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ON REPRESENTATIONS OF ENTIRE FUNCTIONS
BY DIRICHLET SERIES IN INFINITE DIMENSION

PHAN THIEN DANH

1. INTRODUCTION

For complex locally space E and F' let H(E, F') denote the space of
holomorphic functions on F with values in F'. This space is equipped with
the compact-open topology. Instead of H(E,C) we write H(E). In the
present note we shall investigate the representations of an entire function
f on E*, the strongly dual space of E, in the exponential form

(Exp) @) =Y & explag.a®) for 2t € B

jz1
where {; € C and z; € E for j > 1.

Such representations in the one complex variable case were first given
by Leontiev [9], Korobeinik [7] and in the several complex variable case
by L. H. Khoi, Mozakov, Napalkov, Chan Porn,... They have proved that
for every convex domain D in C" there exists a seqence {\} C C" such
that

a) lim |M| = +oco

b) every holomorphic function f on D can be written in the form

f(z1,.. 0 2n) = Zﬁj exp(Mz1 + -+ M 2,).

Jj21

In the case where E is a nuclear Frechet space the existence of a se-
quence {z,;} C E for which (Exp) holds for entive functions on E* was
shown by Chan Porn [12]. However the growth of the sequence {z;} as
in a) is not considered. Our aim here is to find a necessary and sufficient
condition for F such that every entire function on E* can be written in
the form (Exp) in which the growth of the sequence {z;} is controlled.
Recently, N. M. Ha and N. V. Khue ([4], [5]) and next L. M. Hai [6] have
investigated the problem for entire functions on nuclear Frechet spaces in
the interrelation with the linear topological invariants.
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2. NOTIONS AND RESULTS

We shall use notions from the theory of locally convex spaces as pre-
sented in the books of Pietsch [11] and Schaefer [13] and the theory of
holomorphic functions as in the book of Colombeau [3]. All locally convex
spaces are assumed to be complex vector spaces and Hausdorff.

Let E be a locally convex space. By B(FE) we denote the family of all
closed bounded balanced convex subsets of E. For each B € B(E), write
E(B) for the normed space spanned by B and H,(FE(B)) the Frechet space
of holomorphic functions of bounded type on E(B). Here a holomorphic
function on E(B) is called of bounded type if it is bounded on every
bounded set in E(B).

Our main result is as follows.

Theorem 1. (1) Let E be a nuclear Frechet space. Then for every K €
B(E), there exists an increasing sequence { K, } C B(E) with K1 = K and
sequences {x7} C E(K,,) such that

(i)
(1) Zexp—Hxﬂ

j=21

K, <0 for n>1

(ii) Bvery f € U Hy([E(K,)]|*) can be written in the form

n>1

(2) flz™) = Zéj exp(z},z*) for " € [E(K,)]"
Jjz1
with some n = ny for which

(3) Z €| exp ””’C;LHKn <oo forall r>0

jz1
(iii) If E is a Montel-Frechet space satisfying the conclusion of (1), then

FE s nuclear.

Corollary 2. Let E be a nuclear Frechet space. Then for every entire
function f on E* there exists a sequence {x;} C E and L € B(E) such

that
S exp— o], < o
j>1



ON REPRESENTATIONS OF ENTIRE FUNCTIONS 113

and

flz™) = ij exp(xj,z*) for a* € E™.

Jjz1
Moreover, the series is convergent in H(E™).

Proof. Given f € H(E*). By Colombeau and Mujica (see [3]) we can
find K € B(FE) such that f can be considered as a holomorphic function
on [E(K)]* of bounded type. By applying Theorem 1 (1) there exists
L € B(E), K C L and a sequence {z;} C E such that (1), (2) and (3)
hold, where K,,, and {z;" f} are replaced by L and {xz;}, respectively.

Since for every continuous semi-norm || -|| on E there exists C' > 0 such
that
x| < C’HxHL for x € FE,

it follows that

Z §ilexp r||z;]| < oo for r>0.
j=1

This yields the convergence of the series ) &;exp(z;,x*) in H(E*). The

j=1
corollary is proved.

3. PROOF OF THEOREM 1

For the proof of Theorem 1 (1) we shall need the following

Lemma 3. Let T be a nuclear map from a Banach space X to a Banach
space Y and let {f‘)‘}ael. be a family of holomorphic functions on Y.
Assume that there exists C', A > 0 such that

1f*(y)| < CexpAl|gl| forall yeY and a€l.
Then there ezists an equicontinuous family {”Of}ael C [Hp(X)]* such that

(expx, o) = f*(Tx) forall xe€ X andall «ae€l.

Proof. By the hypothesis there exists r, s > 0 such that

||cﬁf\0‘(0)H <rs® forall ael andall b>0,

where cﬁ‘?\f (0) denotes the k-homogeneous polynomial associated to d* f*(0)
[7].
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We consider here a nuclear representation of T,
T() = 3 (@, uy)e;

j21

with

a =3 llujll lej < oo.

jz1
For each « € I and for 0 € Hy(X™), put

kO'
=3 Y e o) T ).

k20j17"'7jk21

We have, by the Cauchy inequality

kO’
Z Z ‘dkfa(o)(ejw"'aejk)’ ‘dk—!(o)(ujw"wujk)

kE>0j1,.-.Jk>1

B e dro(
<> X ng F O el llesel 5 | Z2€ ) . s )
k>0 71,..., jk>1
<> > s’“||a}|p/,_,kuujl|| les, Il lug, | lle,

k>071,--,Jk>1

ZTHUHPZW(QM Jesl))”
— o], Z —C(r,p)HaHp;

k>0

where
ak ka

E ——— < oo for p sufficiently large
k(1-1\2 )
=P (k!)

C(r,p)=r

and

Ha”p = sup {|a(:c*)\ Sl < r}.

This inequality shows that the family { }a is equicontinuous in [Hy (X *)]*.



ON REPRESENTATIONS OF ENTIRE FUNCTIONS

Moreover, we also have

115

(exp T, fe) Z Z d® £*(0 6]17"'7ejk)<k1:'><$u]l)"'<x7ujk>

k>0j1,.. ,jkzl

dk aQ dk a
=) fk,( )<Z<%Uj>6j> => fk!( )(Tl‘)

k>0 ) j>1 k>0
= f¥Tz) for zeX.

The lemma is proved.

Proof of Theorem 1.

(1) Assume first that E is a nuclear Frechet space. Given K € B(E).
Put K; = K. Choose K3 € B(E), K; C K; such that F(K;) is dense in
E(K>) and the identity map F(K;) — E(K3) can be written in the form

T = Z AT, ug)eg

with

D il llexl <1

k>1 k>1

and
e ~ O(1/E®).

For each n > 1, there exists a finite 1/y/n - net AL of nK; \ (n — 1)K, for

the norm of F(K3) such that
card A} < (4Cn2)m

where C' is independent of n.
Indeed, choose kg = v/C' n?/8, where C' > 0 such that

\e| < CO/K® for k> 1.

Then

S Il s lleell <nC S

k>ko k>ko

o,pl Q

for all x € nK;.
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Consider a finite - net AL of the set

1
2\/n
W, = { Z Mo (T up)er :x € nKq \ (n — 1)K1}

1<k<ko

for the norm ||HK2 with

card 4,, < (4C’n\/ﬁ) R < (4Cn2)m.

Such a net exists, because W, is contained in the image of

{{fk}lgkgko e CP g < Cn}

under the map

S:Cf — B(K») : ({fk}1<k<ko = Z Eker-

1<k<ko
We have for Ay = |J A), = {z}} C E(K)),
n>1
(4)1 > exp —|lz[l , = > D e [l [l
TEA n>lzecAl
<> (4Cn? VR —(n=1) < o

n>1

because

_, (4C(n+ 1)2)\/m

(4Cn)2V6Cn
6_1[(4((n+1)2)>n @ 2)%—\/@ .

1O (4Cn — e T asn — oo.

Put

Exp, (Ks) = {f c HE) : ||fll], = Sup{M ze E(KQ)} < oo}.

exp 7|z,
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For each € > 0 choose ng and C7 > 1 such that

eV /2 <o STV < 3/2 and

wfmzrsc?sup{%:I|xHK2>no“} for  f € Bxpy(Ky).
K>

Given f € Exp,(K3) with |||f]||» < 1. For each z € (n + 1)K; \ nKj,
n > ng, take y, € A; such that Hx — «%HKQ < — . Since

NG

|f(x)_f(ym>‘ < ‘f/(.%'—Ft(l‘—ym))(l'_yx)’dt

— O —

)L / fla+({Et+A)(x—
2mi

5 ym))dx‘dt

Aj=2

sup {|f(@+Ae — )| : 1A < 3],

<

o= <

we have for z € (n+ 1)K \ nK1, n > ny,

@ 1)

exp 27“HacHK2 T exp 27“Hym

f(x) = f(ya)]

exp 27"H$}|K2

exp 27“H:13 — ymHK2 +
I,
2| f(ya)| 1 { [z + Az = ya))]

_|_ —_
e PR L P 2r||z + Mo —ya) ||,

X

) | 2 (ya)]
x exp 27 || ||x nyKQ A= 3} = exp 27‘|\3/va;<2

1 /()] ,

s {Wexp 2, :n < ell, <m+1]
3 fGl

Ty {exp E™ el 2 n 1

AWl 3,0 1)

+ — - v~ 7
exp 27‘HZHK2

Sl RCRARA

These inequalities imply (as € — 0)

5 {0

_ @l |f(z)|
4 exp 2r||:13HK2

: HxHKQ > n+1} < 2sup {W

:xGAl}.
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Hence

|f(2)]

O 17l < Mgsu {0

tx € Al} for f € Exp,(K>)

where

M7 =8CY
Since F(K1) is dense in E(K3), from (1) we get
[f@)] r [f@)]
(6)1 sup {exp 27’||$HK2 tx € f(Kg)} < M7 sup {exp 27’||3€HK2 tx € Al}

for f € Exp,(K2).

Repeating the above argument for K = K5 we can find K3 € B(E),
Ky C K3 with E(Ky) is dense in E(K3) and a sequence Ay = {23} C
E(K>) satisfying (1)2, (2)2 and (3)a.

Continuing this process we get an increasing sequence {K,} C B(FE)
with K7 = K and sequences A, = {2} C E(K,) such that

W, Sexp e}, <o

jz1
(5)n 1715, < Mz sup {—LDL o a,)

exp 27”||$||Kn+1

for all f € Exp,(K,+1), alln > 1, r >0, and
(6), sup { @)l tx € En—|—1}

exp 27“HacHKn+l

. |f ()] ,
< M] sup {exp 27“H9UHK ..CL‘EAn}

n+1

for all f € Exp,.(K,+1), n > 1, r > 0. Moreover the canonical maps
FE, — FE, .1 are nuclear.

For each n > 1, put

Ln = {(fj) CC: ) ¢]exp rl|laf || <oo forallr> 0}.

Jj=21
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By (4),, L, are nuclear Frechet spaces. Define

> Ly — Hy(Ejyy)

1<n<p
by ,
Rp((fyl)ya(ff)) = ZZf?eXp a",xf) for x* € Ej 4
n=1;>1
and

R=1lmR,: > L, — | Hi(E}).

n>1 n>1

To complete the necessary part of the proof it suffices to show that the
map

= R™: [ H L*} [limproj [Hb(E;;)]*]
is surjective because

[HLZTQZL;*QZLR

n>1 n>1 n>1

and
k

| my(E) — [limproj [Hb(E;;)]*] .

n>1

Given g € [lim proj [Hb(E;fL)]*} . Choose p > 3 such that g €
[Hy(E_

o 1)] ™. Consider the commutative diagram

wﬁié Whi1 wh™!
[Hy(Byg)] —— [Ho(Bypy)] —— [Hy(Ep)] —— [Hy(E;-

T e e

* * * *
Ly—— I Li—— I I T n L
1<n<p+2 HP 1<n<p Hp 1 1<n<p—1 HP 1<n<p—2
where WP}, WP _1 ,IP ., 12~ and 1?2 are canonical maps. It is
p+3> Wp+15 W p—2> =°p p—1 pS.

easy to see that (6)p 1 together with Lemma 3 imply

* p—1
ker R) ) C kerw; .
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Thus g can be considered as a linear functional g : Im R, — C.

Let us check

M0, (cl m Ry, o) CIm R .

Let {Wy} be a decreasing neighbourhood basis of 0 € Z L,, and

1<n<p+2

M= (ImR;, nWy).

k>1

Since Z L,, is nuclear Frechet and M is sequentially closed, it follows
1<n<p+2
that M is closed and hence

clIm R}, = M.

Assume that

{naz Z+2(u“)} —ne [ L

I
@€ 1<n<p+2

with {n®} C W, the polar of Wy in < > Ln) :

1<n<p+2
Choose r > 0 such that

aup { L)

cx €A, acel, nzl,...,p+2}<oo,
exp r|[a]|

n+1

where
fe(x) = (exp (z*, ), n*) for =z € E,pi3.

Such a r > 0 exists because

(exp (z*,2%), u*) =n; for acl, j>1 andn=1,...,p+2.

By Lemma 3 from (4),4+2 and (5),42 it follows that {wﬁié(ua)} is

equicontinuous in [Hb(E; +1)] ", and hence without loss of generality we
may assume that wg +3(tta) — p. Obviously,

—1 *
H£+2n = Rp—lu‘
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It remains to show that g ngr% is continuous on Cl Im Ry, 5. Since Cl
Im R}, is a (DFN)-space it suffices to check that

FIEIA0) — 0 forovery soquence. {1} C ol I, 1 0
By (5), and Lemma 3 applying the inclusion
I .o (cl Im R}) C Tm R}

we can find an equicontinuous family {u} C [Hb(E; )] " such that

Ry (k) = H§+2(nk) for k>1.

Then
wp 1 (k) — 0

and hence
. — —1 . —1
thHZ-w (n*) = lim 9W£+1 () = 0.

(2) It suffices to prove that every continuous linear map T from E*
into £°°(S) is nuclear for every set S. Choose K € B(E) such that T
can be considered as a continuous linear map from [E(K)] " into £°(S).
Let {K,} and {27} C E(K,) := E, satisfy (i), (ii) with K = K of the
theorem. Since FE is a Frechet-Montel space, without loss of generality we
may assume that the canonical maps F,, — FE,, 1 are compact. As in
(1) consider the maps

Ry,: @ L. — Hy(E}.,)

n=n<p
and

R=limindR, : L, — | ) Hi(E}).

p>1 p=>1

By the hypothesis we have

Hy(E) € | Ho(E;) = | Im R,

By a result of Leiterer [8] we can find p > 1 such that

Hy(E?) CImR,.
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Moreover, the identity map Hp(E}) — Im R, is continuous. The
closed graph theorem implies that this map is also continuous for the quo-
tient topology Im R, = € L, /kernR,,. Consider the map T [EOO (S)} N
Hy(E}) CIm R,

T(p)(z*) = w(Tz*) for z* € EY.

It follows that 7" is continuous linear. Since {27} satisfies (i) for n > 1, the

space @ L, is nuclear Frechet. Hence T can be lifted to a continuous
1<n<p
linear map

T: [EOO(S)}* — H L,.

1<n<p

This means that

p(Ta") = T()(a) = By (") = By (30 3 €7 (T e}

n=1j>1

P

Z Z ) exp(xy,z*) for z* € B and p € [EOO(S)}*,
n=1j>1

in which

P

ZZ exp er”HK < oo forallr>0,

n=1j>1

where {e7'} is the canonical basis of L,, for n > 1.

This inequality yields

p
> 2 Mg Tl exp o, <

n=1j5>1

p p
< {su o 5 Tlexp il § 35 3 exp —llafll, <
n=1;>1

n=1

Hence

ZZﬁjTexpm ,x*) for z* € E*

n=1j5>1
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with

p
2 2 &G 27l < oo

n=1;j>1

which means that T is nuclear. The theorem is proved.
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