SPLINE COLLOCATION METHODS FOR A SYSTEM OF NONLINEAR FREDHOLM-VOLTERRA INTEGRAL EQUATIONS

NGUYEN MINH CHUONG AND NGUYEN VAN TUAN

ABSTRACT. In this paper we shall apply spline collocation methods to solve approximately a system of nonlinear Fredholm-Volterra integral equations. We shall study existence and uniqueness conditions for collocation solution, and estimate the convergence rate. Some applications are shown.

1. INTRODUCTION

Let us consider the following system

(1)
$$x(t) = \int_{a}^{b} K(t, s, x(s)) ds + \int_{a}^{t} K(t, s, x(s)) ds + f(t),$$

where $a \leq t, s \leq b$,

$$x(t) = [x_1(t), \dots, x_m(t)],$$

$$f(t) = [f_1(t), \dots, f_m(t)],$$

$$f(t) = [K_1(t, s, x(s)), \dots, K_m(t, s, x(s))],$$

 $x_i(t), f_i(t) \in C[a, b], \overset{(j)}{K}(t, s, x)$ are continuous in all variables $i = 1, \ldots, m$, j = 1, 2.

Set $C = C[a, b] \times \ldots \times C[a, b]$ (m times), where the norm of C is defined as follows:

$$||x||_c = \max_{1 \le i \le m} \max_{a \le t \le b} |x(t)|,$$

 $||x(t)||_c = \max ||x_i(t)||, \quad 1 \le i \le m$

or

Received October 27, 1995; in revised form April 10, 1995.

This paper was supported in part by the National Basic Research Program in Natural Science, Vietnam.

where

156

$$||x_i(t)|| = \max |x_i(t)|, \quad a \le t \le b.$$

It is obvious that C with this norm is a Banach space. Denoting by T the operator defined by $T: C \longrightarrow C$

$$T: C \longrightarrow C$$
$$x \mapsto Tx = \int_{a}^{b} \overset{(1)}{K}(t, s, x(s))ds + \int_{a}^{t} \overset{(2)}{K}(t, s, x(s))ds + f(t), f(t) ds$$

we can rewrite the system (1) in the form

$$(2) Tx = x, \quad x \in C.$$

Let

$$\pi_n : a = t_0 < t_1 < \ldots < t_n = b,$$

be a partition of [a, b]. Set

$$h_i = t_{i+1} - t_i, i = 0, \dots, n-1,$$

 $h_n = \max_{0 \le i \le n-1} h_i.$

We always suppose that the sequence $\{\pi_n\}$ has the following property $\lim_{n\to\infty} h_n = 0$. We shall use the set

$$S_n = \{\zeta_i | \zeta_i \in [a, b], \ i = 1, \dots, N_n, \ N_n \in \mathbf{N}\},\$$

for a collocation set in [a, b], where N_n is a constant dependent of n. We put $X_n = Sp(\pi_n, p, q)$, where

$$Sp(\pi_n, p, q) = \{v(t) \in C^q[a, b] : v(t) |_{[t_i, t_{i+1}]} \in Q_p\},\$$

 $i = 0, \ldots, n-1, p, q$ are integers satisfying $0 \le q \le p-1, p \ge 1, Q_p$ is a set of polynomials of degree $\le p$.

Let $X = X_n \times \ldots \times X_n$ (*m* times) and

$$P_n: C \longrightarrow X \subset C$$

(3)
$$x = (x_1(t), \dots, x_m(t)) \mapsto P_n x = (v_1(t), \dots, v_m(t)) \in X,$$

be a continuous linear projections from C to X converging pointwise to the identity operator P in C and

(4)
$$P_n x(\zeta_i) = x(\zeta_i), \quad \forall x \in C, \ \forall \zeta_i \in S_n.$$

We shall approximate the solution of equation (1) by an element

$$v = (v_1(t), \dots, v_m(t)) \in X,$$

satisfying the system

$$v_i(\zeta_j) = \int_a^b {}^{(1)}_{K_i}(\zeta_j, s, v(s)) ds + \int_a^{\zeta_j} {}^{(2)}_{K_i}(\zeta_j, s, v(s)) ds + f_i(\zeta_j),$$

 $i = 1, \ldots, m, j = 1, \ldots, N_n$. This system may be written in the form

(5)
$$v(\zeta_j) = Tv(\zeta_j), \quad \zeta_j \in S_n.$$

From (4) we get

$$v(\zeta_j) = P_n T v(\zeta_j), \quad \zeta_j \in S_n.$$

If we can find an element $v \in X$ such that

(6)
$$v = P_n T v,$$

then it satisfies (5) and hence it is the desired collocation solution.

2. Main Result

Theorem 1. Let P_n be the projections defined by (3). Assume that the equation (2) has a solution

$$x^{(0)}(t) = [x_1^{(0)}(t), \dots, x_m^{(0)}(t)],$$

$$\begin{array}{rcl} x_i^{(0)}(t) \in C^{l_i}[a,b], & 0 \leq \ell_i \leq p, \quad i = 1, \dots, m, \quad \overset{(j)}{K}(t,s,x) \ and \\ \frac{\partial \overset{(j)}{K}(t,s,x(s))}{\partial x}, \ j = 1,2, \ are \ continuous \ in \ the \ domain \end{array}$$

(7)
$$\begin{cases} a \leq t, \quad s \leq b \\ \|x - x^{(0)}\|_c \leq \sigma_1, \quad \sigma_1 \in \mathbf{R}. \end{cases}$$

Moreover, suppose that the equation

$$u(t) - \int_{a}^{b} \frac{\partial K(t, s, x^{(0)}(s))}{\partial x} u(s) ds - \int_{a}^{t} \frac{\partial K(t, s, x^{(0)}(s))}{\partial x} u(s) ds = 0,$$

where

$$u(t) = [u_1(t), \dots, u_m(t)], \quad u_i(t) \in C[a, b],$$

$$\frac{\partial \overset{(j)}{K}(t,s,x^{(0)}(s))}{\partial x}u(s) = \left[\sum_{i=1}^{m} \frac{\partial \overset{(j)}{K}_{1}(t,s,x^{(0)}(s))}{\partial x_{i}}u_{i}, \dots, \sum_{i=1}^{m} \frac{\partial \overset{(j)}{K}_{m}(t,s,x^{(0)}(s))}{\partial x_{i}}u_{i}\right],$$

has only the trivial solution. Then

(i) There exists a constant r > 0 such that $x^{(0)}$ is the unique solution of (2) in the ball

$$\|x - x^{(0)}\|_c \le r.$$

(ii) For sufficiently large n, the collocation equation (6) has a unique solution

$$v_n(t) = [v_{n,1}(t), \dots, v_{n,m}(t)], \quad v_{n,i}(t) \in X_n, \ i = 1, \dots, m,$$

in the above ball.

(iii) The sequence $\{v_n(t)\}_{n=1}^{\infty}$ converges to the solution $x^{(0)}(t)$, and the convergence rate is estimated by

$$||v_n - x^{(0)}||_c \le M E^0(x^{(0)}),$$

where $E^0(x^{(0)}) = \max_{1 \le i \le m} E_i(x_i^{(0)}), \quad E_i(x_i^{(0)}) = \inf_{z_i \in X_n} ||x_i^{(0)} - z_i|| = O(h_n^{\ell_i} \omega(x_i^{(0)})^{(\ell_i)}, h_n)), \quad \omega(x_i^{(0)})^{(\ell_i)}, h_n) \text{ denotes the modulus of continuity of the } \ell_i \text{-th derivative of } x_i^{(0)} \text{ with respect to } h_n, \text{ and } M \text{ is a positive constant independent of } n.$

Proof. By the continuity of $\overset{(j)}{K}(t,s,x)$ in the domain (7) and $f(t) \in C[a,b]$, it is clear that T is continuous in C_1 , where

$$C_1 = \{x(t) \in C : \|x - x^{(0)}\|_c \le \sigma_1\}.$$

158

We shall prove that T is completely continuous. Consider the set

$$A_{i} = \left\{ y_{i}(t) = \int_{a}^{b} \overset{(1)}{K}_{i}(t, s, x(s))ds + \int_{a}^{t} \overset{(2)}{K}_{i}(t, s, x(s))ds + f_{i}(t) : x(t) \in C_{1} \right\},$$

 $i = 1, \ldots, m$. It is obvious that y_i are uniformly bounded. By the uniform continuity of $\overset{(j)}{K_i}(t, s, x)$ in the domain (7) and of $f_i(t)$ on [a, b] it is not difficult to show that y_i are equicontinuous. Consequently, A_i is precompact in $C[a, b], i = 1, \ldots, m$. So $T(C_1)$ is precompact in C. The operator T is thus completely continuous in C_1 . Further, by using the continuity of $\overset{(j)}{K}(t, s, x)$ and $\frac{\partial \overset{(j)}{K}(t, s, x)}{\partial x}, j = 1, 2$, we see that T is continuously

differentiable at $x^{(0)}$ (in the Frechet sence) and

$$T'(x^{(0)})u = \int_{a}^{b} \frac{\partial K(t, s, x^{(0)}(s))}{\partial x} u(s)ds + \int_{a}^{t} \frac{\partial K(t, s, x^{(0)}(s))}{\partial x} u(s)ds.$$

By our assumption the equation

$$u - T'(x^{(0)})u = 0, \quad u \in C$$

has only trivial solution. Now by the use of Theorem 3.1 from [10] we can get the statements (i), (ii) in Theorem 1.

On the other hand, using again Theorem 3.1 we have

$$||v_n - x^{(0)}||_c \le M_1 ||(P_n - P)Tx^{(0)}||_c, \quad n \ge N_1, \ N_1 \in \mathbf{N},$$

 $(M_1 \text{ is a constant independent of } n)$. Consequently,

$$||v_n - x^{(0)}||_c \le M_1 ||P_n x^{(0)} - x^{(0)}||_c.$$

Since $\{P_n\}$ is a sequence of continuous linear projections pointwise converging to P, C is a Banach space, and by Banach-Steinhaus Theorem, the sequence $\{\|P_n\|\}$ is bounded. That is, there exists a positive number M_2 such that $\|P_n\| \leq M_2, \forall n$. For all $z \in X$, we get $P_n z = z$, hence

$$\begin{aligned} \|v_n - x^{(0)}\|_c &\leq M_1 \big[\|x^{(0)} - z\|_c + \|P_n(z - x^{(0)})\|_c \big], \quad n \geq N_1 \\ &\leq M_1 (1 + \|P_n\|) \|x^{(0)} - z\|_c, \end{aligned}$$

or

160

(8)
$$||v_n - x^{(0)}||_c \le M ||x^{(0)} - z||_c, \quad \forall z \in X,$$

where $M = M_1(1 + M_2)$. From (8) we get

$$\|v_n - x^{(0)}\|_c \le M \inf_{\substack{z = (z_1, \dots, z_m) \in X \\ (z_1, \dots, z_m) \in X}} \|x^{(0)} - z\|_c$$

$$\le M \inf_{\substack{(z_1, \dots, z_m) \in X \\ 1 \le i \le m}} \max_{\substack{x_i^{(0)} - z_i \\ 1 \le i \le m}} \|x_i^{(0)} - z_i\|.$$

It is not hard to prove the following equality

$$\inf_{(z_1,\dots,z_m)\in X} \max_{1\le i\le m} \|x_i^{(0)} - z_i\| = \max_{1\le i\le m} \inf_{z_i\in X_n} \|x_i^{(0)} - z_i\|,$$

which implies

$$||v_n - x^{(0)}||_c \le M \max_{1 \le i \le m} \inf_{z_i \in X_n} ||x_i^{(0)} - z_i||.$$

Now by Theorem 1 from [9] we obtain

(9)
$$||v_n - x^{(0)}||_c \le M E^0(x^{(0)}),$$

where $E^{0}(x^{(0)}) = \max_{1 \le i \le m} E_{i}(x_{i}^{(0)}), E_{i}(x_{i}^{(0)}) = \inf_{z_{i} \in X_{n}} ||x_{i}^{(0)} - z_{i}|| = O(h_{n}^{l_{i}}\omega(x_{i}^{(0)}, h_{n})).$

Theorem 1 is now proved.

3. Applications

Below we shall consider some applications.

We choose d + 1 points $0 = \eta_0 < \eta_1 < \ldots < \eta_d = 1$ from the segment [0, 1]. Taking into account the partition

$$\pi_n : a = t_0 < t_1 < \ldots < t_n = b,$$

we denote

(10)
$$S_n = \{ \zeta_{ij} = t_i + h_i \eta_j, i = 0, \dots, n-1, j = 0, \dots, d \}, X_n = Sp(\pi_n, d, 0), \quad X = X_n \times \dots \times X_n (m \text{ times}).$$

Define the mappings

$$p_n : C[a, b] \longrightarrow Sp(\pi_n, d, 0),$$

 $f \mapsto p_n f \in Sp(\pi_n, d, 0),$

such that

$$p_n f(\zeta_{ij}) = f(\zeta_{ij}), \quad \forall \zeta_{ij} \in S_n.$$

Obviously, p_n is a linear projection from C[a, b] into $Sp(\pi_n, d, 0)$. On each segment $[t_i, t_{i+1}]$, $i = 0, \ldots, n-1$, $p_n f$ is a polynomial of order $\leq d$ interpolating the function f at ζ_{ij} . Let

$$\ell_j(t) = \prod_{k=0, k \neq j}^d \left(\frac{t - \zeta_{ik}}{\zeta_{ij} - \zeta_{ik}} \right) \cdot$$

From (10) we get

$$\ell_j(t) = \prod_{k=0, k \neq j}^d \left(\frac{\eta - \eta_k}{\eta_j - \eta_k}\right) = \ell_j^*(\eta),$$

where

$$\eta = \frac{t - t_i}{t_{i+1} - t_i}.$$

Consequently

$$M_3 = \max_{t_i \le t \le t_{i+1}} \sum_{j=0}^d |\ell_j(t)| = \max_{0 \le \eta \le 1} \sum_{j=0}^d |\ell_j^*(\eta)|.$$

So M_3 is the constant independent of i and n. It is the Lebesgue constant (see [8], p.5). By the continuity of $\ell_j(t)$ in $[t_i, t_{i+1}]$ it is not difficult to show that p_n is continuous. Let p^* be the best approximation of f by a polynomial of order d in $[t_i, t_{i+1}]$ (see [6], p.43), we have

$$|p^*(t) - p_n f(t)| \le M_3 ||f - p^*||.$$

By Jackson Theorem (see [6], p.43) we obtain

$$\max_{t_i \le t \le t_{i+1}} |p^*(t) - p_n f(t)| \le M_3 g_k(f, d), f \in C^k[a, b],$$

where

$$g_k(f,d) = \begin{cases} 6\omega\left(f,\frac{h_n}{2d}\right), & \text{when } k = 0\\ \frac{3h_n}{d} \|f'\|, & \text{when } k = 1\\ \frac{6^k(k-1)^{k-1}}{(k-1)!d^k} kh_n^k \|f^{(k)}\|, & \text{when } k > 1, \ d > k-1 \ge 1. \end{cases}$$

Hence

$$||f - p_n f|| \le (M_3 + 1)g_k(f, d).$$

When k = 0 we have

$$\|f - p_n f\| \le 6(M_3 + 1)\omega\left(f, \frac{h_n}{2d}\right), \quad \forall f \in C[a, b].$$

We get $\omega\left(f, \frac{h_n}{2d}\right) \to 0$ as $h_n \to 0$, where $f \in C[a, b]$ and M_3 independs on n. Hence it is easy to see that $\{p_n\}$ is a sequence of continuous projections pointwise converging to the identity operator in C[a, b].

Define the mappings

(11)
$$\hat{P}_n : C \longrightarrow X \subset C$$
$$(x_1(t), \dots, x_m(t)) \mapsto (p_n x_1(t), \dots, p_n x_m(t)).$$

It is clear that \hat{P}_n are continuous linear projections from C to X, satisfying conditions (4) and converge pointwise to the identity operator P in C and

$$\|\tilde{P}_n\| \le M_3.$$

Theorem 2. Let \hat{P}_n be the projections defined by (11). Assume that the conditions of as in Theorem 1 is satisfies. Then

(i) There exists a constant r > 0 such that $x^{(0)}$ is the unique solution of (2) in the ball

$$\|x - x^{(0)}\|_c \le r.$$

(ii) For sufficiently large n the collocation equation (6) has a unique solution

$$v_n(t) = [v_{n,1}(t), \dots, v_{n,m}(t)], \quad v_{n,i}(t) \in X_n, \quad i = 1, \dots, m,$$

in the above ball.

(iii) The sequence $\{v_n(t)\}_{n=1}^{\infty}$ converges to the solution $x^{(0)}(t)$, and we get the estimate

(12)
$$||v_n - x^{(0)}||_c \le M E^0(x^{(0)}),$$

where $E^0(x^{(0)}) = \max_{1 \le i \le m} E_i(x_i^{(0)}), \quad E_i(x_i^{(0)}) = \inf_{z_i \in X_n} ||x_i^{(0)} - z_i||,$ $E_i(x_i^{(0)}) \le 3g_{l_i}(x_i^{(0)}, d).$

Proof. By using Theorem 1 we immediately get (i) and (ii). For the proof of (iii) we see from (9) that

$$||v_n - x^{(0)}||_c \le M E^0(x^{(0)}),$$

where $E^{0}(x^{(0)}) = \max_{1 \le i \le m} E_{i}(x_{i}^{(0)}), E_{i}(x_{i}^{(0)}) = \inf_{z_{i} \in X_{n}} ||x_{i}^{(0)} - z_{i}||$. By using a Lemma from [8], p.6 and by Jackson Theorem ([6], p. 43) we have

$$\inf_{z_i \in X_n} \|x_i^{(0)} - z_i\| \le 3g_{\ell_i}(x_i^{(0)}, d).$$

Corollary 1. Let \hat{P}_n be the projections defined by (11), f(t) and x(t) be elements of C. Let $\overset{(1)}{K}(t,s,x)$ be continuous in the domain

$$\begin{cases} a \le t, \ s \le b \\ ||x||_c < \infty, \end{cases}$$

and $\overset{(1)}{K}$ satisfy the Lipschitz condition in x:

(13)
$$\| \overset{(1)}{K}(t,s,x_1) - \overset{(1)}{K}(t,s,x_2) \|_c \le L \| x_1 - x_2 \|_c, \ \forall x_1, x_2 \in C, \ \| x_i \|_c < \infty,$$

i = 1, 2 with 0 < L(b-a) < 1, $\overset{(2)}{K}(t, s, x) = 0$. Then

(i) The equation (2) has a unique solution $x^{(0)}(t)$.

If we assume additionally that $\frac{\partial K^{(1)}(t,s,x(s))}{\partial x}$ is continuous in the domain (7), then

(ii) There exists a constant r > 0 such that for sufficiently large n, the collocation equation (6) has a unique approximate solution $v_n \in X$ in the ball $||v_n - x^{(0)}||_c < r$.

(iii) The sequence v_n converges to the solution $x^{(0)}(t)$ in C and the estimate (12) holds.

Proof. Obviously, T is a contracting operator in C, so it has a unique fixed point $x^{(0)}(t)$. On the other hand, by the continuity of $\overset{(1)}{K}(t,s,x)$ and $\overset{(1)}{\partial K}(t,s,x)$

 $\frac{\partial \overset{(1)}{K}(t,s,x)}{\partial x}$ in the domain (7), we see as in the proof of Theorem 1 that T is completely continuous in C_1 and T is continuously differentiable at $x^{(0)}$ and

$$T'(x^{(0)})u = \int_{a}^{b} \frac{\partial K(t, s, x^{(0)})}{\partial x} u(s) ds.$$

Now we consider the equation

$$T'(x^{(0)})u = u, \quad u \in C,$$

or

(14)
$$\int_{a}^{b} \frac{\partial K(t,s,x^{(0)})}{\partial x} u(s) ds = u(t).$$

We shall prove that equation (14) has only trivial solution.

Indeed, if it has a solution $u(t) \neq 0$, so $||u||_c > 0$. From (14) it follows that

$$\int_{a}^{b} [K(t,s,x^{(0)}+u) - K^{(1)}(t,s,x^{(0)})]ds - o(u) = u(t),$$

where

$$\frac{\|o(u)\|_c}{\|u\|_c} \to 0 \quad \text{as} \quad \|u\|_c \to 0.$$

Consequently,

$$\begin{aligned} \|o(u)\|_{c} &= \left\| u - \int_{a}^{b} [K^{(1)}(t,s,x^{(0)}+u) - K^{(1)}(t,s,x^{(0)})] ds \right\|_{c} \\ &\geq \|u\|_{c} - \int_{a}^{b} \|K^{(1)}(t,s,x^{(0)}+u) - K^{(1)}(t,s,x^{(0)})\|_{c} ds \\ &\geq \|u\|_{c} - L(b-a)\|u\|_{c}. \end{aligned}$$

Hence

$$|o(u)||_{c} + L(b-a)||u||_{c} \ge ||u||_{c}.$$

It follows that

$$\frac{\|o(u)\|_c}{\|u\|_c} + L(b-a) \ge 1,$$

that is, we get $L(b-a) \ge 1$ as $||u||_c \to 0$, which gives a contradiction. So equation (14) has only trivial solution. Now applying Theorem 2 we obtain the conclusions.

In the sequel we apply Theorem 2 to a general class of nonlinear Volterra integral equation.

Let us study the following equation

(15)
$$y'(t) = H\left(t, y(t), \int_{a}^{t} K_1(t, s, y(s))ds\right),$$

with condition

(16)
$$y(a) = \gamma.$$

Assume that $y_0(t)$ is a solution of (15), (16), $a \le t, s \le b, y(t) \in C[a, b]$, K_1 is continuous in the domain

$$\Omega_1 = \begin{cases} a \le t, & s \le b \\ \|y - y_0\| \le \sigma_2, & 0 < \sigma_2 \in \mathbf{R}. \end{cases}$$

and H(t, y, z) is continuous in Ω_2 , where

$$\Omega_2 = \begin{cases} a \le t, \ s \le b, \quad \|y - y_0\| \le \sigma_2, \\ \|z - z_0\| \le \sigma_3, \ z_0 = \int_a^t K_1(t, s, y_0(s)) ds, \ \sigma_3 \in \mathbf{R}. \end{cases}$$

Setting $z(t) = \int_{a}^{t} K_1(t, s, y(s)) ds$ we can write (15), (16) in the form

(17)
$$\begin{cases} y(t) = \gamma + \int_{a}^{t} H(s, y(s), z(s)) ds \\ z(t) = \int_{a}^{t} K_{1}(t, s, y(s)) ds. \end{cases}$$

Let $x(t) = [y(t), z(t)], \quad \stackrel{(2)}{K}(t, s, x(s)) = [H(s, y(s), z(s)), K_1(t, s, y(s))], f(t) = [\gamma, 0], \quad C = C[a, b] \times C[a, b], \quad X = X_n \times X_n, \quad X_n = Sp(\pi_n, d, 0).$ The system (17) leads to the form (2) with $\stackrel{(1)}{K}(t, s, x) = 0$. Hence we get $x^{(0)}(t) = [y_0(t), z_0(t)]$ as a solution of (17).

Corollary 2. Let \hat{P}_n be the projections defined by (11). We assume that $y_0(t)$ is a solution of the problem (15), (16), with $y_0(t) \in C^{l_1}[a,b], z_0(t) \in C^{l_2}[a,b], 0 \leq \ell_1, \ell_2 \leq d$ and $\overset{(2)}{K}(t,s,x), \frac{\partial \overset{(2)}{K}(t,s,x(s))}{\partial x}$ are continuous in the domain

$$\begin{cases} a \le t, \ s \le b \\ U = \|x - x^{(0)}\|_c \le \sigma_4, \ \sigma_4 = \min\{\sigma_2, \sigma_3\} \\ \|K_1(t, s, y_1) - K_1(t, s, y_2)\| \le L^* \|y_1 - y_2\|, \quad \forall y_1, y_2 \in U \end{cases}$$

where L^* are positive constants, $L^*(b-a) < 1$. Moreover, suppose that the following equation

$$u(t) - \int_{a}^{t} \frac{\partial K^{(2)}(t,s,x^{(0)})}{\partial x} u(s) ds = 0,$$

with $u(t) = [u_1(t), u_2(t)] \in C$, has only trivial solution. Then

(i) there exists a constant r > 0 such that $y_0(t)$ is the unique solution of (15), (16) in the ball

$$\|y - y_0\| \le r.$$

(ii) For sufficiently large n, the collocation equation (6) has a unique solution

$$v_n(t) = [v_{n,1}(t), v_{n,2}(t)], \quad v_{n,i}(t) \in X_n, \quad i = 1, 2,$$

166

in the ball $||x - x^{(0)}||_c \le r, x \in C$.

(iii) The sequence $\{v_n(t)\}_{n=1}^{\infty}$ converges to the solution $x^{(0)}(t)$ and we have the estimate

$$||v_n - x^{(0)}||_c \le M \max\{E_1(y_0), E_2(z_0)\},\$$

where $E_1(y_0) \leq 3g_{l_1}(y_0, d), E_2(z_0) \leq 3g_{l_2}(z_0, d).$

Proof. It is easy to see that all assumptions of Theorem 2 are satisfied. It remains only to prove that if $x^{(0)}$ is the unique solution of (17) in the ball $||x - x^{(0)}||_c \leq r$, then y_0 is the unique solution of (15), (16) in the ball $||y - y_0|| \leq r$.

Indeed, let y_1 be another solution of (15), (16) in the ball $||y - y_0|| \le r$. Setting $z_1(t) = \int_a^t K_1(t, s, y_1(s)) ds$, we see that $x^{(1)} = [y_1(t), z_1(t)]$ is a solution of (17). We have

$$||z_1 - z_0|| = \left\| \int_a^t \left[K_1(t, s, y_1(s)) - K_1(t, s, y_0(s)) \right] ds \right\|$$

$$\leq L^*(b - a) ||y_1 - y_0|| \leq r.$$

So $x^{(1)}$ is also a solution of (17) in the ball $||x - x^{(0)}||_c \le r$, which gives a contradiction.

Let π_n be a uniform partition of [a, b]:

$$\pi_n : a = t_0 < t_1 < \ldots < t_n = b, \quad h = \frac{b-a}{n}$$

Let $k \ge 1$ be a natural number and $n \ge 2k - 1$, and $S_n = \{t_0, \ldots, t_n\}$. Consider now the mappings

$$q_n : C[a, b] \longrightarrow X_n = Sp(\pi_n, 2k - 1, 2k - 2)$$

 $f \mapsto q_n f,$

with

$$q_n f(t_i) = f(t_i), \quad i = 0, \dots, n,$$

$$D^j(q_n f)(a) = D^j(L_{2k-1,0}f)(a), \quad j = 1, \dots, k-1,$$

$$D^j(q_n f)(b) = D^j(L_{2k-1,1}f)(b), \quad j = 1, \dots, k-1,$$

where $L_{2k-1,0}f$, $(L_{2k-1,1}f)$ are Lagrange interpolation polynomials of function f at points $t_0, t_1, \ldots, t_{2k-1}, (t_{n-2k+1}, t_{n-2k}, \ldots, t_n)$, respectively.

It is obvious that q_n are continuous linear projections from C[a, b] to $Sp(\pi_n, 2k - 1, 2k - 2)$ and converge pointwise to the identity operator in C[a, b] (see [9], p.347).

Define the mappings

168

(18)
$$\underline{\mathbf{P}}_n : C \longrightarrow X \subset C$$
$$(x_1(t), \dots, x_m(t)) \mapsto (q_n x_1(t), \dots, q_n x_m(t)).$$

It is clear that \underline{P}_n are continuous linear projections from C to X and converge pointwise to the identity operator P in C and $\underline{P}_n x(t_i) = x(t_i)$, $\forall x \in C, \forall t_i \in S_n$. Then from Theorem 1 we immediately get the following consequence.

Theorem 3. Let \underline{P}_n be defined by (18). Let the assumptions of Theorem 1 with $0 \le l_i \le 2k - 1$, i = 1, ..., m, be satisfied. Then

(i) there exists a constant r > 0 such that $x^{(0)}$ is the unique solution of (2) in the ball $||x - x^{(0)}||_c \leq r$.

(ii) For sufficiently large n the collocation equation (6) has a unique solution

$$v_n(t) = [v_{n,1}(t), \dots, v_{n,m}(t)],$$

 $v_{n,i}(t) \in Sp(\pi_n, 2k-1, 2k-2), \quad i = 1, \dots, m,$

in the above ball.

(iii) The sequence $\{v_n(t)\}_{n=1}^{\infty}$ converges to the solution $x^{(0)}(t)$, and the following estimate holds

$$||v_n - x^{(0)}||_c \le M E^0(x^{(0)}),$$

where

$$E^{0}(x^{(0)}) = \max_{1 \le i \le m} E_{i}(x_{i}^{(0)}),$$

$$E_{i}(x_{i}^{(0)}) = \inf_{z_{i} \in Sp(\pi_{n}, 2k-1, 2k-2)} \|x_{i}^{(0)} - z_{i}\| = O(h^{l_{i}}\omega(x_{i}^{(0)})^{(l_{i})}, h)).$$

References

- 1. H. Brunner, Nonpolynomial spline collocation for Volterra equations with weakly singular kernels, SIAM J. Numer. Anal. **20** (1983), 1106-1119.
- 2. _____, The approximate solution of Volterra equations with nonsmooth solutions, Utilitas Math. 27 (1985), 57-95.
- 3. _____, High-order methods for the numerical solution of Volterra integro-differential equations, J. Comp.& Appl. Math. 15 (1986), 301-309.
- 4. _____, On the numerical solution of nonlinear Volterra-Fredholm integral equations by collocation methods, SIAM J. Numer. Anal. **27** (1990), 987-1000.
- M. L. Crasnov, A. W. Kisilev and G. I. Makarenko, *Integral Equations*, M., Nauka, 1968.
- P. M. Prenter, Splines and variational methods, Wiley-Interscience, New York, 1975.
- N. I. Ronto and T. V. Putiatina, Application of collocation method to multipoints boundary value problems with integral boundary conditions, Ukrai. Mat. J. 44 (1992), 1548-1555.
- R. D. Russell and L. F. Shampine, A collocation method for boundary value problems, Numer. Math. 19 (1972), 1-28.
- 9. Thomas r. Lucas and George W. Reddien, Some collocation methods for nonlinear boundary value problems, SIAM J. Numer. Anal. 9 (1972), 341-356.
- 10. G. Vainiko, On the convergence of the collocation method for nonlinear differential equations, J. Vysch. Mat. i Mat. Phys. 6 (1966), 35-42.

INSTITUTE OF MATHEMATICS, HANOI, VIETNAM