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REGULARIZATION BY LINEAR OPERATORS

NGUYEN BUONG

Abstract. The purpose of this paper is to investigate convergence rates
for an operator version of Tikhonov regularization for ill-posed problems
involving monotone operators. The obtained results are presented in com-
bination with finite-dimensional approximations for the space. An itera-
tive process for regularized solution is studied for illustration.

1. Introduction

Let X be a real reflexive Banach space and X∗ be the dual space of X.
For the sake of simplicity, the norms of X and X∗ will be denoted by one
symbol ‖.‖. We write

〈
x∗, x

〉
instead of x∗(x) for x∗ ∈ X∗ and x ∈ X.

Let A be a continuous and bounded operator with domain of definition
D(A) = X and range R(A) ⊆ X∗.

We are interested in solving the ill-posed problem

(1.1) A(x) = f, f ∈ R(A).

By this we mean that the solutions of (1.1) do not depend continuously
on the data (A, f). To solve it we have to use stable methods. A widely
used and effective method is Tikhonov regularization that consists of min-
imizing some functional Fα

hδ(x) depending on a parameter α > 0, where

(1.2) Fα
hδ(x) = ‖Ah(x)− fδ‖2 + 2αΩ(x),

(Ah, fδ) are approximations for (A, f) such that

‖Ah(x)−A(x)‖ ≤ h‖x‖, ∀x ∈ X, ‖fδ − f‖ ≤ δ,
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with wellknown levels (δ, h) → 0 and Ω(x) is some functional on X. The
variational method of regularization (1.2) is studied intensively, for arbi-
trarily linear operator A in [8], [10], [13], [15], and, in particular, recently
for the nonlinear operator A (see [5]-[7], [9], [16]-[18], [20], [21]). If A and
Ah are monotone, a regularized solution can be constructed by a solution
of the operator equation

(1.3) Ah(x) + αUs(x) = fδ,

where Us is the dual mapping of X satisfying the condition

〈
Us(x), x

〉
= ‖x‖s, ‖Us(x)‖ = ‖x‖s−1, s ≥ 2.

It is indicated in [2, 20] that Eq. (1.3) has a unique solution, henceforth
denoted xhδ

α , and if h/α, δ/α → 0, as α → 0, then the sequence {xhδ
α }

converges to a solution x0 of (1.1):

‖x0‖ = min
x∈S0

‖x‖,

where S0 denotes the set of all solutions of (1.1) (S0 6= ∅). Moreover, the
solution xhδ

α can be approximated by a solution of the finite-dimensional
problem

(1.4) An
h(x) + αUsn(x) = fn

δ ,

where An
h = P ∗nAhPn, Usn(x) = P ∗nUsPn(x), and fn

δ = P ∗nfδ, Pn denotes
a (linear) projection from X onto its subspace Xn, P ∗n is the adjoint of
Pn,

Xn ⊂ Xn+1, ∀n, Pnx → x, ∀x ∈ X (‖Pn‖ ≤ c, a constant).

For each α > 0, Eq. (1.4) has a unique solution xhδ
αn and the sequence

{xhδ
αn} converges to xhδ

α , as n → +∞ (see [19]).

The solutions xhδ
α of (1.3) and xhδ

αn of (1.4) can be found by iterative
methods because of uniformly monotone property of Us and Usn when
X is uniformly convex (see [23]), but under very complex conditions on
parameter choice (see [1], [3]). In [6] the author studied another approach
to solve (1.1) by considering the equation

(1.5) Ah(x) + αBx = fδ,
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where B is a linear and selfadjoint operator, i.e. B∗ = B, such that
〈
Bx, x

〉 ≥ mB‖x‖2, ∀x ∈ D(B), mB > 0, S0 ⊂ D(B), D(B) = X.

Eq. (1.5), for every α > 0, has a unique solution xα
hδ, if h/α, δ/α → 0, as

α → 0, the sequence {xα
hδ} converges to x1 ∈ S0:

(1.6)
〈
Bx1, x− x1

〉 ≥ 0, ∀x ∈ S0.

And the solution xα
hδ can be approximated by solution of the finite-dimensional

problem

(1.7) An
h(x) + αBnx = fn

δ

under the conditions

Xn ⊂ D(B), Bnx = P ∗nBPnx → Bx, ∀x ∈ D(B).

Evidently, the last requirement is equivalent to BPnB−1y → y, ∀y ∈
R(B) which is proposed and studied in [11]. In many cases, we can use
differential operator like B (see [12]) and thus the smoothness of solution
is preserved in regularization. This is one of the advantages of B over Us

in regularization. The convergence rates of xhδ
α and xhδ

αn were considered
in [5] and [7]. In this paper we shall answer the question on convergence
rates for {xα

hδ}, when xαn
hδ → x1 and its convergence rates. After that

we give an iterative method for regularized solution and an example for
illustration.

Later, the symbols ⇀ and→ denote weak convergence and convergence
in norm, respectively.

In the following sections we suppose that all the above conditions are
satisfied.

2. Main results

First, we prove a result about convergence rates for {xα
hδ}.

Theorem 2.1. Let the following conditions hold:

(i) A is Frćhet differentiable in some neighbourhood U(S0) of S0,

(ii) There exists a constant L > 0 such that

‖A′(x)−A′(y)‖ ≤ L‖x− y‖, ∀x ∈ S0, y ∈ U(S0).
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(iii) There exists element z ∈ D(B) such that

A′∗(x1)z = Bx1.

(iv) L‖z‖ ≤ 2mB.

Then, if α is chosen as α ∼ (h + δ)µ, 0 < µ < 1, we obtain

‖xα
hδ − x1‖ = O((h + δ)θ), θ = min {1− µ, µ/2}.

Proof. From (1.1), (1.5) and the monotone property of A, Ah and B it
follows

αmB‖xα
hδ − x1‖2 ≤ (

δ + h‖xα
hδ‖

)‖xα
hδ − x1‖+ α

〈
Bx1, x1 − xα

hδ

〉
.

By virtue of the last inequality and condition (iii) of the theorem we can
write

(2.1) αmB‖xα
hδ−x1‖2 ≤

(
δ+h‖xα

hδ‖
)‖xα

hδ−x1‖+α
〈
z, A′(x1)(x1−xα

hδ)
〉
.

Using the Taylor’s expression of [22] we have

A′(x1)(x1 − xα
hδ) = A(x1)−A(xα

hδ) + rα
hδ

with
‖rα

hδ‖ ≤ L

2
‖xα

hδ − x1‖2.

As
〈
z, A(x1)−A(xα

hδ)
〉

=
〈
z, f − fδ + Ah(xα

hδ)−A(xα
hδ) + fδ −Ah(xα

hδ)
〉

≤ ‖z‖(δ + h‖xα
hδ‖

)
+

〈
z, Bxα

hδ

〉
,

(2.1) implies

α
(
mB − L

2
‖z‖

)
‖xhδ

α − x1‖2

≤ (
δ + h‖xα

hδ‖
)‖xα

hδ − x1‖ α‖z‖(δ + h‖xα
hδ‖

)
+ α‖Bz‖ ‖xα

hδ‖.

By using the following relation of [15]:

a, b, c ≥ 0, p > q, ap ≤ baq + c =⇒ ap = O(bp/(p−q) + c)
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we obtain

‖xα
hδ − x1‖ = O

(
(h + δ)θ

)
, θ = min

(
1− µ, µ/2

)

In the case of Hilbert spaces X = X∗ = H, this result was obtained in
[5] with B = I, the identity operator of H. Obviously, the theorem is valid
if condition (ii) of the theorem is satisfied only for x = x1, ∀y ∈ U(S0).

Now, we shall answer the second question.

Theorem 2.2. Assume that the following conditions hold:

(i) Conditions (i) and (ii) of Theorem 2.1,

(ii) α = α(h, δ, n) → 0 such that h/α, δ/α, α → 0 and
(
γn(x) + L‖(I − Pn)x‖2)α−1 → 0, ∀x ∈ S0,

as n →∞, where γn(x) is defined by

γn(x) = ‖A′(x)(I − Pn)x‖.
Then the sequence {xαn

hδ } converges to x1.

Proof. From (1.1), (1.7) and the properties of An
h, Pn and B it follows

An
h(xαn

hδ )−An
h(xn) + αBn

(
xαn

hδ − xn

)

= fn
δ −An

h(xn)− αBnxn − fn + P ∗nA(x),

fn = P ∗nf, xn = Pnx, x ∈ S0.

Multiplying both sides of this equality by xαn
hδ −xn and using the monotone

property of An
h, B and P 2

n = Pn we get

αmB‖xαn
hδ − xn‖2 ≤ α

〈
B(xαn

hδ − xn), xαn
hδ − xn

〉
(2.2)

= α
〈
P ∗n

(
B(xαn

hδ − xn)
)
, xαn

hδ − xn

〉

≤〈
P ∗n

(
fδ − f + A(x)−A(xn) + A(xn)−Ah(xn)

)
, xαn

hδ − xn

〉

+ α
〈
P ∗nBxn, xn − xαn

hδ

〉 ≤ (
δ + hc‖x‖)‖xαn

hδ − xn‖
+

〈
A(x)−A(xn), xαn

hδ − xn

〉
+ α

〈
P ∗nBxn, xn − xαn

hδ

〉
.

On the other hand,

A(xn)−A(x) = A′(x)(Pn − I)x + rn, ‖rn‖ ≤ L

2
‖(I − Pn)x‖2.
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Therefore, from (2.2) we get

αmB‖xαn
hδ − xn‖2 ≤

(
δ + hc‖x‖+ ‖A′(x)(I − Pn)x‖+

L

2
‖(I − Pn)x‖2

)
×

‖xαn
hδ − xn‖+ α

〈
P ∗nBxn, xn − xαn

hδ

〉
(2.3)

with
〈
P ∗nBxn, xn − xαn

hδ

〉 ≤ const. ‖xαn
hδ − xn‖. Together with the condi-

tions of the theorem the two last inequalities guarantee that the sequence
{xαn

hδ } is bounded. Without loss of generality, let xαn
hδ ⇀ x1, as h, δ, α → 0

and n → +∞.

Now, we write the monotone property for An = P ∗nAPn

〈
An(xn)−An(xαn

hδ ), xn − xhδ
αn

〉 ≥ 0, ∀x ∈ X.

As P ∗nP ∗n = P ∗n , the last inequality can be written in the form
〈
A(xn)−An(xαn

hδ ), xn − xαn
hδ

〉 ≥ 0.

Thus, 〈
A(xn)− fδ

〉
+ α

〈
Bnxαn

hδ , xn − xαn
hδ

〉
+ h‖xαn

hδ ‖ ≥ 0

or
〈
A(xn)− fδ

〉
+ α

〈
Bnxn, xn − xαn

hδ

〉
+ h‖xαn

hδ ‖ ≥ 0, ∀x ∈ D(B).

Letting h, δ, α → 0 and n → +∞ in this inequality we obtain
〈
A(x)− f, x− x1

〉 ≥ 0, ∀x ∈ D(B).

By Minty’s lemma (see [21], p. 257), x1 ∈ S0.

From (2.3) we also obtain
〈
Bx, x − x1

〉 ≥ 0, ∀x ∈ S0. Replacing x
by tx1 + (1− t)x in this inequality and using the linear property of B and
convex and closed property of S0 we have

〈
tBx1 +(1− t)Bx, x−x1

〉 ≥ 0,
∀x ∈ S0, t ∈ (0, 1). Letting t → 1 in this inequality we get

〈
Bx1, x−x1

〉 ≥
0, ∀x ∈ S0. Since the element x1 is defined by (1.6) uniquely, the entire
sequence {xαn

hδ } converges weakly to x1. By putting xn = xn
1 = Pnx1

in (2.3) we can see that the sequence {xαn
hδ } converges strongly to x1, as

h, δ, α → 0 and n → +∞.

Put
βn = ‖P ∗nBPnx1 −Bx1‖.

We shall prove a result about convergence rates for the sequence {xαn
hδ }.
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Theorem 2.3. Let the following conditions hold:

(i) Conditions (i)-(iii) of Theorem 2.1,

(ii) α is chosen as α ∼ (h + δ + γn)µ + βn, where γn = ‖(I − Pn)x1‖.
Then

‖xαn
hδ − x1‖ = O

(
(h + δ + γn)µ̃) + β1/2

n

)
,

where µ̃ = min{1− µ, µ}.
Proof. Since

‖Ah(x1)−Ah(xn
1 )‖ ≤ h‖x1‖+ δ + ‖fδ −Ah(xn

1 )‖,
〈
P ∗nBxn

1 , xn
1 − xαn

hδ

〉
> =

〈
P ∗nBxn

1 −Bx1, xn
1 − xαn

hδ

〉
+

〈
Bx1, xn

1 − xαn
hδ

〉

≤ βn‖xαn
hδ − xn

1‖+
〈
Bx1, xn

1 − xαn
hδ

〉
,

from (2.3) we get

αmA‖xαn
hδ − xn

1‖2 ≤(2.4)
(
δ + hc‖x1‖+ γn + Lγ2

n/2 + αβn

)‖xαn
hδ − xn

1‖+ α
〈
Bx1, xn

1 − xαn
hδ

〉
.

On the other hand,
〈
Bx1, xn

1 − xαn
hδ

〉
=

〈
Bx1, xn

1 − x1

〉
+

〈
Bx1, x1 − xαn

hδ

〉

≤ ‖Bx1‖γn +
〈
Bx1, x1 − xαn

hδ

〉
.

Therefore, from (2.4) we can see that

αmB‖xαn
hδ − xn

1‖2 ≤
(
δ + h‖x1‖+ γn + Lγ2

n/2 + αβn

)
‖xαn

hδ − xn
1‖

+ α‖Bx1‖γn + α
〈
Bx1, x1 − xαn

hδ

〉
,

and as
〈
Bx1, x1 − xαn

hδ

〉
=

〈
z, A′(x1)(x1 − xαn

hδ )
〉

=
〈
z,A(x1)−A(xαn

hδ ) + rαn
hδ

〉

=
〈
z, f − fδ + fδ −Ah(xαn

hδ ) + Ah(xαn
hδ )−A(xαn

hδ )
〉

+
〈
z, rαn

hδ

〉 ≤ ‖z‖(δ + h‖xαn
hδ ‖

)
+

〈
B∗z, xαn

hδ

〉
+

〈
z, rαn

hδ

〉

‖rαn
hδ ‖ ≤

L

2
‖xαn

hδ − x1‖2 ≤ L

2
‖xαn

hδ − xn
1‖2 + O(γn),

we obtain that

α
(
mB − L

2
‖z‖

)
‖xαn

hδ − xn
1‖2 ≤

O
(
h + δ + γn + αβn

)‖xαn
hδ − xn

1‖+ αO
(
h + δ + γn + α

)
.
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Therefore
‖xαn

hδ − xn
1‖ = O

(
(h + δ + γn)µ̃ + β1/2

n

)

and
‖xαn

hδ − x1‖ = O
(
(h + δ + γn)µ̃ + β1/2

n

)
. .

3. Iterative method for regularized solution

Consider an iterative method for finding a solution of the following
equation

(3.1) F (x) ≡ Bx + A(x) = f,

where the operators B and A are defined as above.

Let x1 be an arbitrary element of D(B). The sequence of iterations is
constructed by the formula

xn+1 = xn − tnB−1(F (xn)− f)/τn, n = 1, 2, . . .

τn =
〈
B−1(F (xn)− f), F (xn)− f

〉1/2
,(3.2)

where {tn} is a sequence of real numbers.

Theorem 3.1. If the real numbers tn satisfy the conditions

tn > 0, tn ↘ 0,

∞∑
n=1

tn = +∞,

∞∑
n=1

t2n < +∞,

then the sequence {xn} converges to x̃, the unique solution of (3.1), as
n → +∞.

Proof. Put
λn := 〈B(xn − x̃), xn − x̃〉.

It is easy to see that

λn+1 ≤ λn + 2〈B(xn+1 − xn), xn − x̃〉+ 〈B(xn+1 − xn), xn+1 − xn〉.

From this inequality and (3.2) we get

λn+1 ≤ λn − 2tnλn/τn + t2n.

Therefore, the sequence {λn} is bounded. Consequently, the sequences
{xn} and {A(xn)} are bounded, too.
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Since

τ2
n =

〈
B−1

(
A(xn) + Bxn − (A(x̃)−Bx̃)

)
, A(xn) + Bxn − (

A(x̃)−Bx̃
)〉

≤ 1
mB

‖A(xn)−A(x̃)‖2 + 2‖A(xn)−A(x̃)‖‖xn − x̃‖+ λ2
n,

and A is bounded, the sequence τn also is bounded, i.e. there exists a
constant C > 0 such that

λn+1 ≤ λn − 2λntn/C + t2n.

Basing on the current relation of [3] we can conclude that λn → 0, as
n → +∞. So, the sequence {xn} converges to x̃.

For each α > 0 the regularized solutions xα
hδ and xαn

hδ can be found
by this method. In many cases we can choose the operator B with prior
knowledge on B−1. We see that the iterative process (3.2) is much simpler
than others of [1], [3]. This is the second advantage of B over Us in
regularization for ill-posed equations of the first kind involving monotone
operators.

4. Example

Consider the linear operator equation of the first kind

(4.1) Ky = f, f ∈ Lq([0, 1]), 2 < q < +∞

where K is defined by

(
Kx

)
(t) =

1∫

0

k(t, s)x(s)ds,

such that
〈
Kx, x

〉 ≥ 0, ∀x ∈ Lp([0, 1]), p−1 + q−1 = 1, (see [4]).

Note here that the choice of space Lp([0, 1]) in solving (4.1) is very
important for achieving effectiveness in computations (see [14]).

Asumme that the solution y(t) is twice-differentiable and satisfies the
condition y(0) = y(1) = 0. In this case, Us is certainty a nonlinear
operator, hence the regularized equation (1.3) is also a nonlinear equation,
while (1.5) and (1.7) are linear. This is the thirth advantage of B over
Us in regularization. Operator B, in this case, can be determined by
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Bx(t) = −d2x(t)
dt2

+ p0(t)x(t), p0(t) ≥ p0 > 0, where D(B) is the closure

in the norm W 2
q of all functions from C2[0, 1] satisfying the condition

u(0) = u(1) = 0 (see [7]). Then B−1v(t) =
1∫
0

g(t, s)v(s)ds with

g(t, s) = u1(t)u2(s), t ≤ s; = u2(t)u1(s) t ≥ s,

where u1, u2 are the nontrivial solutions of Bu = 0 such that u(0) =
u(1) = 0 (see [12]). The derivatives are understood in generalized sense.

The verification of other conditions depend completely on the concrete
problem and Pn.
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