −→ [0, +∞] by

‖u‖∗B = sup{|u(x)| : x ∈ B}

where u ∈ E∗, the strongly dual space of E. Instead of ‖ · ‖∗Uq
we write

‖ · ‖∗q , where
Uq = {x ∈ E : ‖x‖q ≤ 1}.

Now we consider the following properties of E:

(DN) ∃p ∃d > 0 ∀q ∃k, C > 0 : ‖ · ‖1+d
q ≤ C‖ · ‖k ‖ · ‖d

p;

(Ω̃) ∀p ∃q, d > 0 ∀k ∃C > 0 : ‖ · ‖∗1+d
q ≤ C‖ · ‖∗k ‖ · ‖∗dp .

The above properties have been introduced and investigated by Vogt
(
see

[14], [15], [16], [17], [18]
)
. Note that the following equivalent form of the

property (DN) has been formulated by Zaharjuta in [21]

(DN)Z ∃p ∀q, d > 0 ∃k, C > 0 : ‖ · ‖1+d
q ≤ C‖ · ‖k‖ · ‖d

p.
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Let E and F be locally convex spaces and f : E −→ F a holomorphic
function. We say that f is of uniform type if there exists a continuous
semi-norm ρ on E such that f can be factorized holomorphically through
the canonical map ωρ : E −→ Eρ, where Eρ is the Banach space associated
with ρ. The uniformity of holomorphic functions on nuclear Frechet spaces
E ∈ (Ω) with values in the spaces of holomorphic functions on open subsets
of Cn has been established by Meise-Vogt [6]. In the second section of the
present paper we investigate the equality

(1) Hu(E,F ) = H(E, F ),

where Hu(E, F ) denotes the set of Frechet-valued holomorphic functions of
uniform type and H(E,F ) the set of Frechet-valued holomorphic functions
on E, where E and F are Frechet spaces and, moreover, E and F have
some linear topological invariants.

Applying the result of the second section, in the third section we in-
vestigate the relation between the weakly holomorphic extendability and
the holomorphic extendability of Frechet-valued holomorphic functions on
L̃-regular compact sets in nuclear Frechet spaces. The main aim of this
section is to find some necessary and sufficient conditions for which

(2) H(X, F ) = Hw(X, F )

where H(X,F ) denotes the set of germs of Frechet-valued holomorphic
functions on a L̃-regular compact set X in a nuclear Frechet space E and
Hw(X, F ) is the set of Frechet-valued weakly holomorphic functions. In
[9] N. V. Khue and B. D. Tac have shown that (2) holds in the case where
X is compact, F ∗ is a Baire space and either E is a nuclear metric space
or F is nuclear. Some more special cases for which (2) holds have been
early established by Siciak [12], Waelbroeck [19]. In the case X is an open
set and F ∗ is still Baire, (2) was first proved by Bogdanowicz [2], and then
by Ligocka-Siciak [8], and in the more general case by Nguyen Thanh Van
[10]. The Baireness of F ∗ plays a very important role in the works of the
above authors. However, when F ∗ is not Baire, in particular, when F is
a Frechet space which is not Banach, so far (2) has not been established.

2. Uniformity of holomorphic functions

In this section we shall prove the following

Theorem 2.1. Let E be a nuclear Frechet space and F a Frechet space.
Then

Hu(E, F ) = H(E,F )
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if E ∈ (Ω̃) and F ∈ (DN).

Proof. As in [6] it suffices to prove the following interpolation lemma. In
the case of scalar holomorphic functions this lemma has been proved by
Meise-Vogt [6]. Here by improving the proof of Meise-Vogt we extend the
result to the case of Frechet-valued holomorphic functions.

Lemma 2.2 (Interpolation lemma). Let Y and Z be Hilbert spaces, X a
Banach space and F a Frechet space having the property (DN). Assume
that the following hypotheses are satisfied:

(i) A ∈ L(Y,Z) is injective, of type s and A = v ◦u, where u ∈ L(Y, X)
and v ∈ L(X, Z). Here a continuous linear map A between Banach spaces
Y and Z is called to be of type s if it can be written in the form

Ax =
∑

j≥0

λj〈x, aj〉yj

where aj ∈ E∗, ‖aj‖ ≤ 1, yj ∈ F , ‖yj‖ ≤ 1 for every j ≥ 0 and {λj : j ≥
0} in s, i.e

∑
j≥0

|λj |s < ∞ for every s > 0.

(ii) There exist d > 0, C > 0, such that

(2) ‖v∗y∗‖∗1+d
X

≤ C‖A∗y∗‖∗
Y
‖y∗‖∗d

Z
,

for all y∗ ∈ Z∗.

(iii) There exist a neighbourhood V of O ∈ Z and a holomorphic func-
tion g on V with values in Fp, where Fp is a Banach space associated with
the semi-norm p in the definition of spaces having the property (DN), and
a holomorphic function f : Y −→ F , such that

ωp ◦ f
∣∣∣
A−1(V )

= g ◦A
∣∣∣
A−1(V )

,

where ωp : F −→ Fp is the canonical map.

Then there exists holomorphic map h : X −→ F , such that

f = h ◦ u.

Proof. By the spectral mapping theorem [11, 8.3] there exist a complete
orthonormal system {ej

∣∣j ∈ N} in Y , an orthonormal system {yj

∣∣j ∈ N}
in Z and a sequence λ = {λj

∣∣ λj ≥ 0 for j ≥ 1} in s, such that

Ax =
∞∑

j=1

λj(x
∣∣ej)yj .
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Let χ
k

denote the functional on Z given by

χ
k
(x) = (x

∣∣yk)Z , k ≥ 1.

Then ‖χ
k
‖∗Z = 1 and

‖A∗χ
k
‖∗Z = sup

{|(Ax
∣∣yk)Z | : ‖x‖ ≤ 1

}

= sup
{|λk(x

∣∣ek)
Y
| : ‖x‖ ≤ 1

}
= λk.

Putting ϕk = v∗χ
k
∈ X∗, we get

‖ϕk‖∗X ≤ C
1

1+d λ
1

1+d

k ,

for k ≥ 1. Choose 0 < δ < 1, such that for µ =
{(

µj =
δ

j

)}
, the set

{
y ∈ Z, y =

∑

j≥1

ξjyj , |ξj | ≤ µj =
δ

j

}
⊂ V.

Without loss of generality, we may assume that

sup
{
‖g(y)‖p : y ∈ V

}
≤ 1.

For each m ∈ M =
{
(m1,m2, . . . ,mn, 0, 0, . . . )

∣∣mi ∈ N
}

put

am =
( 1

2πi

)n
∫

|ρ1|=µ1

· · ·
∫

|ρn|=µn

g(ρ1y1 + · · ·+ ρnyn)
ρm1+1
1 . . . ρmn+1

n

dρ1 . . . dρn.

It follows that

‖am‖Fp ≤
1

µm
for m ∈ M (where µm = µm1

1 . . . µmn
n ).

Since Aej = λjyj for j ≥ 1, we have

am =
( 1

2πi

)n
∫

|ρ1|=µ1

· · ·
∫

|ρn|=µn

g
(
A

(ρ1

λ1
e1 + · · ·+ ρn

λn
en

))

ρm1+1
1 . . . ρmn+1

n

dρ1 . . . dρn

=
1

λm

( 1
2πi

)n
∫

|ω1|=r1

· · ·
∫

|ωn|=rn

ωp.f(ω1e1 + · · ·+ ωnen)
ωm1+1

1 . . . ωmn+1
n

dω1 . . . dωn

= ωp

[ 1
λm

( 1
2πi

)n
∫

|ω1|=r1

· · ·
∫

|ωn|=rn

f(ω1e1 + . . . ωnen)
ωm1+1

1 . . . ωmn+1
n

dω1 . . . dωn

]

= ωp(bm),
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where

bm =
1

λm

( 1
2πi

)n
∫

|ω1|=r1

· · ·
∫

|ωn|=rn

f(ω1e1 + · · ·+ ωnen)
ωm1+1

1 . . . ωmn+1
n

dω1 . . . dωn

with ri =
µi

λi
, 1 ≤ i ≤ n.

We note that bm ∈ F and

‖bm‖p = ‖ωp(bm)‖Fp = ‖am‖Fp ≤
1

µm
·

Moreover, for m ∈ M , q ≥ 1, t > 0

‖bm‖q ≤ N(q, t)
λmµmt|m|

,

where

N(q, t) = sup
{
‖f(x)‖q : x =

∑

j≥1

ξjej , |ξj | ≤ tµj , j ≥ 1
}

and t|m| = tm1+···+mn .

For the positive number d > 0 in the condition (ii), we choose a positive

number 0 < δ1 <
1
2

such that d̃δ1 = d and put γ =
1

2(1 + d)
·

Since F ∈ (DN), for q > 1 we can take k, such that (DN) holds for d̃:

‖ · ‖1+d̃
q ≤ ‖ · ‖k · ‖ · ‖d̃

p
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(we can consider C = 1). Then

∑

m∈M

r|m|‖bm‖q

∞∏

j=1

(‖ϕj‖∗X
)mj ≤

∑

m∈M

r|m|‖bm‖q

∞∏

j=1

(
C

1
1+d λ

1
1+d

j

)mj

=
∑

m∈M

r|m|(Cλ)2mγ‖bm‖q =
∑

m∈M

r|m|
(
λm‖bm‖q

)γ(C2λ)mγ‖bm‖1−γ
q

≤
∑

m∈M

r|m|
(N(q, t)

µmt|m|

)γ(
C2λ

)mγ∥∥bm

∥∥ 1−γ

1+d̃

k

∥∥bm

∥∥ (1−γ)d̃

1+d̃

p

≤
∑

m∈M

r|m|
(N(q, t)

µmt|m|

)γ

(C2λ)mγ
( N(k, t)

λmµmt|m|

) 1−γ

1+d̃
( 1

µm

) (1−γ)d̃

1+d̃

≤ N(q, t)γ
(
N(k, t)

) 1−γ

1+d̃

∑

m∈M

( r

t
γ+ 1−γ

1+d̃

)|m| λm
(
γ− 1−γ

1+d̃

)
C2mγ

µ
m

(
γ+ 1−γ

1+d̃
+ 1−γ

1+d̃
d̃
)

≤ N(q, t)γN(k, t)
1−γ

1+d̃

∑

m∈M

( r

t
γ+ 1−γ

1+d̃

)|m|(λ
γ− 1−γ

1+d̃ C2γ

µ

)m

.

Put α = γ − 1− γ

1 + d̃
. Since 0 < δ1 <

1
2
, it follows that α > 0. Since

λ =
(
λj

)
j∈N

is in s, the sequence
(λα

j C2γ

µj

)
is in `1 and, hence, for

R =
∑
j≥1

λα
j C2γ

µj
+ 1 we have 2R > R ≥ λα

j C2γ

µj
for all j. This implies

0 < sup
{λα

j C2γ

2Rµj
: j ≥ 1

}
≤ 1

2
·

Putting β = γ + 1−γ

1+d̃
> 0 and t = β

√
2Rr , we have
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∑

m∈M

r|m|‖bm‖q

∞∏

j=1

(∥∥ϕj

∥∥∗
X

)mj

≤ N
(
q,

β
√

2Rr
)γ

N
(
k,

β
√

2Rr
) 1−γ

1+d̃

∑

m∈M

(λαC2γ

2Rµ

)m

= N
(
q,

β
√

2Rr
)γ

N
(
k,

β
√

2Rr
) 1−γ

1+d̃

∞∏

j=1

1

1−
(λα

j C2γ

2Rµj

) < ∞,

for all r > 0.

This implies that the series
∑

m∈M

bm

∞∏
j=1

(
ϕj(x)

)mj defines a holomor-

phic function h : X −→ F . To complete the proof of the lemma we

now show that h ◦ u = f . For x =
n∑

j=1

ξjej ∈ Y , consider h
(
u(x)

)
=

∑
m∈M

bm

∞∏
j=1

ϕj

(
u(x)

)mj . Now we have ϕj

(
u(x)

)
= χj

(
v(u(x))

)
= λjξj .

Hence
h
(
u(x)

)
=

∑

m∈M

bmλmξm = f(x)

This shows that h ◦u = f on a dense subset of Y and, hence, h ◦u = f
on Y . The lemma is proved.

Now we continue the proof of Theorem 2.1.

Given f : E −→ F a holomorphic function. Choose p ≥ 1 such that
(DN) holds for F . Consider the holomorphic function ωp.f : E −→ Fp.
Then we can find q independent from p such that ωp.f is bounded on a
neighbourhood V of 0 ∈ Eq and, hence, induces a holomorphic function g

on a neighbourhood V of 0 ∈ Eq with values in Fp. Since E ∈ (Ω̃), by [6]
(Lemma 3.6) there exists a bounded balanced convex set B in E and r,
C, d > 0 such that E(B) is a Hilbert space which is dense in E and

(*)
∥∥y

∥∥∗1+d

r
≤ C

∥∥y
∥∥∗d

B

∥∥y
∥∥∗

q
for y ∈ E∗.

Now consider the canonical map αq : E(B) −→ Eq. Write E(B) =
(E(B) ∩ kerαq) ⊕ E0 and π : E(B) −→ E0 for the orthogonal projection
with kerπ = E(B) ∩ kerαq. Put A = αq

∣∣
E0

. Note that A is injective of
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type s because of the nuclearity of E. In virtue of lemma 2.2 to X = Er,
Y = E0, Z = Eq, u = αr

∣∣
E0

, v = αrq : Er −→ Eq is the canonical map
and g : V −→ Fp, we can find a holomorphic function h : Er −→ F such
that

f
∣∣
E0

= h ◦ αr

∣∣
E0

.

Now we prove that f(x+kerαq) = f(x), for x ∈ E. Since ωp is injective
it suffices to show that

ωpf(x + kerαq) = ωpf(x),

for x ∈ E.

Let x ∈ E and y ∈ kerαq be arbitrary. First, we assume that x ∈
α−1

q (V ). Consider the entier function

ϕ(λ) = ωpf(x + λy).

Since x+λy ∈ α−1
q (V ) for all λ ∈ C and by the boundedness of ωpf on V

it follows that ϕ(λ) is bounded on C. By Liouville’s theorem ϕ ≡ const.
In particular,

ωpf(x) = ϕ(0) = ϕ(1) = ωpf(x + y).

Now let x ∈ E be arbitrary. Consider the entier function on E with
values in Fp, given by

ψ(z) = ωpf(z)− ωpf(z + y).

Since z ∈ α−1
q (V ), ψ(z) = 0 and, hence, by the identity theorem, we have

ψ(z) = 0 for all z ∈ E. Hence,

ωpf(x) = ωpf(x + y).

For x ∈ E(B) we can write x = y + z, y ∈ E(B) ∩ kerαq and z ∈ E0.
Hence,

f(x) = f(y + z) = f(z) = h.αr(z) = hαr(z + y) = hαr(x).

From the density of E(B) in E it follows that

f = h ◦ αr

and Theorem 2.1 is proved.
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3. Frechet-valued weakly holomorphic functions on
compact subsets in nuclear Frechet spaces and

the linear topological invariant (DN).

Let X be a compact subset in a locally convex space E and F a locally
convex space. Here by standard notation H(X,F ) denotes the space of
germs of holomorphic functions on X with values in F with the inductive
limit topology. Recall that f ∈ H(X, F ) if there exists a neighbourhood V

of X in E and a holomorphic function f̂ : V → F , whose germ on X is f .
A F -valued continuous function f on X is called weakly holomorphic on
X if for every x∗ ∈ F ∗, the dual space of F , x∗f can be holomorphically
extended on a neighbourhood of X. By Hw(X, F ) we denote the space of
F -valued weakly holomorphic functions on X.

The main result of this section is the following.

Theorem 3.1. Let F be a reflexive Frechet space. Then H(X, F ) =
Hw(X, F ) for every L̃-regular compact subset X in any nuclear Frechet
space E if and only if F ∈ (DN).

Here a compact subset X in a Frechet space E is called L̃-regular if[
H(X)

]∗ ∈ (Ω̃).

We need the following.

Lemma 3.2. Let F be a Frechet space with F ∈ (DN). Then
[
F ∗bor

]∗ ∈
(DN), where F ∗bor is the space F ∗, equipped with the bornological topology
associated to the topology of F ∗.

Proof. Let {Un} be a decreasing neighbourhood basis of zero in F . Since
F ∈ (DN) we have

∃p ∀q ∃k,C > 0 : ‖ · ‖q ≤ r‖ · ‖p +
C

r
‖ · ‖k for every r > 0,

or in the equivalent form,

∃p ∀q ∃k, C > 0 : U0
q ⊆ rU0

p +
C

r
U0

k , for all r > 0 [18].

For u ∈ [
F ∗bor

]∗ and r > 0 we have
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∥∥u
∥∥∗∗

q
= sup

x∗∈U0
q

|u(x∗)| ≤ sup
x∗∈rU0

p+ C
r U0

k

|u(x∗)|

≤ r sup
x∗∈U0

p

|u(x∗)|+ C

r
sup

x∗∈U0
k

|u(x∗)|

= r
∥∥u

∥∥∗∗
p

+
C

r

∥∥u
∥∥∗∗

k
.

Hence,
[
F ∗bor

]∗ ∈ (DN). The lemma is proved.

Lemma 3.3. Let X be a L̃-regular compact set in a Frechet space E.
Then X is a unique set, i.e. if f ∈ H(X) and f

∣∣
X

= 0, then f = 0 on a
neighbourhood of X in E.

Proof. Let {Vp} be a decreasing neighbourhood basis of X in E. By the
hypothesis

∀p ∃q ≥ 1, ∃d > 0 ∀k ≥ q ∃C > 0
∥∥f

∥∥1+d

q
≤ C

∥∥f
∥∥

k

∥∥f
∥∥d

p
, for f ∈ H∞(Vp).

Using the above inequality to fn, f ∈ H∞(Vp), we have

∥∥f
∥∥1+d

q
=

(∥∥f
∥∥n(1+d)

q

) 1
n

=
(∥∥fn

∥∥1+d

q

) 1
n ≤ C

1
n

(∥∥fn
∥∥

k

∥∥fn
∥∥d

p

) 1
n

= C
1
n

(∥∥f
∥∥n

k

∥∥f
∥∥nd

p

) 1
n −→

∥∥f
∥∥

k

∥∥f
∥∥d

p
,

as n →∞. Hence,

∥∥f
∥∥1+d

q
≤ ∥∥f

∥∥
k

∥∥f
∥∥d

p
for f ∈ H∞(Vp), ∀k ≥ q.

This inequality implies that as k →∞ we have

∀p ∃q ≥ p, d > 0 :
∥∥f

∥∥1+d

q
≤

∥∥f
∥∥

X

∥∥f
∥∥d

p
for f ∈ H∞(Vp),

which shows that X is a unique set. The lemma is proved.

Proof of Theorem 3.1

Sufficiency. Given f ∈ Hw(X, F ), where X is a L̃-regular compact set in
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a nuclear Frechet space E. Consider the linear map f̂ : F ∗bor → H(X)
given by

f̂(x∗) = x̂∗f

for x∗ ∈ F ∗bor, where x̂∗f is a holomorphic extension of x∗f to some neigh-
bourhood of X in E. By Lemma 3.3 X is an unique subset it follows
that f̂ has the closed graph and, hence, f̂ is continuous. By lemma 3.2,
[F ∗bor]

∗ ∈ (DN), and by the hypothesis [H(X)]∗ ∈ (Ω̃), Theorem 2.1
shows that there exists a neighbourhood W of O ∈ F ∗bor such that f̂(W ) is
bounded in H(X). Since H(X) is regular there exists a neighbourhood U

of X in E such that f̂(W ) is contained and bounded in H∞(U), the Banach
space of bounded holomorphic functions on U . Then f̂(F ∗) ⊂ H∞(U) and
by the reflexivity of F , we can define a holomorphic function

g : U −→ F

by
g(z)(x∗) = f̂(x∗)(z), for x∗ ∈ F ∗, z ∈ U.

We have

g(z)(x∗) = f̂(x∗)(z) = f(z)(x∗) for every z ∈ X and every x∗ ∈ F ∗.

This yields g
∣∣
X

= f and, hence, f ∈ H(X, F ).

Necessity. By Vogt [17] it suffices to show that every continuous linear
map T from H(∆) to F is bounded on a neighbourhood of 0 ∈ H(∆).
Consider T ∗ : F ∗ −→ [H(∆)]∗ ∼= H(∆). Since T ∗(x∗) ∈ H(∆) for every
x∗ ∈ F ∗, we can define a map f : ∆ −→ F ∗∗ given by

f(z)(x∗) = δz(T ∗(x∗)),

for x∗ ∈ F ∗, z ∈ ∆ and δz being the Dirac functional defined by z,

δz(σ) = σ(z) for σ ∈ H(∆).

By the hypothesis f ∈ Hw(∆, F ). Since ∆ is L̃ - regular it implies
that f ∈ H(∆, F ). Thus there exists a neighbourhood V of ∆ such that
f ∈ H(V, F ). Without loss of generality we may assume that B = f(V ) is
bounded in F . It follows that T ∗ is bounded on Bo. Put T ∗(Bo) = C ⊂
[H(∆)]∗. Thus U = C0 is a neighbourhood of 0 ∈ H(∆) and T (U) ⊂ Boo

is bounded in F . Theorem 3.1 is proved.
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Now we consider Theorem 3.1 in the case X is a compact determining
polydisc in a dual space of a Frechet nuclear space.

Theorem 3.4. Let E be a Frechet nuclear space with a basis and having
a continuous norm. Then Hw(X, F ) = H(X, F ) for every compact de-
termining polydisc X in E∗ such that H(X) is semi-reflexive and every
Banach space F if and only if E ∈ (DN).

Proof. Necessity. Let {en}∞n=1 be a basis of E. Write E = Ce1 ⊕ F
where F is the closed subspace of E generated by {en}∞n=2. Take an open
polydisc U of E of the form

U =
{
z =

∞∑

i=1

znen = (zn)∞n=1 ∈ E : sup
n≥1

|zn| < 1
}
.

Hence,

X = UM =
{
w =

∞∑

i=1

wne∗n = (wn)∞n=1 ∈ E∗ : sup
n≥1

|wn| ≤ 1
}

= ∆× Y ,

∆ = {w1 ∈ C : |w1| ≤ 1} and Y =
{
(wn)∞n=2 : sup |wn| ≤ 1

}
,

where {e∗n}∞n=1 is the dual basis of {en}∞n=1. Note that X ⊃ conv {e∗n}∞n=1

and, hence, X is a compact determining polydisc.

Indeed, given f ∈ H(X) such that f |X = 0. Take a balanced convex
open neighbourhood W ⊃ X such that f ∈ H(W ). For each m ≥ 1, put
L = span {e∗1, . . . , e∗m} and consider

V =
{ m∑

i=1

λie
∗
i :

m∑

i=1

|λi| ≤ 1
}
.

Note that V is a neighbourhood of 0 ∈ L and by the hypothesis f |V = 0.
Hence, f |W∩L = 0. Thus

f |W∩ span{e∗i :i≥1} = 0.

From the density of W ∩ span{e∗i : i ≥ 1} in W and the continuity of f it
implies that f |W = 0.

First we show that H(X) is regular.

Indeed, given a balanced convex bounded subset A in H(X). Consider
the normed space E1 = H(X)(A) spanned by A and the function f : X →
E∗1 given by

f(x)(σ) = σ(x)
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for x ∈ X and σ ∈ E1.

Since H(X) = [H(X)]∗∗ we infer that f is weakly holomorphic. By the
hypothesis, f can be extended to a bounded holomorphic function f̂ on a
neighbourhood V1 of X in E∗. From the relation

σ(x) = f(x)(σ) = f̂(x)(σ),

for every x ∈ X and σ ∈ A and from the uniqueness of X, it follows that
A is contained and bounded in H∞(V1). Therefore H(X) is regular and
by [4] H(U) is bornological.

Since Lb(F, H(∆)) ∼= H(∆)⊗̂πF ∗ is contained as a complemented sub-
space of H(∆)⊗̂πH(W1) ∼= H(∆)⊗̂εH(W1) ∼= H(∆ ×W1) = H(U) with
U = ∆×W1, it follows that H(∆)⊗̂πF ∗ is bornological. By [19, Theorem
4.9] F ∈ (DN) and, hence, E ∈ (DN).

Sufficiency. Assume that E ∈ (DN) and given f ∈ Hw(X, F ), where X
is a compact determining polydisc of the form

X =
{
w = (wn) ∈ E∗ : sup

n

∣∣wn

αn

∣∣ ≤ 1
}

in E∗.

From the determination of X it follows that αn 6= 0 for every n. More-
over, by [4] H(X) is regular. By the determination of X we can define the
linear map

f̂ : F ∗ → H(X),

given by
f̂(x∗) = x∗f for x∗ ∈ F ∗,

where x̂∗f is a holomorphic extension of x∗f to some neighbourhood of
X. By [4] on a neighbourhood (depending on x∗) of X, we have

f̂(x∗)(w) =
∑

m∈N(N)

bm(x∗) wm,

where bm(x∗) are the linear functionals on F ∗ defined by

bm(x∗) =
( 1

2πi

)n
∫

|λ1|=|α1|

· · ·
∫

|λn|=|αn|

f̂(x∗)(λ1e
∗
1 + · · ·+ λne∗n)

λm1+1
1 · · ·λmn+1

n

dλ1 · · · dλn.
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We prove that bm(x∗) is continuous on F ∗ for every m ∈ N (N). Fix
m ∈ N (N), m = (m1, m2, . . . , mn, 0, 0, . . . ) and put

Xm = X ∩ span {e∗1, . . . , e∗n} = {(w1, . . . , wn) : |wi| ≤ |αi|, i = 1, n}.

Consider the function fm = f |Xm
. By the hypothesis fm ∈ Hw(Xm, F )

and since Xm is compact and F is a Banach space it implies that fm ∈
H(Xm, F ) [12]. Thus there exists a neighbourhood V of Xm in span
{e∗1, . . . , e∗n} such that fm : V → F is holomorphic. Hence,

bm(x∗) =
( 1

2πi

)n
∫

|λ1|=|α1|

· · ·
∫

|λn|=|αn|

f̂(x∗)(λ1e
∗
1 + · · ·+ λne∗n)

λm1+1
1 · · ·λmn+1

n

dλ1 · · · dλn =

( 1
2πi

)n
∫

|λ1|=|α1|

· · ·
∫

|λn|=|αn|

f̂m(x∗)(λ1e
∗
1 + · · ·+ λne∗n)

λm1+1
1 · · ·λmn+1

n

dλ1 · · · dλn

is continuous on F ∗.

Now we prove that f̂ : F ∗ → H(X) is continuous. Take µ ∈ [H(X)]∗β ∼=
H(U) [4], where U = {z = (zn) ∈ E : sup

n
|znαn| < 1}. By [4] we can

write
µ(z) =

∑

m∈N(N)

am(µ) zm , for z ∈ U

and
〈f̂(x∗), µ〉 =

∑

m∈N(N)

bm(x∗) am(µ).

From
sup

{∣∣ ∑

m∈J

bm(x∗) am(µ)
∣∣ : J ⊂ N (N), J finite

}
< ∞

for x∗ ∈ F ∗, we infer that

sup
{∣∣ ∑

m∈J

bm(x∗) am(µ)
∣∣ : J ⊂ N (N), J finite, ‖x∗‖ ≤ 1

}
< ∞.

Hence,
sup

{|〈f̂(x∗), µ〉
∣∣ : ‖x∗‖ ≤ 1

}
< ∞,
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for every µ ∈ [H(X)]∗β . This yields that f̂ is continuous on F ∗. Thus
there exists a neighbourhood Ω of X in E∗ such that f̂ : F ∗ → H∞(Ω).
The function g : Ω → F given by

g(z)(x∗) = f̂(x∗)(z)

is holomorphic on Ω and g|X = f . Theorem 3.4 is proved.

4. Examples

In this section we give examples of L̃-regular compact sets.

Let α = {αn} be an exponent sequence such that

Λ1(α) = {(ξ1, . . . , ξn, . . . ) : ξi ∈ C,

∞∑

i=1

|ξi|rαi < ∞ for 0 < r < 1}

is nuclear and a = {aj} ∈ Λ1(α), aj ≥ 0 for j ≥ 1. Then the set

Da = {x′ ∈ Λ∗1(α) : sup
j≥1

|x′j |aj < 1}

is open in Λ∗1(α), and is called an open polydisc. It is known [6] that

(H(Da), τ0) ∈ (Ω̃) if and only if a > 0 and lim inf
j→∞

a
1

αj

j = 0. On the other

hand, by [3] (
H(Da)

)∗ ∼= H(D0
a),

where
D0

a =
{

x ∈ Λ1(α) : sup
x′∈Da

|x′jxj | ≤ 1
}

.

Thus, D0
a is L̃-regular in Λ1(α) if and only if a > 0 and lim inf

j→∞
a

1
αj

j = 0.

However, as in [6] for 0 < r < 1 set a :=
(
rαj

)
j∈N

. Then
(
H(Da), τ0

) ∈
(Ω̃) but

(
H(Da), τ0

) ∈ (Ω). Hence D0
a is L̃-regular but not L-regular.
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