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VOLTERRA RIGHT INVERSES FOR WEIGHTED
DIFFERENCE OPERATORS IN LINEAR SPACES

NGUYEN VAN MAU AND NGUYEN VU LUONG

Abstract. Let X be a linear space over a field F of scalars and let Xω
be the set of all infinite sequences x = (x0, x1, . . . ), where xj ∈ X .

Let A = (A0, A1, . . . ) be a sequence in L0(X). Consider the weighted

difference operator in Xω : DAx = (xn+1 − Anxn). The scalar cases
of weighted difference operators have been investigated, among others, by
Przeworska-Rolewicz [3] and Kalfat [6]. In this paper we describe the set
of all right inverses and the set of all initial operators for DA. Properties
of fundamental right inverses and fundamental initial operators are stud-
ied. In particular, we give conditions for a fundamental right inverse to
be Volterra and apply this result to solve the corresponding initial value
problem.

0. Introdution

Let X and Y be nontrivial linear spaces over a field F of scalars. Denote
by L(X, Y ) the set of all linear operators with domains in X and ranges
in Y . Set

L0(X,Y ) = {A ∈ L(X, Y ) : dom A = X}.
In the case Y = X, we shall write L(X) instead of L(X, X) and similarly
L0(X) instead of L0(X,X). The set of all right invertible operators in
L(X) will be denoted by R(X). For D ∈ R(X) we denote by RD and
FD the set of all right inverses and the set of all initial operators for D,
respectively, i.e.

RD = {R ∈ L0(X) : DR = I},
FD = {F ∈ L0(X) : F 2 = F, FX = kerD}.

For the general theory of right invertible operators and its applications
we refer the reader to [3].
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Denote by Xω the set of all infinite sequences x = (x0, x1, . . . ) of el-
ements of X with the natural operations αx + βy = (αxn + βyn) for all
x, y ∈ Xω and for all α, β ∈ F .

We say that A ∈ L0(X) is algebraic if there exists a non-zero normed
polynomial P (t) = tN + p1t

N−1 + · · · + pN with coefficients in F such
that P (A) = 0 on X. An algebraic operator A is called of order N if
there does not exist a normed polynomial Q(t) of degree m < N such
that Q(A) = 0 on X. Such a minimal polynomial P (t) is called the
characteristic polynomial of A and is denoted by PA(t). The set of all
algebraic operators in L0(X) will be denoted by A(X).

Let B ∈ L0(X). If the operator I − λB is invertible for all λ ∈ F ,
then B is said to be a Volterra operator. The set of all Volterra operators
acting in X will be denoted by V (X).

1. General weighted difference operators

Let A = (A0, A1, . . . ) be a sequence of linear operators, where An ∈
L0(X). Consider the following weighted difference operator in Xω:

(1) DAx = (xn+1 −Anxn).

It is easy to see that DA ∈ L0(Xω) and

(2) kerDA = {x ∈ Xω : x0 = u, xn = An−1 . . . A0u, u ∈ X, n ≥ 1}.
Hence dim kerDA = dim X > 0 and DA is not invertible.

Lemma 1. DA ∈ R(Xω).

Proof. Define an operator R0 ∈ L0(Xω) as follows

(3) R0x = y,

where

y0 = 0,

y1 = x0,(4)
yn = xn−1 + An−1xn−2 + · · ·+ An−1 · · ·A1x0

for n ≥ 2.

We have
DAR0x = DAy = v,
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where

v0 = x0, v1 = y2 −A1y1 = (x1 + A1x0)−A1x0 = x1,

vn = yn+1 −Anyn = (xn + Anxn−1 + · · ·+ An · · ·A1x0)

−An(xn−1 + An−1xn−2 + · · ·+ An−1 · · ·A1x0) = xn, n ≥ 2.

Thus DAR0x = x for all x ∈ Xω, i.e. DA ∈ R(Xω) and R0 ∈ RDA
.

Lemma 2. R ∈ RDA
if and only if there exists V ∈ L0(Xω, X) such that

(5) Rx = y,

where

y0 = V x,

y1 = x0 + A0V x,(6)
yn = xn−1 + An−1xn−2 + · · ·+ An−1 · · ·A1x0

+ An−1 · · ·A0V x, for n ≥ 2.

In the sequel, R defined by (5)-(6) will be denoted by RV .

Proof. Let RV be defined by (5)-(6). We find

DARV x = DAy = v,

where

v0 = y1 −A0y0 = x0,

v1 = y2 −A1y1 = (x1 + A1x0 + A1A0V x)−A1(x0 + A0V x) = x1,

and for n ≥ 2 we get by an easy induction the equalities vn = xn. Hence
DARV x = x for all x ∈ Xω, i.e. RV ∈ RDA .

Conversely, if R ∈ L0(X), DARx = x and Rx = y, then yn+1−Anyn =
xn for n ≥ 0. These equalities imply

y0 = u ∈ X,

y1 = x0 + A0u

yn = xn−1 + An−1xn−2 + · · ·+ An−1 · · ·A1x0 + An−1 · · ·A0u

for n ≥ 2.
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Since Rx = y, every term yn depends on x and there exists an operator
V from Xω to X such that y0 = V x. From the assumption R ∈ L0(Xω)
we conclude that V ∈ L0(Xω, X), which gives us the formula (5)-(6).

Lemma 3. Let DA be of the form (1) and let RV ∈ RDA
be defined by

(5)-(6). Then the initial operator FV for DA corresponding to RV is of
the form

(7) FV x = (x0 − V DAx, A0(x0 − V DAx), A1A0(x0 − V DAx), . . . ).

Proof. Note that the equation x0 − V DAx = u for every given u ∈ X has
a solution x = (u,A0u,A1A0u, . . . ) ∈ Xω. Hence, if FV is defined by (7),
then FV Xω = kerDA and DAFV = 0 on Xω. Moreover, since DAFV = 0,
for any x ∈ X, we find F 2

V x = FV (FV x) = FV x. Thus, FV ∈ FDA .

Formulae (5)-(6) and (7) together imply FV RV x = u, where u0 =
V x − V DARV x = V x − V x = 0 and un = An−1 · · ·A0u0 = 0 for n ≥ 1.
Thus FV RV = 0 on Xω, i.e. FV is an initial operator for DA corresponding
to RV .

Lemmas 2 and 3 show that the properties of every initial operator
FV ∈ FDA depend on the properties of V ∈ L0(Xω, X).

2. Fundamental initial operators and
corresponding right inverses

Definition 2. Let m ∈ IN be fixed and Vm ∈ L0(X). Then FVm defined
by the formula

(8) FVmx = (u, A0u,A1A0u, . . . ), u = x0 − Vm(xm+1 −Amxm)

is called a fundamental initial operator for DA. Every R ∈ RDA such that
FVmR = 0 (i.e. FVm corresponding to R) is called a fundamental right
inverse of DA and will be denoted by RVm .

By Definition 2, if FVmRVm = 0 for RVm ∈ RDA
, then RVm is defined

by the formula

(9) RVmx = y,

where

y0 = Vmxm,

y1 = x0 + A0Vmxm,

yn = xn−1 + · · ·+ An−1 · · ·A1x0 + An−1 · · ·A0Vmxm for n ≥ 2.
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Lemma 4. Let N ∈ IN and let Vm ∈ L0(X), Vm 6≡ 0 on X (m =
0, 1, . . . , N). Then the corresponding system of the fundamental right in-
verses {RV0 , . . . , RVN

} is linearly independent on Xω.

Proof. Let α0, α1, . . . , αN ∈ F such that
N∑

m=1
αmRVm

x = 0 for all x ∈ Xω.

By (9),

(10)
N∑

m=0

αmVmxm = 0 for all xm ∈ X.

Putting x = (0, . . . , 0, xk, 0, . . . ) in (10) xk ∈ X we get αkVmxk = 0 which
gives αk = 0 for every k ∈ {0, 1, . . . , N}.

Similarly, we can prove a similar result for any fundamental initial
operator.

Lemma 5. Let N ∈ IN and let Vm ∈ L0(X), where Vm 6≡ 0 on X
for m = 0, 1, . . . , N . Then the system of fundamental initial operators
{FV0 , ..., FVN

} is linearly independent on Xω.

Proof. Suppose that there are α0, . . . , αN ∈ F such that

(11)
N∑

m=0

αmFVmx = 0 for all x ∈ Xω.

Let k ∈ {1, 2, . . . , N} be fixed. Setting x = RVk
t in (11), where t =

(tn), tn = 0 for all n 6= k + 1 and tk+1 = xk, we have

(12) αkVkxk = 0 for all xk ∈ X.

Since Vk 6≡ 0 on X, from (12) we get αk = 0 for k = 1, 2, . . . , N . Thus,
(11) is now of the form

(13) α0FV0x = 0 for all x ∈ Xω.

Again, putting x = (x0, A0x0, 0, 0, . . . ) in (13) we have

α0(x0 − V0(A0x0 −A0x0)) = 0 for all x0 ∈ X,

which is equivalent to α0x0 = 0 for all x0 ∈ X, i.e. α0 = 0. Thus, the
system {FV0 , ..., FVN } is linearly independent on Xω.
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3. Volterra right inverses

We now formulate conditions for a fundamental right inverse RVm
∈

RVA
to be Volterra.

Theorem 1. Let DA be of the form (1) and let FVm be a fundamental
initial operator of the form (8). Then the corresponding right inverse RVm

is Volterra if and only if the operator

(14) Km = I − (λI + Am−1) · · · (λI + A0)(λ + A−1),

where we admit A−1 = 0, is invertible for all λ ∈ F .

Proof. By Lemmas 2 and 3, RVm is defined by the formula

(15) RVmx = (Vmxm, x0 + A0Vmxm, x1 + A1x0 + A1A0Vmxm, . . . )

Consider the equation

(16) (I − λRVm)x = v, v ∈ Xω.

For m = 0, by (15) we can rewrite (16) in the form of the system

x0 − λV0x0 = v0,

x1 − λ(x0 + A0V0x0) = v1,(17)

x2 − λ(x1 + A1x0 + A1A0V0x0) = v2,

xn − λ(xn−1 + · · ·+ An−1 · · ·A0V0x0) = vn, n ≥ 3.

It is easy to see that the system (17) has a unique solution for any v =
(vn) ∈ Xω if and only if the first equation of (17): x0 − λV0x0 = v0 has a
unique solution for all λ ∈ F and for all v0 ∈ X, i.e. the operator I − λV0

is invertible for all λ ∈ F .

If m ≥ 1, then (17) is of the form

x0 − λVmxm = v0,

x1 − λ(x0 + A0Vmxm) = v1,(18)

xn − λ(xn−1 + · · ·An−1 · · ·A0Vmxm) = vn, n ≥ 2.

The system (18) has a unique solution for any v ∈ Xω if and only if the
system of m + 1 equations

x0 − λVmxm = v0,

x1 − λ(x0 + A0Vmxm) = v1,(19)

xn − λ(xn−1 + · · ·+ An−1 · · ·A0Vmxm) = vn,

n = 2, . . . ,m
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has a unique solution for all v0, . . . , vm ∈ X. From (19) we have, for
n = 0, 1, · · · ,m− 1,

x0 = v0 + λVmxm,

x1 = v1 + λv0 + (λI + A0)λVmxm,

. . .(20)

xm−1 = vm−1 + λ(vm−2 + Am−2vm−3 + · · ·+ Am−2 · · ·A0v0)

+ · · ·+ λm−1v0 + (λI + Am−2) · · · (λI + A0)λVmxm.

Also from (19) we have, for n = m,

xm = (λI + Am−1) · · · (λI + A0)lVmxm + vm

+ λ(vm−1 + · · ·+ Am−1 · · ·A0v0) + · · ·+ λmv0.(21)

Hence, (19) has a unique solution if and only if the equation (21) has a
unique solution for all λ ∈ F and for all v0, . . . , vm ∈ X, i.e. the operator
(14) is invertible for all λ ∈ F .

Corollary 1. If R ∈ RDA
, Rx = y, where y0 = V x0, V ∈ V (X), then

R ∈ V (Xω).

Corollary 2. If R ∈ RDA and Rx = y, where y0 = Qx0, Q ∈ A(X), then
R ∈ V (Xω) if and only if Q is a nilpotent operator, i.e. there is s ∈ IN+

such that Qs = 0.

Proof. If Q ∈ A(X) and Qs = 0, then I − λQ is invertible for all λ ∈ F
and (I − λQ)−1 = I + λQ + · · · + λs−1Qs−1. Hence, by Theorem 1,
the corresponding right inverse R is Volterra. Conversely, if Q is not a
nilpotent operator then there is a non-zero root t0 of PQ(t). Then 1−λt0
is a root of PI−λQ(t) ([4]). Let λ = t−1

0 . Then the operator I − λQ is not
invertible and Q 6∈ V (Xω). By Theorem 1, R 6∈ V (Xω).

4. Initial value problem

Let DA be of the form (1) and let V0 ∈ V (X). Consider the following
initial value problem

(22)
N∑

j=0

ajD
j
Ax = y,
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(23) FV0D
kx = uk, uk ∈ kerDA, k = 0, . . . , N − 1,

where a0, a1, . . . , aN ∈ F . From now on let F be the field of complex
numbers.

Let RV0 ∈ RDA
be a fundamental right inverse of DA and FV0 be

an initial operator corresponding to RV0 . By Theorem 1, RV0 ∈ V (Xω).
Hence, applying the algebraic analysis method of [3], the problem (22)-(23)
is equivalent to the equation

(24)
N∑

j=0

aN−jR
j
V0

x = RN
V0

y +
N−1∑

j=0

Rj
V0

uj .

Let t1, . . . , tN ∈ F be n roots of the polynomial

P (t) = tN + aN−1t
N−1 + · · ·+ a1t + a0.

We can rewrite (24) in the form

N∏

j=1

(I − tjRV0)x = RN
V0

y +
N−1∑

j=0

Rj
V0

uj .

Hence the problem (22)-(23) has a unique solution of the form

x =
N∏

j=1

(I − tjRV0)
−1(RN

V0
y +

N−1∑

j=0

Rj
V0

uj).

Remark. By the same method one can solve the first mixed boundary
value problem

N∑

j=0

ajD
j
Ax = y,

FVmDkx = uk; uk ∈ kerDA, k = 0, . . . , N − 1

under the assumptions that every operator of the form

Km = I − (λI + Am−1) · · · (λI + A0)(λI + A−1)Vm

(m = 0, . . . , N − 1; A−1 := 0) is invertible for all λ ∈ F .
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5. Examples of applications

Example 1. Let X = C(IR,F) be the set of all continuous functions
from IR to F . Given (Anx)(t) = x(n − t), (V0x)(t) = x(t) and a ∈ F .
Find all sequences {xn(t)} (xn ∈ X) such that

(25) xn+1(t)− xn(n− t) + axn(t) = yn(t),

(26) x0(t) + x0(−t)− x1(t) = 0.

where yn ∈ X(n = 0, 1, . . . ) are given.

Write (25)-(26) in the form

(DA + aI)x = y, FV0x = 0.

Then the problem (25)-(26) is equivalent to the following equation

(27) (I + aRV0)x = RV0y,

where RV0 is defined by the formula (9).

Theorem 1 implies that the equation (27) has a unique solution if and
only if the equation x0(t) + ax0(t) = y0(t) has a unique solution, i.e.
a 6= −1. If that is the case, the unique solution of the problem (25)-(26)
is of the form

x = (I + aRV0)
−1RV0y.

Example 2. Let X be a linear space over C and let A ∈ A(X) be an
algebraic operator with the characteristic polynomial

PA(t) =
r∏

j=1

(t− tj); ti 6= tj fo i 6= j.

Write:

Pk = ω(A, I); ω(t, τ) =
r∏

j=1,j 6=k

(tk − tj)−1(t− tjτ).

Then the following equalities hold [1]-[2]:

PiPj = δijPj ; Ak =
r∑

j=1

tkj Pj ; k ∈ IN.
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Consider the following algebraic weighted difference operator

(28) DAx = (xn+1 −Axn) for x = (x0, x1, . . . ) ∈ Xω.

Then

kerA =
{

x ∈ Xω : xn =
r∑

j=1

tnj Pju, u ∈ X
}

.

Every right inverse of DA is of the form

(29) R = RA + FAB,

where FA = I − RADA ∈ FDA
, B ∈ L0(Xω) and RA is defined by the

formula

RAx = y; y0 = 0; yn =
r∑

j=1

n−1∑

k=0

tkj Pjxn−1−k.

By Theorem 1, we can formulate a sufficient condition for a right inverse
R of DA to be Volterra by means of B in (29).

Corollary 3. Let Xω,0 = {x ∈ Xω : x0 = 0} and B ∈ L0(Xω) with
BXω ⊂ Xω;0. Then R defined by (29) is a Volterra operator.
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