REGULARIZATION BY LINEAR OPERATORS

NGUYEN BUONG

Abstract. The purpose of this paper is to investigate convergence rates for an operator version of Tikhonov regularization for ill-posed problems involving monotone operators. The obtained results are presented in combination with finite-dimensional approximations for the space. An iterative process for regularized solution is studied for illustration.

1. INTRODUCTION

Let X be a real reflexive Banach space and X^* be the dual space of X. For the sake of simplicity, the norms of X and X^* will be denoted by one For the sake of simplicity, the norms of Λ and Λ will be denoted by one
symbol ||.||. We write $\langle x^*, x \rangle$ instead of $x^*(x)$ for $x^* \in X^*$ and $x \in X$. Let A be a continuous and bounded operator with domain of definition $D(A) = X$ and range $R(A) \subseteq X^*$.

We are interested in solving the ill-posed problem

$$
(1.1) \t\t A(x) = f, \t f \in R(A).
$$

By this we mean that the solutions of (1.1) do not depend continuously on the data (A, f) . To solve it we have to use stable methods. A widely used and effective method is Tikhonov regularization that consists of minimizing some functional $F_{h\delta}^{\alpha}(x)$ depending on a parameter $\alpha > 0$, where

(1.2)
$$
F_{h\delta}^{\alpha}(x) = ||A_h(x) - f_{\delta}||^2 + 2\alpha \Omega(x),
$$

 (A_h, f_δ) are approximations for (A, f) such that

$$
||A_h(x) - A(x)|| \le h||x||, \quad \forall x \in X, ||f_\delta - f|| \le \delta,
$$

Received May 23, 1995; in revised form January 21, 1996.

¹⁹⁹¹ Mathematics Subject Classification. 47H17.

Key words and phrases. Monotone operators, regularization, Fréchet differentiable, iterative method.

Supported by the National Program for Fundamental Researches in Natural Sciences.

with wellknown levels $(\delta, h) \to 0$ and $\Omega(x)$ is some functional on X. The variational method of regularization (1.2) is studied intensively, for arbitrarily linear operator A in [8], [10], [13], [15], and, in particular, recently for the nonlinear operator A (see [5]-[7], [9], [16]-[18], [20], [21]). If A and A_h are monotone, a regularized solution can be constructed by a solution of the operator equation

(1.3)
$$
A_h(x) + \alpha U^s(x) = f_\delta,
$$

where U^s is the dual mapping of X satisfying the condition

$$
\langle U^s(x), x \rangle = ||x||^s, \quad ||U^s(x)|| = ||x||^{s-1}, \quad s \ge 2.
$$

It is indicated in [2, 20] that Eq. (1.3) has a unique solution, henceforth denoted $x_\alpha^{h\delta}$, and if h/α , $\delta/\alpha \to 0$, as $\alpha \to 0$, then the sequence $\{x_\alpha^{h\delta}\}$ converges to a solution x_0 of (1.1) :

$$
||x_0|| = \min_{x \in S_0} ||x||,
$$

where S_0 denotes the set of all solutions of (1.1) $(S_0 \neq \emptyset)$. Moreover, the solution $x_\alpha^{h\delta}$ can be approximated by a solution of the finite-dimensional problem

(1.4)
$$
A_h^n(x) + \alpha U^{sn}(x) = f_\delta^n,
$$

where $A_h^n = P_n^* A_h P_n$, $U^{sn}(x) = P_n^* U^s P_n(x)$, and $f_{\delta}^n = P_n^* f_{\delta}$, P_n denotes a (linear) projection from X onto its subspace X_n , P_n^* is the adjoint of P_n

$$
X_n \subset X_{n+1}, \forall n, \quad P_n x \to x, \forall x \in X \in \mathbb{R} \subseteq \mathbb{R}
$$
, a constant).

For each $\alpha > 0$, Eq. (1.4) has a unique solution $x_{\alpha n}^{h\delta}$ and the sequence ${x_{\alpha n}^{h\delta}}$ converges to $x_{\alpha}^{h\delta}$, as $n \to +\infty$ (see [19]).

The solutions $x_\alpha^{h\delta}$ of (1.3) and $x_{\alpha n}^{h\delta}$ of (1.4) can be found by iterative methods because of uniformly monotone property of U^s and U^{sn} when X is uniformly convex (see [23]), but under very complex conditions on parameter choice (see [1], [3]). In [6] the author studied another approach to solve (1.1) by considering the equation

$$
(1.5) \t\t Ah(x) + \alpha Bx = f\delta,
$$

where B is a linear and selfadjoint operator, i.e. $B^* = B$, such that

$$
\langle Bx, x \rangle \ge m_B ||x||^2
$$
, $\forall x \in D(B)$, $m_B > 0$, $S_0 \subset D(B)$, $\overline{D(B)} = X$.

Eq. (1.5), for every $\alpha > 0$, has a unique solution $x_{h\delta}^{\alpha}$, if h/α , $\delta/\alpha \to 0$, as $\alpha \to 0$, the sequence $\{x_{h\delta}^{\alpha}\}\)$ converges to $x_1 \in S_0$:

(1.6)
$$
\langle Bx_1, x - x_1 \rangle \geq 0, \quad \forall x \in S_0.
$$

And the solution $x_{h\delta}^{\alpha}$ can be approximated by solution of the finite-dimensional problem

$$
(1.7) \t\t A_h^n(x) + \alpha B_n x = f_\delta^n
$$

under the conditions

$$
X_n \subset D(B), \quad B_n x = P_n^* B P_n x \to B x, \quad \forall x \in D(B).
$$

Evidently, the last requirement is equivalent to $BP_nB^{-1}y \to y$, $\forall y \in$ $R(B)$ which is proposed and studied in [11]. In many cases, we can use differential operator like B (see [12]) and thus the smoothness of solution is preserved in regularization. This is one of the advantages of B over U^s in regularization. The convergence rates of $x_\alpha^{h\delta}$ and $x_{\alpha n}^{h\delta}$ were considered in [5] and [7]. In this paper we shall answer the question on convergence rates for $\{x_{h\delta}^{\alpha}\}\,$, when $x_{h\delta}^{\alpha n} \to x_1$ and its convergence rates. After that we give an iterative method for regularized solution and an example for illustration.

Later, the symbols \rightarrow and \rightarrow denote weak convergence and convergence in norm, respectively.

In the following sections we suppose that all the above conditions are satisfied.

2. Main results

First, we prove a result about convergence rates for $\{x_{h\delta}^{\alpha}\}.$

Theorem 2.1. Let the following conditions hold:

- (i) A is Frchet differentiable in some neighbourhood $U(S_0)$ of S_0 ,
- (ii) There exists a constant $L > 0$ such that

$$
||A'(x) - A'(y)|| \le L||x - y||, \quad \forall x \in S_0, \ y \in \mathcal{U}(S_0).
$$

(iii) There exists element $z \in D(B)$ such that

$$
A^{\prime *}(x_1)z = Bx_1.
$$

(iv) $L||z|| \leq 2m_B$.

Then, if α is chosen as $\alpha \sim (h+\delta)^{\mu}$, $0 < \mu < 1$, we obtain

$$
||x_{h\delta}^{\alpha} - x_1|| = O((h + \delta)^{\theta}), \quad \theta = \min\{1 - \mu, \ \mu/2\}.
$$

Proof. From (1.1) , (1.5) and the monotone property of A, A_h and B it follows

$$
\alpha m_B \|x_{h\delta}^{\alpha} - x_1\|^2 \leq (\delta + h \|x_{h\delta}^{\alpha}\|) \|x_{h\delta}^{\alpha} - x_1\| + \alpha \langle Bx_1, x_1 - x_{h\delta}^{\alpha} \rangle.
$$

By virtue of the last inequality and condition (iii) of the theorem we can write

$$
(2.1) \ \alpha m_B \|x_{h\delta}^{\alpha} - x_1\|^2 \leq (\delta + h \|x_{h\delta}^{\alpha}\|) \|x_{h\delta}^{\alpha} - x_1\| + \alpha \langle z, A'(x_1)(x_1 - x_{h\delta}^{\alpha}) \rangle.
$$

Using the Taylor's expression of [22] we have

$$
A'(x_1)(x_1 - x_{h\delta}^{\alpha}) = A(x_1) - A(x_{h\delta}^{\alpha}) + r_{h\delta}^{\alpha}
$$

with

$$
||r_{h\delta}^{\alpha}|| \le \frac{L}{2}||x_{h\delta}^{\alpha} - x_1||^2.
$$

As

$$
\langle z, A(x_1) - A(x_{h\delta}^{\alpha}) \rangle = \langle z, f - f_{\delta} + A_h(x_{h\delta}^{\alpha}) - A(x_{h\delta}^{\alpha}) + f_{\delta} - A_h(x_{h\delta}^{\alpha}) \rangle
$$

$$
\leq ||z|| (\delta + h||x_{h\delta}^{\alpha}||) + \langle z, Bx_{h\delta}^{\alpha} \rangle,
$$

(2.1) implies

$$
\alpha \Big(m_B - \frac{L}{2} ||z|| \Big) ||x_\alpha^{h\delta} - x_1||^2
$$

\$\leq (\delta + h ||x_{h\delta}^\alpha||) ||x_{h\delta}^\alpha - x_1|| \alpha ||z|| (\delta + h ||x_{h\delta}^\alpha||) + \alpha ||Bz|| ||x_{h\delta}^\alpha||.

By using the following relation of [15]:

 $a, b, c \geq 0, p > q, a^p \leq ba^q + c \Longrightarrow a^p = O(b^{p/(p-q)} + c)$

we obtain

$$
||x_{h\delta}^{\alpha} - x_1|| = O((h+\delta)^{\theta}), \quad \theta = \min(1-\mu, \ \mu/2) \qquad \Box
$$

In the case of Hilbert spaces $X = X^* = H$, this result was obtained in [5] with $B = I$, the identity operator of H. Obviously, the theorem is valid if condition (ii) of the theorem is satisfied only for $x = x_1, \forall y \in \mathcal{U}(S_0)$.

Now, we shall answer the second question.

Theorem 2.2. Assume that the following conditions hold:

- (i) Conditions (i) and (ii) of Theorem 2.1,
- (ii) $\alpha = \alpha(h, \delta, n) \rightarrow 0$ such that $h/\alpha, \delta/\alpha, \alpha \rightarrow 0$ and

$$
(\gamma_n(x) + L || (I - P_n)x||^2) \alpha^{-1} \to 0, \quad \forall x \in S_0,
$$

as $n \to \infty$, where $\gamma_n(x)$ is defined by

$$
\gamma_n(x) = ||A'(x)(I - P_n)x||.
$$

Then the sequence $\{x_{h\delta}^{\alpha n}\}$ converges to x_1 .

Proof. From (1.1), (1.7) and the properties of A_h^n , P_n and B it follows

$$
A_h^n(x_{h\delta}^{\alpha n}) - A_h^n(x_n) + \alpha B_n (x_{h\delta}^{\alpha n} - x_n)
$$

= $f_{\delta}^n - A_h^n(x_n) - \alpha B_n x_n - f_n + P_n^* A(x),$

$$
f_n = P_n^* f, \quad x_n = P_n x, \quad x \in S_0.
$$

Multiplying both sides of this equality by $x_{h\delta}^{\alpha n} - x_n$ and using the monotone property of A_h^n , B and $P_n^2 = P_n$ we get

$$
(2.2) \qquad \alpha m_B ||x_{h\delta}^{\alpha n} - x_n||^2 \leq \alpha \langle B(x_{h\delta}^{\alpha n} - x_n), x_{h\delta}^{\alpha n} - x_n \rangle
$$

\n
$$
= \alpha \langle P_n^* (B(x_{h\delta}^{\alpha n} - x_n)), x_{h\delta}^{\alpha n} - x_n \rangle
$$

\n
$$
\leq \langle P_n^* (f_{\delta} - f + A(x) - A(x_n) + A(x_n) - A_h(x_n)), x_{h\delta}^{\alpha n} - x_n \rangle
$$

\n
$$
+ \alpha \langle P_n^* Bx_n, x_n - x_{h\delta}^{\alpha n} \rangle \leq (\delta + hc||x||) ||x_{h\delta}^{\alpha n} - x_n||
$$

\n
$$
+ \langle A(x) - A(x_n), x_{h\delta}^{\alpha n} - x_n \rangle + \alpha \langle P_n^* Bx_n, x_n - x_{h\delta}^{\alpha n} \rangle.
$$

On the other hand,

$$
A(x_n) - A(x) = A'(x)(P_n - I)x + r_n, \quad ||r_n|| \leq \frac{L}{2} ||(I - P_n)x||^2.
$$

Therefore, from (2.2) we get

$$
\alpha m_B \|x_{h\delta}^{\alpha n} - x_n\|^2 \le \left(\delta + hc\|x\| + \|A'(x)(I - P_n)x\| + \frac{L}{2} \|(I - P_n)x\|^2\right) \times
$$

(2.3)
$$
\|x_{h\delta}^{\alpha n} - x_n\| + \alpha \langle P_n^* B x_n, x_n - x_{h\delta}^{\alpha n} \rangle
$$

with $\langle P_n^* Bx_n, x_n - x_{h\delta}^{\alpha n} \rangle \leq \text{const.}$ $||x_{h\delta}^{\alpha n} - x_n||$. Together with the conditions of the theorem the two last inequalities guarantee that the sequence ${x_{h\delta}^{\alpha n}}$ is bounded. Without loss of generality, let $x_{h\delta}^{\alpha n} \to x_1$, as $h, \delta, \alpha \to 0$ and $n \to +\infty$.

Now, we write the monotone property for $A^n = P_n^* A P_n$

$$
\langle A^n(x_n) - A^n(x_{h\delta}^{\alpha n}), x_n - x_{\alpha n}^{h\delta} \rangle \ge 0, \quad \forall x \in X.
$$

As $P_n^* P_n^* = P_n^*$, the last inequality can be written in the form

$$
\langle A(x_n) - A^n(x_{h\delta}^{\alpha n}), x_n - x_{h\delta}^{\alpha n} \rangle \geq 0.
$$

Thus,

$$
\langle A(x_n) - f_\delta \rangle + \alpha \langle B_n x_{h\delta}^{\alpha n}, \ x_n - x_{h\delta}^{\alpha n} \rangle + h \| x_{h\delta}^{\alpha n} \| \ge 0
$$

or

$$
\langle A(x_n)-f_\delta\rangle + \alpha \langle B_n x_n, x_n - x_{h\delta}^{\alpha n}\rangle + h \|x_{h\delta}^{\alpha n}\| \ge 0, \quad \forall x \in D(B).
$$

Letting h, δ , $\alpha \rightarrow 0$ and $n \rightarrow +\infty$ in this inequality we obtain

$$
\langle A(x) - f, x - x_1 \rangle \geq 0, \quad \forall x \in D(B).
$$

By Minty's lemma (see [21], p. 257), $x_1 \in S_0$. $\frac{1}{\sqrt{2}}$

From (2.3) we also obtain $\langle Bx, x-x_1 \rangle$ $\geq 0, \forall x \in S_0$. Replacing x by $tx_1 + (1-t)x$ in this inequality and using the linear property of B and by $tx_1 + (1-t)x$ in this inequality and using the linear property of B and
convex and closed property of S_0 we have $\langle tBx_1 + (1-t)Bx, x-x_1 \rangle \ge 0$, $\forall x \in S_0, t \in (0, 1)$. Letting $t \to 1$ in this inequality we get $\langle Bx_1, x-x_1 \rangle \geq 0$, 0, $\forall x \in S_0$. Since the element x_1 is defined by (1.6) uniquely, the entire sequence $\{x_{h\delta}^{\alpha n}\}\$ converges weakly to x_1 . By putting $x_n = x_1^n = P_n x_1$ in (2.3) we can see that the sequence $\{x_{h\delta}^{\alpha n}\}$ converges strongly to x_1 , as h, δ , $\alpha \rightarrow 0$ and $n \rightarrow +\infty$.

Put

$$
\beta_n = ||P_n^* B P_n x_1 - B x_1||.
$$

We shall prove a result about convergence rates for the sequence $\{x_{h\delta}^{\alpha n}\}.$

Theorem 2.3. Let the following conditions hold:

(i) Conditions (i)-(iii) of Theorem 2.1,

(ii) α is chosen as $\alpha \sim (h + \delta + \gamma_n)^{\mu} + \beta_n$, where $\gamma_n = ||(I - P_n)x_1||$.

Then

$$
||x_{h\delta}^{\alpha n} - x_1|| = O((h + \delta + \gamma_n)^{\tilde{\mu}}) + \beta_n^{1/2}),
$$

where $\tilde{\mu} = \min\{1 - \mu, \ \mu\}.$

Proof. Since

$$
||A_h(x_1) - A_h(x_1^n)|| \le h||x_1|| + \delta + ||f_{\delta} - A_h(x_1^n)||,
$$

$$
\langle P_n^* B x_1^n, x_1^n - x_{h\delta}^{\alpha n} \rangle > = \langle P_n^* B x_1^n - B x_1, x_1^n - x_{h\delta}^{\alpha n} \rangle + \langle B x_1, x_1^n - x_{h\delta}^{\alpha n} \rangle
$$

$$
\le \beta_n ||x_{h\delta}^{\alpha n} - x_1^n|| + \langle B x_1, x_1^n - x_{h\delta}^{\alpha n} \rangle,
$$

from (2.3) we get

(2.4)
$$
\alpha m_A \|x_{h\delta}^{\alpha n} - x_1^n\|^2 \leq
$$

$$
(\delta + hc\|x_1\| + \gamma_n + L\gamma_n^2/2 + \alpha\beta_n) \|x_{h\delta}^{\alpha n} - x_1^n\| + \alpha \langle Bx_1, x_1^n - x_{h\delta}^{\alpha n} \rangle.
$$

On the other hand,

$$
\langle Bx_1, x_1^n - x_{h\delta}^{\alpha n} \rangle = \langle Bx_1, x_1^n - x_1 \rangle + \langle Bx_1, x_1 - x_{h\delta}^{\alpha n} \rangle
$$

\n
$$
\leq \|Bx_1\| \gamma_n + \langle Bx_1, x_1 - x_{h\delta}^{\alpha n} \rangle.
$$

Therefore, from (2.4) we can see that

$$
\alpha m_B \|x_{h\delta}^{\alpha n} - x_1^n\|^2 \le \left(\delta + h\|x_1\| + \gamma_n + L\gamma_n^2/2 + \alpha \beta_n\right) \|x_{h\delta}^{\alpha n} - x_1^n\|
$$

+ $\alpha \|Bx_1\|\gamma_n + \alpha \langle Bx_1, x_1 - x_{h\delta}^{\alpha n} \rangle$,

and as

$$
\langle Bx_1, x_1 - x_{h\delta}^{\alpha n} \rangle = \langle z, A'(x_1)(x_1 - x_{h\delta}^{\alpha n}) \rangle = \langle z, A(x_1) - A(x_{h\delta}^{\alpha n}) + r_{h\delta}^{\alpha n} \rangle
$$

\n
$$
= \langle z, f - f_{\delta} + f_{\delta} - A_h(x_{h\delta}^{\alpha n}) + A_h(x_{h\delta}^{\alpha n}) - A(x_{h\delta}^{\alpha n}) \rangle
$$

\n
$$
+ \langle z, r_{h\delta}^{\alpha n} \rangle \le ||z|| (\delta + h ||x_{h\delta}^{\alpha n}||) + \langle B^* z, x_{h\delta}^{\alpha n} \rangle + \langle z, r_{h\delta}^{\alpha n} \rangle
$$

\n
$$
||r_{h\delta}^{\alpha n}|| \le \frac{L}{2} ||x_{h\delta}^{\alpha n} - x_1||^2 \le \frac{L}{2} ||x_{h\delta}^{\alpha n} - x_1^{\alpha}||^2 + O(\gamma_n),
$$

we obtain that

L

$$
\alpha \Big(m_B - \frac{L}{2} ||z|| \Big) ||x_{h\delta}^{\alpha n} - x_1^n||^2 \le
$$

$$
O\big(h + \delta + \gamma_n + \alpha \beta_n \big) ||x_{h\delta}^{\alpha n} - x_1^n|| + \alpha O\big(h + \delta + \gamma_n + \alpha \big).
$$

Therefore

$$
||x_{h\delta}^{\alpha n} - x_1^n|| = O((h + \delta + \gamma_n)^{\tilde{\mu}} + \beta_n^{1/2})
$$

and

$$
||x_{h\delta}^{\alpha n} - x_1|| = O((h + \delta + \gamma_n)^{\tilde{\mu}} + \beta_n^{1/2}). \qquad \Box.
$$

3. Iterative method for regularized solution

Consider an iterative method for finding a solution of the following equation

$$
(3.1) \tF(x) \equiv Bx + A(x) = f,
$$

where the operators B and A are defined as above.

Let x^1 be an arbitrary element of $D(B)$. The sequence of iterations is constructed by the formula

(3.2)
$$
x^{n+1} = x^n - t_n B^{-1} (F(x^n) - f) / \tau_n, \quad n = 1, 2, ...
$$

$$
\tau_n = \langle B^{-1} (F(x^n) - f), F(x^n) - f \rangle^{1/2},
$$

where $\{t_n\}$ is a sequence of real numbers.

Theorem 3.1. If the real numbers t_n satisfy the conditions

$$
t_n > 0
$$
, $t_n \searrow 0$, $\sum_{n=1}^{\infty} t_n = +\infty$, $\sum_{n=1}^{\infty} t_n^2 < +\infty$,

then the sequence $\{x^n\}$ converges to \tilde{x} , the unique solution of (3.1), as $n \to +\infty$.

Proof. Put

$$
\lambda_n := \langle B(x^n - \tilde{x}), x^n - \tilde{x} \rangle.
$$

It is easy to see that

$$
\lambda_{n+1} \leq \lambda_n + 2\langle B(x^{n+1} - x^n), x^n - \tilde{x} \rangle + \langle B(x^{n+1} - x^n), x^{n+1} - x^n \rangle.
$$

From this inequality and (3.2) we get

$$
\lambda_{n+1} \le \lambda_n - 2t_n \lambda_n / \tau_n + t_n^2.
$$

Therefore, the sequence $\{\lambda_n\}$ is bounded. Consequently, the sequences ${x^n}$ and ${A(x^n)}$ are bounded, too.

Since

$$
\tau_n^2 = \langle B^{-1} (A(x^n) + Bx^n - (A(\tilde{x}) - B\tilde{x})), A(x^n) + Bx^n - (A(\tilde{x}) - B\tilde{x}) \rangle
$$

\n
$$
\leq \frac{1}{m_B} ||A(x^n) - A(\tilde{x})||^2 + 2||A(x^n) - A(\tilde{x})|| ||x^n - \tilde{x}|| + \lambda_n^2,
$$

and A is bounded, the sequence τ_n also is bounded, i.e. there exists a constant $C > 0$ such that

$$
\lambda_{n+1} \le \lambda_n - 2\lambda_n t_n/C + t_n^2.
$$

Basing on the current relation of [3] we can conclude that $\lambda_n \to 0$, as $n \to +\infty$. So, the sequence $\{x^n\}$ converges to \tilde{x} .

For each $\alpha > 0$ the regularized solutions $x_{h\delta}^{\alpha}$ and $x_{h\delta}^{\alpha n}$ can be found by this method. In many cases we can choose the operator B with prior knowledge on B^{-1} . We see that the iterative process (3.2) is much simpler than others of [1], [3]. This is the second advantage of B over U^s in regularization for ill-posed equations of the first kind involving monotone operators.

4. Example

Consider the linear operator equation of the first kind

(4.1)
$$
Ky = f, \quad f \in L_q([0,1]), \quad 2 < q < +\infty
$$

where K is defined by

$$
(Kx)(t) = \int_{0}^{1} k(t,s)x(s)ds,
$$

such that $\langle Kx, x \rangle \geq 0$, $\forall x \in L_p([0,1])$, $p^{-1} + q^{-1} = 1$, (see [4]).

Note here that the choice of space $L_p([0,1])$ in solving (4.1) is very important for achieving effectiveness in computations (see [14]).

Asumme that the solution $y(t)$ is twice-differentiable and satisfies the condition $y(0) = y(1) = 0$. In this case, U^s is certainty a nonlinear operator, hence the regularized equation (1.3) is also a nonlinear equation, while (1.5) and (1.7) are linear. This is the thirth advantage of B over U^s in regularization. Operator B , in this case, can be determined by

 $Bx(t) =$ $d^2x(t)$ $\frac{d}{dt^2}(t) + p_0(t)x(t), p_0(t) \geq p_0 > 0$, where $D(B)$ is the closure in the norm W_q^2 of all functions from $C^2[0,1]$ satisfying the condition $u(0) = u(1) = 0$ (see [7]). Then $B^{-1}v(t) = \int_0^1$ 0 $g(t, s)v(s)ds$ with $g(t,s) = u_1(t)u_2(s), \quad t \leq s; \quad = u_2(t)u_1(s) \quad t \geq s,$

where u_1, u_2 are the nontrivial solutions of $Bu = 0$ such that $u(0) =$ $u(1) = 0$ (see [12]). The derivatives are understood in generalized sense.

The verification of other conditions depend completely on the concrete problem and P_n .

REFERENCES

- 1. I. J. Alber and A. I. Notik, Geometrical properties of Banach spaces and approximation methods solving nonlinear operator equations, Dokl. Acad. Nauk SSSR 276 (5) (1984), 1033-1037 (in Russian).
- 2. I. J. Alber and I. P. Ryazantseva, On solutions of nonlinear problems involving monotone discontinuous operators, Differential Uravnenia SSSR 25 (2) (1979), 331-342 (in Russian).
- 3. I. J. Alber, Recurrent relations and variational inequalities, Dokl. Acad. Nauk SSSR 270 (1) (1983), 11-16 (in Russian).
- 4. S. Banach, *Théorie des opérations linéaires*, Warsaw 1932.
- 5. Nguyen Buong, Convergence rates for nonlinear ill-posed problems involving monotone operators for monotone perturbations, Preprint, Institute of Computer Science N.5 (1991), to appear in JJIAM "On nonlinear ill-posed problems".
- 6. \sim 6. \sim \sim 0n regularization for variational inequality and general scheme of approximations in Banach space, Ukrainian Math. J. 9 (1991), 1273-1276 (in Russian).
- 7. , Convergence rates and finite-approximations for nonlinear ill-posed problems involving monotone operators in Banach spaces, Preprint ICTP N. 385 (1992), Italy, to appear in Math. Nachr.
- 8. H. W. Engl and C. W. Groetsch, Projection-Regularization for linear operator equations of the first kind, in: R. S. Anderson and G. N. Neusan, eds., Special Programs on Inverse Problems, Proc. of the Center of Math. Anal. Australial Nat. Univ. 17 (1988), 17-31.
- 9. H. W. Engl, K. Kunisch and A. Neubauer, Convergence rates for Tikhonov regularization of non-linear ill-posed problems, Inverse Problems 5 (1989), 523-540.
- 10. C. W. Groetsch, On a Regularization-Ritz Method for Fredholm Equations of the First Kind, J. Integral Equations 4 (1982), 173-182.
- 11. C. W. Groetsch and M. Hanke, Regularization by Projection for Unbounded Operator Arizing in Inverse Problems, in: Proceed. Intern. Workshop on Inverse Problems and applications to Geophysics, Industry, Medicine and Technology (HoChiMinh City, Jan. 17-19, 1995), 61-70.

- 12. T. Kato, Perturbation theory for linear operators, Springer-Verlage, New-York 1966.
- 13. V. A. Morozov, Solutions for ill-posed problems, Springer-Verlage, Berlin 1984.
- 14. A. C. Nemirovskii and D. B. Udin, Complexity of problems and effectiveness of methods of optimization, Nauka, Moscow 1979 (in Russian).
- 15. A. Neubauer, Tikhonov Regularization of Ill-posed Linear Operator Equations on Convex Sets, J. of Approx. Theory 53 (1988), 304-320.
- 16. $____\$, An a-poerioti parameter choice for Tikhonov regularization in Hilbert scales leading to optimal convergence rates, SIAM J. Num. Math. 25 (1988), 1313-1326.
- 17. $____\$, Tikhonov regularization for nonlinear ill-posed problems: Optimal convergence rates and finite-dimensional approximation, Inverse Problems 55 (1989), 541-577.
- 18. **and O.** Scherzer, Finite-dimensional approximation of Tikhonov regularization of nonlinear ill-posed problems, Numer. Funct. Analysis and Optim. 11 (1990), 85-89.
- 19. I. P. Ryazantseva, On Galerkin's method solving equations with discontinuous monotone operators, Izvestia Vyschix Uchebnix Zav., ser. Math. SSSR (7) (1978), 68-72 (in Russian).
- 20. I. P. Ryazantseva, On select of regularizating parameters for equations under monotone perturbations, Izvestia Vyschix Uchebnix Zav., ser. Math. SSSR (8) (1981), 39-43 (in Russian).
- 21. U. Tautenhahn, Error estimate for regularized solutions of nonlinear ill-posed problems, Inverse Problems 10 (1994), 485-500.
- 22. M. M. Vainberg, Variational method and method of monotone operators, Nauka, Moscow 1972 (in Russian).
- 23. V. V. Yurgelas, On some geometrical characteristics of Banach spaces and accretive operators, Izvestia VUZ, Math. (5) (1982), 63-69 (in Russian).

Institute of Information Technology, Nghia do, Hanoi