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ON REPRESENTATIONS OF ENTIRE FUNCTIONS
BY DIRICHLET SERIES IN INFINITE DIMENSION

PHAN THIEN DANH

1. Introduction

For complex locally space E and F let H(E, F ) denote the space of
holomorphic functions on E with values in F . This space is equipped with
the compact-open topology. Instead of H(E,C) we write H(E). In the
present note we shall investigate the representations of an entire function
f on E∗, the strongly dual space of E, in the exponential form

(Exp) f(x∗) =
∑

j≥1

ξj exp〈xj , x
∗〉 for x∗ ∈ E∗

where ξj ∈ C and xj ∈ E for j ≥ 1.

Such representations in the one complex variable case were first given
by Leontiev [9], Korobeinik [7] and in the several complex variable case
by L. H. Khoi, Mozakov, Napalkov, Chan Porn,... They have proved that
for every convex domain D in Cn there exists a seqence {λj} ⊂ Cn such
that

a) lim |λj | = +∞
b) every holomorphic function f on D can be written in the form

f(z1, . . . , zn) =
∑

j≥1

ξj exp(λj
1z1 + · · ·+ λj

nzn).

In the case where E is a nuclear Frechet space the existence of a se-
quence {xj} ⊂ E for which (Exp) holds for entive functions on E∗ was
shown by Chan Porn [12]. However the growth of the sequence {xj} as
in a) is not considered. Our aim here is to find a necessary and sufficient
condition for E such that every entire function on E∗ can be written in
the form (Exp) in which the growth of the sequence {xj} is controlled.
Recently, N. M. Ha and N. V. Khue ([4], [5]) and next L. M. Hai [6] have
investigated the problem for entire functions on nuclear Frechet spaces in
the interrelation with the linear topological invariants.
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2. Notions and results

We shall use notions from the theory of locally convex spaces as pre-
sented in the books of Pietsch [11] and Schaefer [13] and the theory of
holomorphic functions as in the book of Colombeau [3]. All locally convex
spaces are assumed to be complex vector spaces and Hausdorff.

Let E be a locally convex space. By B(E) we denote the family of all
closed bounded balanced convex subsets of E. For each B ∈ B(E), write
E(B) for the normed space spanned by B and Hb(E(B)) the Frechet space
of holomorphic functions of bounded type on E(B). Here a holomorphic
function on E(B) is called of bounded type if it is bounded on every
bounded set in E(B).

Our main result is as follows.

Theorem 1. (1) Let E be a nuclear Frechet space. Then for every K ∈
B(E), there exists an increasing sequence {Kn} ⊂ B(E) with K1 = K and
sequences {xn

j } ⊂ E(Kn) such that

(i)

(1)
∑

j≥1

exp−∥∥xn
j

∥∥
Kn

< ∞ for n ≥ 1

(ii) Every f ∈ ⋃
n≥1

Hb([E(Kn)]∗) can be written in the form

(2) f(x∗) =
∑

j≥1

ξj exp〈xn
j , x∗〉 for x∗ ∈ [E(Kn)]∗

with some n = nf for which

(3)
∑

j≥1

|ξj | exp
∥∥xn

j

∥∥
Kn

< ∞ for all r > 0

(iii) If E is a Montel-Frechet space satisfying the conclusion of (1), then
E is nuclear.

Corollary 2. Let E be a nuclear Frechet space. Then for every entire
function f on E∗ there exists a sequence {xj} ⊂ E and L ∈ B(E) such
that ∑

j≥1

exp−∥∥xj

∥∥
L

< ∞
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and
f(x∗) =

∑

j≥1

ξj exp〈xj , x
∗〉 for x∗ ∈ E∗.

Moreover, the series is convergent in H(E∗).

Proof. Given f ∈ H(E∗). By Colombeau and Mujica (see [3]) we can
find K ∈ B(E) such that f can be considered as a holomorphic function
on [E(K)]∗ of bounded type. By applying Theorem 1 (1) there exists
L ∈ B(E), K ⊂ L and a sequence {xj} ⊂ E such that (1), (2) and (3)
hold, where Knf

and {xj
nf} are replaced by L and {xj}, respectively.

Since for every continuous semi-norm ‖ ·‖ on E there exists C > 0 such
that

‖x‖ ≤ C
∥∥x

∥∥
L

for x ∈ E,

it follows that
∑

j≥1

|ξj | exp r‖xj‖ < ∞ for r > 0.

This yields the convergence of the series
∑
j≥1

ξj exp〈xj , x
∗〉 in H(E∗). The

corollary is proved.

3. Proof of Theorem 1

For the proof of Theorem 1 (1) we shall need the following

Lemma 3. Let T be a nuclear map from a Banach space X to a Banach
space Y and let

{
fα

}
α∈I

be a family of holomorphic functions on Y .
Assume that there exists C, A > 0 such that

|fα(y)| ≤ C exp A‖g‖ for all y ∈ Y and α ∈ I.

Then there exists an equicontinuous family
{
µα

}
α∈I

⊂ [Hb(X)]∗ such that

〈exp x, µα〉 = fα(Tx) for all x ∈ X and all α ∈ I.

Proof. By the hypothesis there exists r, s > 0 such that
∥∥d̂bfα(0)

∥∥ ≤ rsk for all α ∈ I and all b ≥ 0,

where d̂kf(0) denotes the k-homogeneous polynomial associated to dkfα(0)
[7].
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We consider here a nuclear representation of T ,

T (x) =
∑

j≥1

〈x, uj〉ej

with
a =

∑

j≥1

‖uj‖ |ej | < ∞.

For each α ∈ I and for σ ∈ Hb(X∗), put

〈σ, µα〉 =
∑

k≥0

∑

j1,...,jk≥1

dkfα(0)(ej1 , . . . , ejk
)
dkσ(0)

k!
(uj1 , . . . , ujk

).

We have, by the Cauchy inequality

∑

k≥0

∑

j1,...,jk≥1

∣∣dkfα(0)(ej1 , . . . , ejk
)
∣∣

∣∣∣d
kσ(0)
k!

(uj1 , . . . , ujk
)
∣∣∣

≤
∑

k≥0

∑

j1,...,jk≥1

kk

k!

∥∥d̂kfα(0)
∥∥ ∥∥ej1

∥∥ . . .
∥∥ejk

∥∥ kk

k!

∥∥∥ d̂kσ(0)
k!

∥∥∥ ‖uj1‖ . . . ‖ujn‖

≤
∑

k≥0

∑

j1,...,jk≥1

k2k

(k!)2
rsk

∥∥σ
∥∥

ρ/ρk‖uj1‖ ‖ej1‖ . . . ‖ujn‖ ‖ejn‖

= r
∥∥σ

∥∥
ρ

∑

k≥0

k2k

(k!)2ρk

( ∑

k≥1

‖uj‖ ‖ej‖
)k

= r
∥∥σ

∥∥
ρ

∑

k≥0

ak

ρk

k2k

(k!)2
= C(r, ρ)

∥∥σ
∥∥

ρ
,

where

C(r, ρ) = r
∑

k≥0

akk2k

ρk(k!)2
< ∞ for ρ sufficiently large,

and ∥∥σ
∥∥

ρ
= sup

{
|σ(x∗)| : ‖x∗‖ < r

}
.

This inequality shows that the family
{
µα

}
α

is equicontinuous in [Hb(X∗)]∗.



ON REPRESENTATIONS OF ENTIRE FUNCTIONS 115

Moreover, we also have

〈exp x, µα〉 =
∑

k≥0

∑

j1,...,jk≥1

dkfα(0)(ej1 , . . . , ejk
)
( 1

k!

)
〈x, uj1〉 . . . 〈x, ujk

〉

=
∑

k≥0

dkfα(0)
k!

( ∑

j≥1

〈x, uj〉ej

)
=

∑

k≥0

dkfα(0)
k!

(Tx)

= fα(Tx) for x ∈ X.

The lemma is proved.

Proof of Theorem 1.

(1) Assume first that E is a nuclear Frechet space. Given K ∈ B(E).
Put K1 = K. Choose K2 ∈ B(E), K1 ⊂ K2 such that E(K1) is dense in
E(K2) and the identity map E(K1) → E(K2) can be written in the form

x =
∑

k≥1

λk〈x, uk〉ek

with ∑

k≥1

‖uk‖+
∑

k≥1

‖ek‖ ≤ 1

and
λk ∼ O(1/k8).

For each n ≥ 1, there exists a finite 1/
√

n - net A1
n of nK1 \ (n− 1)K1 for

the norm of E(K2) such that

card A1
n ≤ (4Cn2)

√
Cn

where C is independent of n.

Indeed, choose k0 = 4
√

C n3/8, where C > 0 such that

|λk| ≤ C/k8 for k ≥ 1.

Then ∑

k≥k0

|λk| |〈x, uk〉| ‖ek‖ ≤ nC
∑

k≥k0

1
k8
≤ n

C

k4
0

≤ 1
6
√

n

for all x ∈ nK1.
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Consider a finite
1

2
√

n
- net A1

n of the set

Wn =
{ ∑

1≤k≤k0

λk〈x, uk〉ek : x ∈ nK1 \ (n− 1)K1

}

for the norm
∥∥.

∥∥
K2

with

card An ≤
(
4Cn

√
n
) 4√

C n3/8

≤ (
4Cn2

)√Cn
.

Such a net exists, because Wn is contained in the image of

{{
ξk

}
1≤k≤k0

∈ Ck0 : |ξk| ≤ Cn
}

under the map

S : Ck0 −→ E(K2) : S
({

ξk

}
1≤k≤k0

)
=

∑

1≤k≤k0

ξkek.

We have for A1 =
⋃

n≥1

A1
n = {x1

j} ⊂ E(K1),

(4)1
∑

x∈A1

exp −
∥∥x

∥∥
K1

=
∑

n≥1

∑

x∈A1
n

exp −
∥∥x

∥∥
K1

≤
∑

n≥1

(
4Cn2

)√Cn
e−(n−1) < ∞

because

e−1

(
4C(n + 1)2

)√C(n+1)

(4Cn)2
√

6Cn
=

e−1
[(4

(
(n + 1)2

)

4Cn2

)n]√C(n+1)
n

(
4Cn2

)√C(n+1)−√Cn

→ e−1 as n →∞.

Put

Expr(K2) =
{

f ∈ H(E) : |‖f‖|r = sup
{ |f(x)|

exp r
∥∥x

∥∥
K2

: x ∈ E(K2)
}

< ∞
}

.
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For each ε > 0 choose n0 and Cr
1 ≥ 1 such that

e
6r√
n0
−n0/2 < ε, e6r/

√
n0 < 3/2 and

|‖f‖|2r ≤ Cn
1 sup

{ |f(x)|
exp 2r

∥∥x
∥∥

K2

:
∥∥x

∥∥
K2

> n+1
0

}
for f ∈ Expr(K2).

Given f ∈ Expr(K2) with |‖f‖|r ≤ 1. For each x ∈ (n + 1)K1 \ nK1,

n ≥ n0, take yx ∈ A1 such that
∥∥x− yx

∥∥
K2

<
1√
n

. Since

∣∣f(x)− f(yx)
∣∣ ≤

1∫

0

∣∣f ′(x + t(x− yx))(x− yx)
∣∣dt

=

1∫

0

∣∣∣ 1
2πi

∫

|λ|=2

f(x + (t + λ)(x− yx))
λ2

dx
∣∣∣dt

≤ 1
2

sup
{∣∣f(x + λ(x− yx))

∣∣ : |λ| ≤ 3
}

,

we have for x ∈ (n + 1)K1 \ nK1, n ≥ n0,

|f(x)|
exp 2r

∥∥x
∥∥

K2

≤ |f(yx)|
exp 2r

∥∥yx

∥∥
K2

exp 2r
∥∥x− yx

∥∥
K2

+
|f(x)− f(yx)|
exp 2r

∥∥x
∥∥

K2

≤ 2|f(yx)|
exp 2r

∥∥yx

∥∥
K2

+
1
2

sup
{ |f(x + λ(x− yx))|

exp 2r
∥∥x + λ(x− yx)

∥∥
K2

×

× exp 2r|λ|
∥∥x− yx

∥∥
K2

: |λ| ≤ 3
}
≤ 2|f(yx)|

exp 2r
∥∥yx

∥∥
K2

+
1
2

sup
{ |f(z)|

exp r
∥∥z

∥∥
K2

exp −r
∥∥z

∥∥
K2

: n ≤
∥∥z

∥∥
K2
≤ n + 1

}

+
3
4

sup
{ |f(z)|

exp 2r
∥∥z

∥∥
K2

:
∥∥z

∥∥
K2
≥ n + 1

}

≤ 2|f(yx)|
exp 2r

∥∥yx

∥∥
K2

+
3
4

sup
{ |f(z)|

exp 2r
∥∥z

∥∥
K2

:
∥∥z

∥∥
K2
≥ n + 1

}
+ ε

These inequalities imply (as ε → 0)

3
4

sup
{ |f(x)|

exp 2r
∥∥x

∥∥
K2

:
∥∥x

∥∥
K2
≥ n+1

}
≤ 2 sup

{ |f(x)|
exp 2r

∥∥x
∥∥

K2

: x ∈ A1

}
.
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Hence

(5)1
∣∣∥∥f

∥∥∣∣
2r
≤ Mr

1 sup
{ |f(x)|

exp 2r
∥∥x

∥∥
K2

: x ∈ A1

}
for f ∈ Expr(K2)

where
Mr

1 = 8Cr
1

Since E(K1) is dense in E(K2), from (1) we get

(6)1 sup
{ |f(x)|

exp 2r
∥∥x

∥∥
K2

: x ∈ f(K2)
}
≤ Mr

1 sup
{ |f(x)|

exp 2r
∥∥x

∥∥
K2

: x ∈ A1

}

for f ∈ Expr(K2).

Repeating the above argument for K = K2 we can find K3 ∈ B(E),
K2 ⊂ K3 with E(K2) is dense in E(K3) and a sequence A2 = {x2

j} ⊂
E(K2) satisfying (1)2, (2)2 and (3)2.

Continuing this process we get an increasing sequence {Kn} ⊂ B(E)
with K1 = K and sequences An = {xn

j } ⊂ E(Kn) such that

(4)n

∑

j≥1

exp −
∥∥xn

j

∥∥
Kn

< ∞,

(5)n

∣∣∥∥f
∥∥∣∣

2r
≤ Mr

n sup
{ |f(x)|

exp 2r
∥∥x

∥∥
Kn+1

: x ∈ An

}

for all f ∈ Expr(Kn+1), all n ≥ 1, r ≥ 0, and

(6)n sup
{ |f(x)|

exp 2r
∥∥x

∥∥
Kn+1

: x ∈ En+1

}

≤ Mr
n sup

{ |f(x)|
exp 2r

∥∥x
∥∥

Kn+1

: x ∈ An

}

for all f ∈ Expr(Kn+1), n ≥ 1, r > 0. Moreover the canonical maps
En −→ En+1 are nuclear.

For each n ≥ 1, put

Ln =
{

(ξj) ⊂ C :
∑

j≥1

|ξj | exp r
∥∥xn

j

∥∥
Kn

< ∞ for all r ≥ 0
}

.
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By (4)n, Ln are nuclear Frechet spaces. Define

Rp :
∑

1≤n≤p

Ln −→ Hb(E∗
p+1)

by

Rp

(
(ξ1

j ), . . . , (ξp
j )

)
=

p∑
n=1

∑

j≥1

ξn
j exp 〈xn, xn

j 〉 for x∗ ∈ E∗
p+1

and
R = lim Rp :

∑

n≥1

Ln −→
⋃

n≥1

Hb(E∗
n).

To complete the necessary part of the proof it suffices to show that the
map

R = R∗∗ :
[ ∏

n≥1

L∗n
]∗
−→

[
lim proj

[
Hb(E∗

n)
]∗]∗

is surjective because
[ ∏

n≥1

L∗n
]∗ ∼=

∑

n≥1

L∗∗n ∼=
∑

n≥1

Ln

and ⋃

n≥1

Hb(E∗
n) ↪→

[
limproj

[
Hb(E∗

n)
]∗]∗

.

Given g ∈
[
lim proj

[
Hb(E∗

n)
]∗]∗. Choose p ≥ 3 such that g ∈

[
Hb(E∗

p−1)
]∗∗. Consider the commutative diagram

ωp+1
p+3 ωp

p+1 ωp−1
p[

Hb(E∗
p+3)

]∗ −−−−→ [
Hb(E∗

p+1)
]∗ −−−−→ [

Hb(E∗
p)

]∗ −−−−→ [
Hb(E∗

p−1)
]∗

g↙
CR∗p+2

y R∗p

y R∗p−1

y R∗p−2

y
∏

1≤n≤p+2

L∗n −−−−→
∏

1≤n≤p

L∗n −−−−→
∏

1≤n≤p−1

L∗n −−−−→
∏

1≤n≤p−2

L∗n
Πp

p+2 Πp−1
p Πp+1

p−1

where ωp+1
p+3 , ωp

p+1, ωp−1
p , Πp

p−2, Πp−1
p and Πp−2

p−1 are canonical maps. It is
easy to see that (6)p−1 together with Lemma 3 imply

kerR∗p−Λ ⊆ kerωp−1
p .
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Thus g can be considered as a linear functional g : ImR∗p−Λ −→ C.

Let us check
Πp−1

p+2

(
cl Im R∗p+2

) ⊆ Im R∗p−1.

Let {Wk} be a decreasing neighbourhood basis of 0 ∈
∑

1≤n≤p+2

Ln and

M =
⋃

k≥1

cl
(
Im R∗p+2 ∩W 0

k

)
.

Since
∑

1≤n≤p+2

Ln is nuclear Frechet and M is sequentially closed, it follows

that M is closed and hence

cl Im R∗p+2 = M.

Assume that
{

ηα = R∗p+2(µ
α)

}
α∈I

−→ η ∈
∏

1≤n≤p+2

L∗n

with {ηα} ⊆ W 0
k , the polar of Wk in

( ∑
1≤n≤p+2

Ln

)∗
.

Choose r > 0 such that

sup
{ |fα(x)|

exp r
∥∥x

∥∥
Kn+1

: x ∈ An, α ∈ I, n = 1, . . . , p + 2
}

< ∞,

where
fα(x) = 〈exp 〈x∗, x〉, µα〉 for x ∈ Ep+3.

Such a r > 0 exists because

〈exp 〈x∗, xn
j 〉, µα〉 = ηα

j for α ∈ I, j ≥ 1 and n = 1, . . . , p + 2.

By Lemma 3 from (4)p+2 and (5)p+2 it follows that
{
ωp+1

p+3(µα)
}

is
equicontinuous in

[
Hb(E∗

p+1)
]∗, and hence without loss of generality we

may assume that ωp
p+3(µα) −→ µ. Obviously,

Πp−1
p+2η = R∗p−1µ.
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It remains to show that g Πp−1
p+2 is continuous on Cl Im R∗p+2. Since Cl

Im R∗p+2 is a (DFN)-space it suffices to check that

g Πp−1
p+2(η

k) −→ 0 for every sequence {ηk} ⊂ cl Im R∗p+2, ηk → 0.

By (5)p and Lemma 3 applying the inclusion

Πp
p+2

(
cl Im R∗p

) ⊆ ImR∗p

we can find an equicontinuous family
{
µk

} ⊂ [
Hb(E∗

p+1)
]∗ such that

R∗p(µk) = Πp
p+2(η

k) for k ≥ 1.

Then
ωp

p+1(µk) −→ 0

and hence
lim g Πp−1

p+2(η
k) = lim gωp−1

p+1(µk) = 0.

(2) It suffices to prove that every continuous linear map T from E∗

into `∞(S) is nuclear for every set S. Choose K ∈ B(E) such that T

can be considered as a continuous linear map from
[
E(K)

]∗ into `∞(S).
Let {Kn} and {xn

j } ⊂ E(Kn) := En satisfy (i), (ii) with K = K1 of the
theorem. Since E is a Frechet-Montel space, without loss of generality we
may assume that the canonical maps En −→ En+1 are compact. As in
(1) consider the maps

Rp :
⊕

η=n≤p

Ln −→ Hb(E∗
p+1)

and
R = lim ind Rp :

⊕

p≥1

Lp −→
⋃

p≥1

Hb(E∗
p).

By the hypothesis we have

Hb(E∗
1 ) ⊆

⋃

p≥1

Hb(E∗
p) =

⋃

p≥1

Im Rp.

By a result of Leiterer [8] we can find p ≥ 1 such that

Hb(E∗
1 ) ⊆ ImRp.
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Moreover, the identity map Hb(E∗
1 ) −→ ImRp is continuous. The

closed graph theorem implies that this map is also continuous for the quo-
tient topology Im Rp =

⊕
Ln/kernRp. Consider the map T̂ :

[
`∞(S)

]∗ −→
Hb(E∗

1 ) ⊂ Im Rp,

T̂ (µ)(x∗) = µ(Tx∗) for x∗ ∈ E∗
1 .

It follows that T̂ is continuous linear. Since {xn
j } satisfies (i) for n ≥ 1, the

space
⊕

1≤n≤p

Ln is nuclear Frechet. Hence T̂ can be lifted to a continuous

linear map
T̃ :

[
`∞(S)

]∗ −→
∏

1≤n≤p

Ln.

This means that

µ(Tx∗) = T̂ (µ)(x∗) = RpT̃ (µ)(x∗) = Rp

( p∑
n=1

∑

j≥1

ξn
j

(
T̃ (µ)

)
en
j

)

=
p∑

n=1

∑

j≥1

ξn
j

(
T̃ (µ)

)
exp〈xn

j , x∗〉 for x∗ ∈ E∗
p and µ ∈ [

`∞(S)
]∗

,

in which

p∑
n=1

∑

j≥1

∣∣ξn
j

(
T̃ (µ)

)∣∣ exp r
∥∥xn

j

∥∥
Kn

< ∞ for all r ≥ 0,

where {en
j } is the canonical basis of Ln for n ≥ 1.

This inequality yields

p∑
n=1

∑

j≥1

∥∥ξn
j T̃

∥∥ exp
∥∥xn

j

∥∥
Kn

≤

≤
{

sup
p∑

n=1

∥∥ξn
j T̃

∥∥ exp 2
∥∥xn

j

∥∥
Kn

} p∑
n=1

∑

j≥1

exp −∥∥xn
j

∥∥
Kn

< ∞.

Hence

T (x∗) =
p∑

n=1

∑

j≥1

ξj T̃ exp〈xn
j , x∗〉 for x∗ ∈ E∗
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with
p∑

n=1

∑

j≥1

∥∥ξn
j T̃

∥∥ ∥∥xn
j

∥∥
Kn

< ∞,

which means that T is nuclear. The theorem is proved.
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