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SPLINE COLLOCATION METHODS FOR A SYSTEM
OF NONLINEAR FREDHOLM-VOLTERRA

INTEGRAL EQUATIONS

NGUYEN MINH CHUONG AND NGUYEN VAN TUAN

Abstract. In this paper we shall apply spline collocation methods
to solve approximately a system of nonlinear Fredholm-Volterra integral
equations. We shall study existence and uniqueness conditions for collo-
cation solution, and estimate the convergence rate. Some applications are
shown.

1. Introduction

Let us consider the following system

(1) x(t) =

b∫

a

(1)

K (t, s, x(s))ds +

t∫

a

(2)

K (t, s, x(s))ds + f(t),

where a ≤ t, s ≤ b,

x(t) = [x1(t), . . . , xm(t)],

f(t) = [f1(t), . . . , fm(t)],
(j)

K(t, s, x(s)) = [
(j)

K1(t, s, x(s)), . . . ,
(j)

Km(t, s, x(s))],

xi(t), fi(t) ∈ C[a, b],
(j)

K(t, s, x) are continuous in all variables i = 1, . . . , m,
j = 1, 2.

Set C = C[a, b]× . . .×C[a, b] (m times), where the norm of C is defined
as follows:

‖x‖c = max
1≤i≤m

max
a≤t≤b

|x(t)|,
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or
‖x(t)‖c = max ‖xi(t)‖, 1 ≤ i ≤ m
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where
‖xi(t)‖ = max |xi(t)|, a ≤ t ≤ b.

It is obvious that C with this norm is a Banach space. Denoting by T the
operator defined by

T : C −→ C

x 7→ Tx =

b∫

a

(1)

K (t, s, x(s))ds +

t∫

a

(2)

K (t, s, x(s))ds + f(t),

we can rewrite the system (1) in the form

(2) Tx = x, x ∈ C.

Let
πn : a = t0 < t1 < . . . < tn = b,

be a partition of [a, b]. Set

hi = ti+1 − ti, i = 0, . . . , n− 1,

hn = max
0≤i≤n−1

hi.

We always suppose that the sequence {πn} has the following property
lim

n→∞
hn = 0. We shall use the set

Sn =
{
ζi|ζi ∈ [a, b], i = 1, . . . , Nn, Nn ∈ N

}
,

for a collocation set in [a, b], where Nn is a constant dependent of n. We
put Xn = Sp(πn, p, q), where

Sp(πn, p, q) =
{
v(t) ∈ Cq[a, b] : v(t)

∣∣
[ti,ti+1]

∈ Qp

}
,

i = 0, . . . , n− 1, p, q are integers satisfying 0 ≤ q ≤ p− 1, p ≥ 1, Qp is a
set of polynomials of degree ≤ p.

Let X = Xn × . . .×Xn (m times) and

Pn : C −→ X ⊂ C

(3) x = (x1(t), . . . , xm(t)) 7→ Pnx = (v1(t), . . . , vm(t)) ∈ X,
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be a continuous linear projections from C to X converging pointwise to
the identity operator P in C and

(4) Pnx(ζi) = x(ζi), ∀x ∈ C, ∀ζi ∈ Sn.

We shall approximate the solution of equation (1) by an element

v = (v1(t), . . . , vm(t)) ∈ X,

satisfying the system

vi(ζj) =

b∫

a

(1)

K i(ζj , s, v(s))ds +

ζj∫

a

(2)

K i(ζj , s, v(s))ds + fi(ζj),

i = 1, . . . , m, j = 1, . . . , Nn. This system may be writen in the form

(5) v(ζj) = Tv(ζj), ζj ∈ Sn.

From (4) we get
v(ζj) = PnTv(ζj), ζj ∈ Sn.

If we can find an element v ∈ X such that

(6) v = PnTv,

then it satisfies (5) and hence it is the desired collocation solution.

2. Main result

Theorem 1. Let Pn be the projections defined by (3). Assume that the
equation (2) has a solution

x(0)(t) = [x(0)
1 (t), . . . , x(0)

m (t)],

x
(0)
i (t) ∈ Cli [a, b], 0 ≤ `i ≤ p, i = 1, . . . ,m,

(j)

K(t, s, x) and

∂
(j)

K(t, s, x(s))
∂x

, j = 1, 2, are continuous in the domain

(7)
{

a ≤ t, s ≤ b

‖x− x(0)‖c ≤ σ1, σ1 ∈ R.
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Moreover, suppose that the equation

u(t)−
b∫

a

∂
(1)

K (t, s, x(0)(s))
∂x

u(s)ds−
t∫

a

∂
(2)

K (t, s, x(0)(s))
∂x

u(s)ds = 0,

where
u(t) = [u1(t), . . . , um(t)], ui(t) ∈ C[a, b],

∂
(j)

K(t, s, x(0)(s))
∂x

u(s) =

[ m∑

i=1

∂
(j)

K1(t, s, x(0)(s))
∂xi

ui, . . . ,

m∑

i=1

∂
(j)

Km(t, s, x(0)(s))
∂xi

ui

]
,

has only the trivial solution. Then

(i) There exists a constant r > 0 such that x(0) is the unique solution
of (2) in the ball

‖x− x(0)‖c ≤ r.

(ii) For sufficiently large n, the collocation equation (6) has a unique
solution

vn(t) = [vn,1(t), . . . , vn,m(t)], vn,i(t) ∈ Xn, i = 1, . . . , m,

in the above ball.

(iii) The sequence
{
vn(t)

}∞
n=1

converges to the solution x(0)(t), and the
convergence rate is estimated by

‖vn − x(0)‖c ≤ ME0(x(0)),

where E0(x(0)) = max
1≤i≤m

Ei(x
(0)
i ), Ei(x

(0)
i ) = inf

zi∈Xn

‖x(0)
i − zi‖ =

O(h`i
n ω(x(0)

i

(`i)
, hn)), ω(x(0)

i

(`i)
, hn) denotes the modulus of continuity of

the `i-th derivative of x
(0)
i with respect to hn, and M is a positive constant

independent of n.

Proof. By the continuity of
(j)

K(t, s, x) in the domain (7) and f(t) ∈ C[a, b],
it is clear that T is continuous in C1, where

C1 =
{
x(t) ∈ C : ‖x− x(0)‖c ≤ σ1

}
.
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We shall prove that T is completely continuous. Consider the set

Ai =
{

yi(t) =

b∫

a

(1)

K i(t, s, x(s))ds+

t∫

a

(2)

K i(t, s, x(s))ds+fi(t) : x(t) ∈ C1

}
,

i = 1, . . . , m. It is obvious that yi are uniformly bounded. By the uniform

continuity of
(j)

K i(t, s, x) in the domain (7) and of fi(t) on [a, b] it is not
difficult to show that yi are equicontinuous. Consequently, Ai is precom-
pact in C[a, b], i = 1, . . . ,m. So T (C1) is precompact in C. The operator
T is thus completely continuous in C1. Further, by using the continu-

ity of
(j)

K(t, s, x) and
∂

(j)

K(t, s, x)
∂x

, j = 1, 2, we see that T is continuously

differentiable at x(0) (in the Frechet sence) and

T ′(x(0))u =

b∫

a

∂
(1)

K (t, s, x(0)(s))
∂x

u(s)ds +

t∫

a

∂
(2)

K (t, s, x(0)(s))
∂x

u(s)ds.

By our assumption the equation

u− T ′(x(0))u = 0, u ∈ C

has only trivial solution. Now by the use of Theorem 3.1 from [10] we can
get the statements (i), (ii) in Theorem 1.

On the other hand, using again Theorem 3.1 we have

‖vn − x(0)‖c ≤ M1‖(Pn − P )Tx(0)‖c, n ≥ N1, N1 ∈ N,

(M1 is a constant independent of n). Consequently,

‖vn − x(0)‖c ≤ M1‖Pnx(0) − x(0)‖c.

Since {Pn} is a sequence of continuous linear projections pointwise con-
verging to P , C is a Banach space, and by Banach-Steinhaus Theorem,
the sequence {‖Pn‖} is bounded. That is, there exists a positive number
M2 such that ‖Pn‖ ≤ M2, ∀n. For all z ∈ X, we get Pnz = z, hence

‖vn − x(0)‖c ≤ M1

[‖x(0) − z‖c + ‖Pn(z − x(0))‖c

]
, n ≥ N1

≤ M1(1 + ‖Pn‖)‖x(0) − z‖c,
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or

(8) ‖vn − x(0)‖c ≤ M‖x(0) − z‖c, ∀z ∈ X,

where M = M1(1 + M2). From (8) we get

‖vn − x(0)‖c ≤ M inf
z=(z1,...,zm)∈X

‖x(0) − z‖c

≤ M inf
(z1,...,zm)∈X

max
1≤i≤m

‖x(0)
i − zi‖.

It is not hard to prove the following equality

inf
(z1,...,zm)∈X

max
1≤i≤m

‖x(0)
i − zi‖ = max

1≤i≤m
inf

zi∈Xn

‖x(0)
i − zi‖,

which implies

‖vn − x(0)‖c ≤ M max
1≤i≤m

inf
zi∈Xn

‖x(0)
i − zi‖.

Now by Theorem 1 from [9] we obtain

(9) ‖vn − x(0)‖c ≤ ME0(x(0)),

where E0(x(0)) = max
1≤i≤m

Ei(x
(0)
i ), Ei(x

(0)
i ) = inf

zi∈Xn

‖x(0)
i − zi‖ =

O(hli
nω(x(0)

i

(li)
, hn)).

Theorem 1 is now proved.

3. Applications

Below we shall consider some applications.

We choose d + 1 points 0 = η0 < η1 < . . . < ηd = 1 from the segment
[0, 1]. Taking into account the partition

πn : a = t0 < t1 < . . . < tn = b,

we denote

(10) Sn =
{
ζij = ti + hiηj , i = 0, . . . , n− 1, j = 0, . . . , d

}
,

Xn = Sp(πn, d, 0), X = Xn × . . .×Xn(m times).
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Define the mappings

pn : C[a, b] −→ Sp(πn, d, 0),

f 7→ pnf ∈ Sp(πn, d, 0),

such that
pnf(ζij) = f(ζij), ∀ζij ∈ Sn.

Obviously, pn is a linear projection from C[a, b] into Sp(πn, d, 0). On each
segment [ti, ti+1], i = 0, . . . , n − 1, pnf is a polynomial of order ≤ d
interpolating the function f at ζij . Let

`j(t) =
d∏

k=0,k 6=j

( t− ζik

ζij − ζik

)
·

From (10) we get

`j(t) =
d∏

k=0,k 6=j

( η − ηk

ηj − ηk

)
= `∗j (η),

where
η =

t− ti
ti+1 − ti

.

Consequently

M3 = max
ti≤t≤ti+1

d∑

j=0

|`j(t)| = max
0≤η≤1

d∑

j=0

|`∗j (η)|.

So M3 is the constant independent of i and n. It is the Lebesgue constant
(see [8], p.5). By the continuity of `j(t) in [ti, ti+1] it is not difficult to
show that pn is continuous. Let p∗ be the best approximation of f by a
polynomial of order d in [ti, ti+1] (see [6], p.43), we have

|p∗(t)− pnf(t)| ≤ M3‖f − p∗‖.

By Jackson Theorem (see [6], p.43) we obtain

max
ti≤t≤ti+1

|p∗(t)− pnf(t)| ≤ M3gk(f, d), f ∈ Ck[a, b],
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where

gk(f, d) =





6ω
(
f,

hn

2d

)
, when k = 0

3hn

d
‖f ′‖, when k = 1

6k(k − 1)k−1

(k − 1)!dk
khk

n‖f (k)‖, when k > 1, d > k − 1 ≥ 1.

Hence
‖f − pnf‖ ≤ (M3 + 1)gk(f, d).

When k = 0 we have

‖f − pnf‖ ≤ 6(M3 + 1)ω
(
f,

hn

2d

)
, ∀f ∈ C[a, b].

We get ω
(
f,

hn

2d

)
→ 0 as hn → 0, where f ∈ C[a, b] and M3 independs on

n. Hence it is easy to see that
{
pn

}
is a sequence of continuous projections

pointwise converging to the identity operator in C[a, b].

Define the mappings

(11) P̂n : C −→ X ⊂ C

(x1(t), . . . , xm(t)) 7→ (pnx1(t), . . . , pnxm(t)).

It is clear that P̂n are continuous linear projections from C to X, satisfying
conditions (4) and converge pointwise to the identity operator P in C and

‖P̂n‖ ≤ M3.

Theorem 2. Let P̂n be the projections defined by (11). Assume that the
conditions of as in Theorem 1 is satisfies. Then

(i) There exists a constant r > 0 such that x(0) is the unique solution
of (2) in the ball

‖x− x(0)‖c ≤ r.

(ii) For sufficiently large n the collocation equation (6) has a unique
solution

vn(t) = [vn,1(t), . . . , vn,m(t)], vn,i(t) ∈ Xn, i = 1, . . . , m,
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in the above ball.

(iii) The sequence
{
vn(t)

}∞
n=1

converges to the solution x(0)(t), and we
get the estimate

(12) ‖vn − x(0)‖c ≤ ME0(x(0)),

where E0(x(0)) = max
1≤i≤m

Ei(x
(0)
i ), Ei(x

(0)
i ) = inf

zi∈Xn

‖x(0)
i − zi‖,

Ei(x
(0)
i ) ≤ 3gli(x

(0)
i , d).

Proof. By using Theorem 1 we immediately get (i) and (ii). For the proof
of (iii) we see from (9) that

‖vn − x(0)‖c ≤ ME0(x(0)),

where E0(x(0)) = max
1≤i≤m

Ei(x
(0)
i ), Ei(x

(0)
i ) = inf

zi∈Xn

‖x(0)
i − zi‖. By using

a Lemma from [8], p.6 and by Jackson Theorem ([6], p. 43) we have

inf
zi∈Xn

‖x(0)
i − zi‖ ≤ 3g`i(x

(0)
i , d).

Corollary 1. Let P̂n be the projections defined by (11), f(t) and x(t) be

elements of C. Let
(1)

K (t, s, x) be continuous in the domain

{
a ≤ t, s ≤ b

||x||c < ∞,

and
(1)

K satisfy the Lipschitz condition in x:

(13) ‖
(1)

K (t, s, x1)−
(1)

K (t, s, x2)‖c ≤ L‖x1−x2‖c, ∀x1, x2 ∈ C, ‖xi‖c < ∞,

i = 1, 2 with 0 < L(b− a) < 1,
(2)

K (t, s, x) = 0. Then

(i) The equation (2) has a unique solution x(0)(t).

If we assume addtionally that
∂

(1)

K (t, s, x(s))
∂x

is continuous in the do-

main (7), then
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(ii) There exists a constant r > 0 such that for sufficiently large n, the
collocation equation (6) has a unique approximate solution vn ∈ X in the
ball ‖vn − x(0)‖c < r.

(iii) The sequence vn converges to the solution x(0)(t) in C and the
estimate (12) holds.

Proof. Obviously, T is a contracting operator in C, so it has a unique

fixed point x(0)(t). On the other hand, by the continuity of
(1)

K (t, s, x) and

∂
(1)

K (t, s, x)
∂x

in the domain (7), we see as in the proof of Theorem 1 that
T is completely continuous in C1 and T is continuously differentiable at
x(0) and

T ′(x(0))u =

b∫

a

∂
(1)

K (t, s, x(0))
∂x

u(s)ds.

Now we consider the equation

T ′(x(0))u = u, u ∈ C,

or

(14)

b∫

a

∂
(1)

K (t, s, x(0))
∂x

u(s)ds = u(t).

We shall prove that equation (14) has only trivial solution.

Indeed, if it has a solution u(t) 6= 0, so ‖u‖c > 0. From (14) it follows
that

b∫

a

[
(1)

K (t, s, x(0) + u)−
(1)

K (t, s, x(0))]ds− o(u) = u(t),

where
‖o(u)‖c

‖u‖c
→ 0 as ‖u‖c → 0.

Consequently,
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‖o(u)‖c =
∥∥∥u−

b∫

a

[
(1)

K (t, s, x(0) + u)−
(1)

K (t, s, x(0))]ds
∥∥∥

c

≥ ‖u‖c −
b∫

a

‖
(1)

K (t, s, x(0) + u)−
(1)

K (t, s, x(0))‖cds

≥ ‖u‖c − L(b− a)‖u‖c.

Hence
‖o(u)‖c + L(b− a)‖u‖c ≥ ‖u‖c.

It follows that
‖o(u)‖c

‖u‖c
+ L(b− a) ≥ 1,

that is, we get L(b − a) ≥ 1 as ||u||c → 0, which gives a contradiction.
So equation (14) has only trivial solution. Now applying Theorem 2 we
obtain the conclusions.

In the sequel we apply Theorem 2 to a general class of nonlinear Volterra
integral equation.

Let us study the following equation

(15) y′(t) = H
(
t, y(t),

t∫

a

K1(t, s, y(s))ds
)
,

with condition

(16) y(a) = γ.

Assume that y0(t) is a solution of (15), (16), a ≤ t, s ≤ b, y(t) ∈ C[a, b],
K1 is continuous in the domain

Ω1 =
{

a ≤ t, s ≤ b

‖y − y0‖ ≤ σ2, 0 < σ2 ∈ R.

and H(t, y, z) is continuous in Ω2, where

Ω2 =





a ≤ t, s ≤ b, ‖y − y0‖ ≤ σ2,

‖z − z0‖ ≤ σ3, z0 =
t∫

a

K1(t, s, y0(s))ds, σ3 ∈ R.
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Setting z(t) =
t∫

a

K1(t, s, y(s))ds we can write (15), (16) in the form

(17)





y(t) = γ +
t∫

a

H(s, y(s), z(s))ds

z(t) =
t∫

a

K1(t, s, y(s))ds.

Let x(t) = [y(t), z(t)],
(2)

K (t, s, x(s)) = [H(s, y(s), z(s)), K1(t, s, y(s))],
f(t) = [γ, 0], C = C[a, b] × C[a, b], X = Xn × Xn, Xn = Sp(πn, d, 0).

The system (17) leads to the form (2) with
(1)

K (t, s, x) = 0. Hence we get
x(0)(t) = [y0(t), z0(t)] as a solution of (17).

Corollary 2. Let P̂n be the projections defined by (11). We assume that
y0(t) is a solution of the problem (15), (16), with y0(t) ∈ Cl1 [a, b], z0(t) ∈

Cl2 [a, b], 0 ≤ `1, `2 ≤ d and
(2)

K (t, s, x),
∂

(2)

K (t, s, x(s))
∂x

are continuous in
the domain

{
a ≤ t, s ≤ b

U = ‖x− x(0)‖c ≤ σ4, σ4 = min{σ2, σ3}

‖K1(t, s, y1)−K1(t, s, y2)‖ ≤ L∗‖y1 − y2‖, ∀y1, y2 ∈ U.

where L∗ are positive constants, L∗(b − a) < 1. Moreover, suppose that
the following equation

u(t)−
t∫

a

∂
(2)

K (t, s, x(0))
∂x

u(s)ds = 0,

with u(t) = [u1(t), u2(t)] ∈ C, has only trivial solution. Then

(i) there exists a constant r > 0 such that y0(t) is the unique solution
of (15), (16) in the ball

‖y − y0‖ ≤ r.

(ii) For sufficiently large n, the collocation equation (6) has a unique
solution

vn(t) = [vn,1(t), vn,2(t)], vn,i(t) ∈ Xn, i = 1, 2,
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in the ball ‖x− x(0)‖c ≤ r, x ∈ C.

(iii) The sequence
{
vn(t)

}∞
n=1

converges to the solution x(0)(t) and we
have the estimate

‖vn − x(0)||c ≤ M max{E1(y0), E2(z0)},

where E1(y0) ≤ 3gl1(y0, d), E2(z0) ≤ 3gl2(z0, d).

Proof. It is easy to see that all assumptions of Theorem 2 are satisfied.
It remains only to prove that if x(0) is the unique solution of (17) in the
ball ‖x−x(0)‖c ≤ r, then y0 is the unique solution of (15), (16) in the ball
‖y − y0‖ ≤ r.

Indeed, let y1 be another solution of (15), (16) in the ball ‖y− y0‖ ≤ r.

Setting z1(t) =
t∫

a

K1(t, s, y1(s))ds, we see that x(1) = [y1(t), z1(t)] is a

solution of (17). We have

‖z1 − z0‖ =
∥∥∥

t∫

a

[
K1(t, s, y1(s))−K1(t, s, y0(s))

]
ds

∥∥∥

≤ L∗(b− a)‖y1 − y0‖ ≤ r.

So x(1) is also a solution of (17) in the ball ‖x− x(0)‖c ≤ r, which gives a
contradiction.

Let πn be a uniform partition of [a, b]:

πn : a = t0 < t1 < . . . < tn = b, h =
b− a

n
·

Let k ≥ 1 be a natural number and n ≥ 2k − 1, and Sn = {t0, . . . , tn}.
Consider now the mappings

qn : C[a, b] −→ Xn = Sp(πn, 2k − 1, 2k − 2)

f 7→ qnf,

with

qnf(ti) = f(ti), i = 0, . . . , n,

Dj(qnf)(a) = Dj(L2k−1,0f)(a), j = 1, . . . , k − 1,

Dj(qnf)(b) = Dj(L2k−1,1f)(b), j = 1, . . . , k − 1,
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where L2k−1,0f , (L2k−1,1f) are Lagrange interpolation polynomials of
function f at points t0, t1, . . . , t2k−1, (tn−2k+1, tn−2k, . . . , tn), respectively.

It is obvious that qn are continuous linear projections from C[a, b] to
Sp(πn, 2k − 1, 2k − 2) and converge pointwise to the identity operator in
C[a, b] (see [9], p.347).

Define the mappings

(18) P
¯n : C −→ X ⊂ C

(x1(t), . . . , xm(t)) 7→ (qnx1(t), . . . , qnxm(t)).

It is clear that P
¯n are continuous linear projections from C to X and

converge pointwise to the identity operator P in C and P
¯nx(ti) = x(ti),

∀x ∈ C, ∀ti ∈ Sn. Then from Theorem 1 we immediately get the following
consequence.

Theorem 3. Let P
¯ n be defined by (18). Let the assumptions of Theorem

1 with 0 ≤ li ≤ 2k − 1, i = 1, . . . , m, be satisfied. Then

(i) there exists a constant r > 0 such that x(0) is the unique solution of
(2) in the ball ‖x− x(0)‖c ≤ r.

(ii) For sufficiently large n the collocation equation (6) has a unique
solution

vn(t) = [vn,1(t), . . . , vn,m(t)],

vn,i(t) ∈ Sp(πn, 2k − 1, 2k − 2), i = 1, . . . , m,

in the above ball.

(iii) The sequence
{
vn(t)

}∞
n=1

converges to the solution x(0)(t), and the
following estimate holds

‖vn − x(0)‖c ≤ ME0(x(0)),

where

E0(x(0)) = max
1≤i≤m

Ei(x
(0)
i ),

Ei(x
(0)
i ) = inf

zi∈Sp(πn,2k−1,2k−2)
‖x(0)

i − zi‖ = O(hliω(x(0)
i

(li)
, h)).

References



SPLINE COLLOCATION METHODS 169

1. H. Brunner, Nonpolynomial spline collocation for Volterra equations with weakly
singular kernels, SIAM J. Numer. Anal. 20 (1983), 1106-1119.

2. , The approximate solution of Volterra equations with nonsmooth solu-
tions, Utilitas Math. 27 (1985), 57-95.

3. , High-order methods for the numerical solution of Volterra integro-differential
equations, J. Comp.& Appl. Math. 15 (1986), 301-309.

4. , On the numerical solution of nonlinear Volterra-Fredholm integral equa-
tions by collocation methods, SIAM J. Numer. Anal. 27 (1990), 987-1000.

5. M. L. Crasnov, A. W. Kisilev and G. I. Makarenko, Integral Equations, M., Nauka,
1968.

6. P. M. Prenter, Splines and variational methods, Wiley-Interscience, New York,
1975.

7. N. I. Ronto and T. V. Putiatina, Application of collocation method to multipoints
boundary value problems with integral boundary conditions, Ukrai. Mat. J. 44
(1992), 1548-1555.

8. R. D. Russell and L. F. Shampine, A collocation method for boundary value prob-
lems, Numer. Math. 19 (1972), 1-28.

9. Thomas r. Lucas and George W. Reddien, Some collocation methods for nonlinear
boundary value problems, SIAM J. Numer. Anal. 9 (1972), 341-356.

10. G. Vainiko, On the convergence of the collocation method for nonlinear differential
equations, J. Vysch. Mat. i Mat. Phys. 6 (1966), 35-42.

Institute of Mathematics, Hanoi, Vietnam


