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A PARAMETRIC SIMPLEX METHOD FOR OPTIMIZING
A LINEAR FUNCTION OVER THE EFFICIENT SET

OF A BICRITERIA LINEAR PROBLEM

NGUYEN DINH DAN AND LE DUNG MUU

Abstract. The problem of optimizing a linear function over the efficient
set of a multiple objective problem has many applications in multiple crite-
ria decision making. The main difficulty of this problem is that its feasible
region, in general, is a nonconvex set. In this paper we develop a fast
algorithm for optimizing a linear function over the efficient set of a bicri-
teria linear programming problem. The method is a parametric simplex
procedure using one parameter in the objective function.

1. Introduction

Let X be a nonempty bounded polyhedral convex set in Rn given by
a system of linear inequalities and/or equalities. Let C denote a (p× n)-
matrix. The multiple objective linear programming problem (MP ) given
by

(MP) Vmax{Cx, x ∈ X}

is the problem of finding all efficient point of Cx over X. This problem is
called bicriteria linear programming problem if C has two rows.

We recall that a point x0 is said to be an efficient point of Cx over X if
there no is vector y ∈ X such that Cy ≥ Cx0. An efficient point is often
called Pareto or nondominated point.

Throughout this paper, for two vectors of k-dimensions a = (a1, . . . , ak)
and b = (b1, . . . , bk) we write a ≥ b (resp. a > b) if and only if ai ≥ bi

(resp. ai ≥ bi, a 6= b) for every i.

Let XE denote the efficient set of Problem (MP). The linear optimiza-
tion problem over the efficient set of (MP) can be stated as
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(P) max{dT x, x ∈ XE}.

Recently, interest in this problem has been intensifying since it has
many applications in multiple criteria decision making [11, 12]. Problem
(P) can be classified as a global optimization problem since its feasible
domain, in general, is a nonconvex set.

A few algorithms have been proposed for finding globally optimal solu-
tion of (P). Philip [10] first proposed Problem (P) and outlined a cutting
plane method for finding an optimal solution of this problem. In [1, 2],
using the fact that one can find a simplex S in Rp for which Problem (P)
is reduced to the infinitely-constrained Problem (Q) formulated as

(Q) max dT x

subject to
λT Cx ≥ λT Cy ∀y ∈ X,

x ∈ X, λ ∈ S,

Benson proposed two algorithms for finding a global solution to (P). In
both these methods, at each iteration k, Problem (Q) is relaxed by Prob-
lem (Pk) given by

(Pk) max dT x

subject to
λT Cx ≥ λT Cxi (i = 1, . . . , k)

x ∈ X, λ ∈ S.

In the first algorithm this relaxed problem is solved by a branch-and-bound
procedure using the convex envelope of the bilinear term λT Cx. In the
second algorithm it is weakened by finding a feasible point (λk, xk) such
that dT xk > LBk, where LBk is the best known lower bound found at
iteration k.

By taking h(λ, x) := maxy∈X λT Cy − λT Cx, Problem (Q) is reduced
to the problem

max dT x

subject to
h(λ, x) ≤ 0, x ∈ X, λ ∈ S.
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Since h(λ, x) is a convex-linear function, this problem is a special case of
the problem considered in [7]. In [8] an algorithm is proposed which solves
(Q) directly. The main computational effort of this algorithm involves
searching the vertices of every generated simplex in Rp. The algorithm
therefore is resonably efficient when p is small while n, the number of the
variables, may be fairly large. Perhaps due to its importance and inherent
difficulty several algorithmic ideas have also been suggested for solving
Problem (P) (see e.g. [3]).

In this paper we propose a parametric simplex algorithm for finding a
global solution of Problem (P). In the case when XE is the efficient set of a
bicriteria linear problem we show that solving (P) amounts to performing
a parametric simplex tableau with one parameter in the objective function.
In an important special case when d = αc1 + βc2 with α ≤ 0, β ≥ 0, in
particular d = −c1 we specialized a result of [4] by showing that a globally
optimal solution of Problem (P) can be obtained by solving at most two
linear programs. Thus, in this case there exist polynomial time algorithms
for solving (P).

2. Preliminaries

The algorithm we are going to describe in the next section is based
upon the following theorem whose proof can be found, for example in [10].

Theorem 2.1. A vector x0 is an efficient point of Cx over X if and only
if there exists a λ > 0 such that x0 is an optimal solution for the scalarized
problem

(L0
λ) max{λT Cx, x ∈ X}.
By dividing to

∑
λi one can always assume that

∑
λi = 1. Thus, in

the case p = 2 Problem (L0
λ) can be written as

(Lλ) max〈λc1 + (1− λ)c2, x〉, subject to x ∈ X,

where c1 and c2 are the rows of the matrix C.

From Theorem 2.1 and the fact that the set of optimal solutions of a
linear program is a face of its feasible domain it follows that there exists
a finite set I of real numbers such that XE = ∪λ∈IXλ, where Xλ denotes
the solution set of the linear program (L0

λ).

Let ξ(λ) denotes the optimal value of (L0
λ). Then solving Problem (P)

amounts to solving the following linear programs, one for each λ ∈ I,

max dT x
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subject to

(Pλ) x ∈ X,λT Cx = ξ(λ).

Let xλ be an optimal solution and η(λ) be the optimal value of this
problem. Then η(λ∗) := max{η(λ) : λ ∈ I} is the globally optimal value
and xλ∗ is an optimal solution of Problem (P).

3. A parametric simplex algorithm for
linear optimization over the efficient

set of a bicriteria linear problem

The results described in the previous section suggest applying the para-
metric simplex method for solving Problem (P). For the case of bicriteria
linear problem the algorithm runs as follows.

Let λ1, . . . , λK be the critical values of the parametric linear program
(Lλ) in the interval [0, 1] (this means that the optimal basic of the linear
program (Lλ) is constant in each interval (λi, λi+1) and changes when λ
passes through one λi). For each λi (i = 1, . . . , K) we solve linear program
(Lλi) by the simplex method. From the obtained optimal simplex tableau
of (Lλi) we use simplex pivots to obtain the maximal value αi of the
linear function dT x over the solution set of (Lλi). Then it is clear that the
maximal value of αi (i = 1, . . . , K) gives the optimal value of the original
problem (P).

For each λ let cλ := λc1 + (1 − λ)c2, and denote by α∗ the optimal
value of (P). Assume that X := {x ∈ Rn : ax = b, x ≥ 0}, where A is
a (m × n)-matrix and b ∈ Rm. Then the algorithm can be described in
detail as follows:

ALGORITHM

Assume that we are given the critical values λ1, . . . , λK of the para-
metric linear program (Lλ).

Let α0 be a lower bound for α∗ and x0 ∈ XE such that dT x0 = α0. Set
i = 1.

Iteration i (i = 1, . . . , K)

Step 1. Solve the following linear program by the simplex method

max < λic
1 + (1− λi)c2, x >



A PARAMETRIC SIMPLEX METHOD 63

subject to x ∈ X.

Let wi be the obtained optimal basic solution, B1 = (zjk) the inverse
corresponding basic matrix, and Ji be the set of the basic indices.

Step 2 (The case when wi is also an optimal solution of (Pλi).

If either
∆ik := cλi

k −
∑

j∈Ji

zjkcλi
j < 0 ∀k /∈ Ji

or
dk −

∑

j∈Ji

zjkdj ≤ 0 ∀k /∈ Ji,

then set

xi := wi if dT wi > αi−1 and xi = xi−1 otherwise,

and αi = dT xi.

If i = K, then terminate: x∗ := xi is an optimal solution of Problem
(P).

If i < K, then increase i by 1 and go to iteration i.

Step 3 (The case when wi is not an optimal solution of (Pλi)).

If
dk −

∑

j∈ji

zjkdj > 0 for some k /∈ Ji,

then let
J+

i = {k /∈ Ji : cλi

k −
∑

j∈Ji

zjkcλi
j < 0}

and solve the linear program (Mλi) given as

(Mλi) max{dT x : x ∈ X, xk = 0 ∀k ∈ J+
i }.

Let yi be the obtained optimal solution of this linear program, and set

xi := yi if dT yi > αi−1 and xi = xi−1 otherwise,

and αi = dT xi. Increase i by 1 and go to iteration i.

Remarks 1. To solve the linear program (Mλi) it is expedient to start
from the obtained solution wi of Program (Lλi). Program (Mλi) can be
rewitten in the form

max{dT x : x ∈ X, λic
1 + (1− λi)c2 = ξi}
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where ξi is the optimal value of (Lλi
).

2. It is evident that the above algorithm terminates after K iteration
yielding a global optimal solution of Problem (P).

3. Sometimes the critical values of the parametric program (Lλ) are
not given. In this case, at the beginning of each iteration i we need to
compute the critical value λi by using the parametric simplex method with
one parameter in the objective function (see [5]).

4. A Special Case

An important special case of Problem (P) occurs when d = −ci for
some i ∈ {1, . . . , p}. This case have been considered in [1, 4, 7]. For
the case when p = 2 and d is a linear combination of the two rows of C,
Benson in [4] has shown that the maximal value of dT x over XE attains
at a vertex of X which is also an optimal solution of at least one of the
following three linear programs:

(Li) max{cix : x ∈ X, } (i = 1, 2)

(L) max{cT x : x ∈ X, }

Using this result Benson [4] give a procedure for maximizing dT x over XE

by generating all basic solutions of these linear problems.

In this section we specialize this result by observing that an optimal
solution of Problem (P ) with d = αc1 + βc2 and α ≤ 0, β ≥ 0 can be
obtained by solving at most two linear programs. Namely, we have the
following lemma.

Lemma 4.1. Let X2 denote the solution set of the linear program (L2).
Then any solution of the program

(L12) max{c1x : x ∈ X2}

is also an optimal solution of the problem

(P1) max{(αc1 + βc2)x : x ∈ XE}.

Proof. Let x1 be any solution of (L12). We first show that x1 is efficient.
Indeed, otherwise there exists a point x ∈ X such that cix ≥ cix1 (i =
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1, 2) and Cx 6= Cx1. Then, since x1 ∈ X2, it follows that x ∈ X2 and that
c1x > c1x1 which contradicts the fact that x1 is an optimal solution of
(L12). Hence x1 ∈ XE . Now let x∗ be a global optimal solution of (P1).
Then

(αc1 + βc2)x∗ ≥ (αc1 + βc2)x1.

From x1 ∈ X2 it follows that c2x1 ≥ c2x∗, and therefore c1x1 ≥ c1x∗.
This together with x∗ ∈ XE implies that cix1 = cix∗, (i = 1, 2). Hence
x1 is a global optimal solution of (P1). The lemma is proved.

By Lemma 4.1, solving Problem (P1) amounts to solving the two linear
programs (L2) and (L12). From the linear programming [5] we know that if
B is an optimal basic matrix, JB is the set of basic indices and ∆k (k ∈ JB)
is the entries of the first row in the simplex tableau corresponding to an
optimal solution of (L2), then the solution set of X2 of Problem (L2),
which is the feasible set of Problem (L12), is given by

{x ∈ X, xk = 0, k ∈ J+
B }

where
J+

B = {k /∈ JB : ∆k < 0}.
Note that if ∆k < 0 for every k /∈ JB , then solving (L12) is avoided, since
(L2) has a unique optimal solution.

We close the paper by elucidating how to calculate the critical values
of the parameters. For simplicity assume that the set

X := {x ∈ Rn : Ax = b, x ≥ 0}

is nondegenerate and that A is a full rank matrix.

Let x be a given optimal solution of the linear program

max〈λc1 + (1− λc2, x〉 : x ∈ X}.

Denote by B the basic matrix corresponding to x, and by J the set of
basic indices. If B = (zjk), then from the linear programming [5] we get

∆k = λc1
k − (1− λ)c2

k −
∑

j∈J

zjk(λc1
j + (1− λ)c2

j ) ≤ 0 ∀k /∈ J

which implies that

(3.1) λ(c1
k − c2

k −
∑

j∈J

(c1
j − c2

j )) ≤
∑

j∈J

zjkc2
j − c2

k, ∀k /∈ J.
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(ci
k stands for the kth component of the vector ci). Let

mk := c1
k − c2

k −
∑

j∈J

zjk(c1
j − c2

j ),

tk :=
∑

j∈J

zjkc2
j − c2

k,

J− := {k /∈ J : mk < 0},
J+ := {k /∈ J : mk > 0},
α− := max{tk/mk : k ∈ J−},
α+ := max{tk/mk : k ∈ J+}.

Thus, by virtue of (3.1) we have α− ≤ α+. Moreover, B is also an optimal
basic solution of Problem (Lλ) for every λ which belongs to the interval
[α−, α+].
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