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THE INHERITANCE OF THE LINEAR
TOPOLOGICAL INVARIANT (DN)

DINH HUY HOANG AND THAI THUAN QUANG

ABSTRACT. It is shown that if X is a Stein space and S is a closed
set in X with HZdimX—1<S) = 0, then H(X) € (DN) if and only
if H(X \ S) € (DN). Moreover it is also shown that the property
(DN) is invariant under holomorphic surjections between Stein spaces
with connected fibres having the property (DN)

Let F' be a Frechet space with a fundamental system of semi-norms
{H . Hk}k> . We say that E has the property (DN) (shortly write E €
1

(DN)) if

Vg, d>03k >0 <, |- II5

The property (DN) and other properties were introduced and inves-
tigated by Vogt [8, 9]. The aim of the present paper is to study the
inheritance of the property (DN). The main results are the following

Theorem A. Let X be a locally irreducible Stein space and S a closed
subset of X such that Hagimx—1(S) = 0. Then H(X) € (DN) if and only
if HX\S) € (DN).

Here Hogimx —1(5) denotes the (2dimX — 1)-Hausdorff measure of SN
R(X) where R(X) is the regular locus of X.

Theorem B. Let 0 : X — Y be a holomorphic surjection between locally
irreducible Stein spaces with connected fibres. Assume that

H(O ' (y)) € (DN) foral yev.

Then H(X) € (DN) if and only if H(Y') € (DN).
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For other linear topological invariants, these theorems are not true.
The proofs of Theorems A and B are given in Section 3 and Section 4
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respectively. In Section 1 we show that Theorem B is true when 6 is a
proper surjection. Recently [3] Le Mau Hai and Dinh Huy Hoang have
proved this result for the linear topological invariants €, Q and finite
proper surjections. For the definition of €, Q we refer to the papers of
Vogt [8, 9]. In Section 2 we extend Zaharjuta’s result [10] to the Stein
space case.

1. THE PROPERTY (DN) AND FINITE PROPER
HOLOMORPHIC SURJECTIONS

In this section we shall prove the following.

Theorem 1.1. Let 0 : X — Y be a finite proper holomorphic surjection
between Stein spaces. Then H(X) € (DN) if and only if H(Y) € (DN).

Proof. Assume that H(Y') € (DN).

(i) First consider the case that Y is a normal space. Then by the
integrity lemma [2] 6 is a branched covering map. Moreover there exists a
natural number p such that for each f € H(X) we can find a polynomial
Ps(X) of degree p with coefficients in H(Y'):

Pr(A) = N 4 ap_1 (/)N + -+ ao(f)

such that

where a,_1,...,ao are continuous symmetric polynomials on H(X) with
values in H(Y').

To prove H(X) € (DN), by Vogt [10] it suffices to check that every
continuous linear map from the space Aj(a) to H(X) is bounded on a
neighbourhood of 0 € A («) for every exponent sequence o = («v, ), where

Al(a):{(ﬁj)CC:Z|fj|ro‘j<oo for 0<7"<1}.

Jj=1

Given such a map 7. Since a; (0 < j <p-—1) are continuous polynomials
on H(X) with values in H(Y') and by the hypothesis H(Y') € (DN), again
by Vogt [10] we can find a neighbourhood U of 0 € A;(«) such that a;(7T)
are bounded on U. From the relation

(TE)? + ap_1(TETEP™ + -+ +ao(TE) =0 for £€U,
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it follows that 7" is bounded on U. Hence H(X) € (DN).

(ii)) In the case where Y is not normal, consider the normalization
v:Y — Y of Y. Let J denote the coherent sheaf on Y given by

Jy = {f € Hy,y : f(Hy)y € HY,y}a

where Hy and Hy are structure sheaves of Y and Y respectively and
v«Hy is the direct image of Hy under . Then J, # 0 for y € ¥V [2].
By Cartan Theorem A [2] we have HY(Y,J) # 0. Moreover, there exists
f € H°(Y,J) such that f # 0 on every irreducible branch of Y. Indeed,

write Y = J Y;, where Y; are irreducible branches of Y. For each i > 1
i>1
put

Gi={feH (Y, J): f|, #0}
=H(Y,J)\{f € H(Y,J) : f|,. =0}.

Thus G; is open. We prove that G; is dense in H(Y, J) for i > 1. For
i > 1 take y; € R(Y;), the regular locus of Y;. Since 1,, € Jy , by Cartan
Theorem A [2] there exist g1,...,9, € H(Y,J) and 51, oy Om € Hyy,

such that
Z g]7y1535y1 = 1yi'

1<j<m

This yields the existence of jo such that g;, € G;. Thus G; # 0 for
i > 1, and hence G; is dense in H(Y,J) for i > 1. By Baire Theorem
there exists f € [ G;.
i>1
Thus H(Y)= fH(Y). Since fH(Y) C H(Y) € (DN), it follows that
fH(Y) and hence H(Y) € (DN).

(iii) Finally consider the following commutative diagram of finite proper
surjections of Stein spaces

A 0 Y
%l lv
X 0 Y

where Z = X x Y is the fibre product of X and Y and é, 4 are canonical
projections.
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i) H(Z) € (DN). Since H(X) is a

By (ii) H(Y) € (DN) and by (
) € (DN). This completes the proof for

subspace of H(Z), we have H(X
the sufficiency.

Since H(Y) is a subspace of H(X), the necessity is trivial.

Corollary 1.2. Let X be a Stein space. Then H(X) € (DN) if and only
if H(Z) € (DN) for every irreducible branch Z of X and X has a finite
number of irreducible branches.

Proof. Let H(X) € (DN). By Theorem 1.1, H(X) € (DN), where
v : X — X is the normalization of X. Since every irreducible branch Z
of X is open - closed in X [2], it follows that H(Z) € (DN). Given Z
an irreducible branch of X. Then there exists an irreducible branch Z
of X such that v(Z) = Z. Applying Theorem 1.1 to 7‘2 . 7 — Z we
get H(Z) € (DN). On the other hand, by the definition of the property
(DN), H(X) has a continuous norm. This means that there exists a
compact subset K of X such that Hf”K =0 for f € H(X) implies that
f = 0. Hence by Cartan Theorem B, X has a finite number of irreducible
branches.

Conversely, assume that X has a finite number of irreducible branches
Zy,...,Zm and let H(Z;) € (DN) for i = 1,...,m. For each i take an
irreducible branch Z; of X such that v(Z;) = Z Since Z; is open-closed
in X, it follows from the relations H(Z;) € (DN) and from Theorem 1.1

that
= ] H(Z)e(DN)

1<i<m

Again by Theorem 1.1, H(X) € (DN).

2. THE PROPERTY (DN) AND EXTREMAL
PLURISUBHARMONIC FUNCTIONS

Let X be a complex space and E a subset of X. Define the function
w(X,E,.) on X by

w(X, E,z) = lim sup { supp(y) : ¢ € PSH(X gp‘E<O ¢ < 1}.
y—z
In [13] Zaharjuta proved that if X is a Stein manifold, then H(X) €
(DN) if and only if there exists a compact set K in X such that

wX,K,z)=0 for ze€X.
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The following theorem is an extension of this result to the case of Stein
spaces.

Theorem 2.1. Let X be a locally irreducible Stein space. Then H(X) €
(DN) if and only if there exists a compact set K in X such that

wX,K,x) =0 for ze€X.
Proof. Let H(X) € (DN). Then there exists p such that
Vg, 0 <p <1, Ir(q,p), c(g,p) >0:

11, < ell [ 110, for £ € HOX),
As in [3, Proposition 1.4] we have

log(|.f(x)|/fl»)

@ og (I /171,) ="

for x € K, and f € H(X).
Now assume that ¢ € PSH(X) with gp|K <0 and ¢ < 1. Since X is

Stein, by Fornaess and Narasimhan [3] there exists a decreasing sequence
of continuous plurisubharmonic functions ¢; on X such that

w;(x) | p(x) for zeX.

Using Hartogs Lemma we may assume that

(goj—sj)}KPSO and  (p; —&5)| <1,

I

where ¢; | 0. Again by the Steiness of X as in the regular case [7] for each
7 > 1, we can write

I I n n
@j = lim max cJlog|flil,
N—=00 1<k<mj,

where f5 € H(X) and 0 < ¢}, <1 for all j,k > 1 and the convergence is
uniform on compact sets in X.

Without loss of generality we may assume that

cigloglfiel —2¢; <0 on K, for jkn>1
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and
ciploglfikl =26, <1 on K, for jk,n>1.

Since
/]
iral, e )
exp(?sj/c;-‘k)> 8 o ( 17l )
)

exp(2¢e;/cy,

hilog] f1i] — 225 = i log(

/7]
8 ptzs, )

N log( £l )
exp(2¢e;/cy)
by (1) we get
(2) ciploglfii(w)| —2¢; <p for z€ K, and jk,n>1.
(2) yields

(3) pj(x)—2¢;<p for zeK, j>1.

From (3) we get as j — o0
(4) o) <p for ze€ K, and 0<p<l.
Hence, as u — 0, it follows that
(5) p(x) <0 for ze€ K,.
Since ¢ is arbitrary, we have

w(X,K,,z)=0 for zeX.

Conversely, assume that w(X, K, z) = 0 for some compact set IA( in X.
Then we can choose a holomorphic function 4 on X such that ¢ is not
zero on every irreducible branch of X and the singular locus S(X) of X

is contained in the zero set Z(4) of 6. Indeed, let {X;} be the system of
irreducible branches of X. For each j > 1 take

xjer\<UXkUS(X)).

k]
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Since {X;} is locally finite, the set {z;} is discrete and hence ¥ =
{z;} US(X) is an analytic set in X. Define a holomorphic function ¢ on

Y by
{ 1 for ze{z;}

o(@) = 0 for x e S(X).

By Cartan Theorem B there exists 6 € H(X) such that S‘Y = o and
hence 4 is not zero on X; for each j > 1 and S(X) C Z(9).

Now, we find a compact set L in X \ Z(8) such that

(6) supp < supp for each p € PSH(X).
K L

By the desingularization theorem of Hironaka there exists a proper
holomorphic map ~ from a complex manifold X onto X such that Z(6~)
is a locally finite union of smooth hypersurfaces having normal crossings
everywhere. For each z € K take z € X such that v(z) = z. If z ¢
Z(57) we can take a sufficiently small neighbourhood W, of z such that
W.NZ(6y) = 0. Put L, =~(0W.) and V, = ~(W.). Then L, N Z(6) = 0
and

sup @y = sup py for ¢ € PSH(X)
W, oW,

or
supp =supy for ¢ e PSH(X).
V. L.

If z € Z(8v), we choose a neighbourhood W, of z in X which is biholo-
morphic to the closed unit polydisc A" of C" by a biholomorphic map 6
such that

—-—n

p
A ﬂ9(Z(57)) = U {z = (21,..y2n) 2 = O} for some p.
i=1

Put M, = JAX A" TUAXIAX AP 2U---UA X A x - X QA XA™ P,
p times

and L, = 40~ Y(M,), V. = v(W,). Then L, N Z() = () and

suppy = sup ¢y for ¢ € PSH(X)
W. 0-1(M.)
or
supp =supy for ¢ e PSH(X).

Vz L
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Since 7 is proper, it follows that v~ !(K) is compact. Cover v~ 1(K) by
a finite system of neighbourhoods W, ,W.,,..., W, . Put

q
L=|]JL.,.

j=1

Then
supp < sup @=supyp for @€ PSH(X)
K L

’Y( 6 sz)

j=1

A

and LN Z(4) = 0.
By the inequality (6) and hypothesis, it follows that

w(X,L,z)=0 for z€X.

On the other hand, by Zeriahi [14] we may assume that L is locally
L-regular. Take an increasing exhaustion sequence of compact sets K,
with Ky = L. For each p > 1 and x € IntK,, put

O(Kp, L,x) = lim sup{supgp(y) tp € PSH(X),gz)’L < O,(p‘K < 1}

y—z

and (K, L,x) =0 for z € X \ Int K.

Since L is locally L-regular, we have
@(Kp,L,.)}L <0 for p>1
and hence the function @ on X defined by

O(z) = lim O(Kp,L,z) for ze€X

p—00
satisfies the condition
wePSH(X), @, <0 and @<1 on X.

This yields @w = 0. By Hartogs Lemma for each ¢ > 1 and 0 < p < 1 there
exists r(q, u) such that

O(Ky, Lyx) <p for zekK,.
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It follows that
logﬂf(xﬂ/HfH1)<<

<p
log(I1.f1l+/11f1+)
for v € K, and f € H(X). This means that

17, < 7N for £ e HQX).
Hence H(X) € (DN).

Theorem 2.2. Let X be a locally irreducible Stein space. Then H(X) €
(DN) if and only if every plurisubharmonic function @ on X which is
bounded from above is constant on every irreducible branch of X and X
has a finite number of irreducible branches.

Proof. Let H(X) € (DN). By Corollary 1.2, X has a finite number of
irreducible branches. Given ¢ € PSH(X) such that

sup ¢ = M < oo.
X

Let Z be an irreducible branch of X. By Corollary 1.2, H(Z) € (DN),
and by Theorem 2.1, there exists a compact set K C Z such that

w(Z,K,z) =0

for x € Z.
Let m = supy. Applying the two constant theorem which is proved
K

as in the non-singular case [5] we have for z € Z

o(z) < Mw(Z,K,z) —m(w(Z,K,z) — 1) = m.

By the connectivity of Z and the maximum principle it follows that ¢
is constant on Z.

Conversely, let X have a finite number of irreducible branches.
Choose a compact set K in X such that Int(K N Z) # 0 for every ir-
reducible branch Z of X. By the hypothesis

w(X,K,a;)}Z =0 for z€Z

and, hence, w(X, K,z) =0 for x € X. By Theorem 2.1, H(X) € (DN).
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3. PROOF OF THEOREM A
(i) First we prove that H(X) — H(X \ 5). It suffices to show that for
every compact set K in X there exists a compact set L in X \ S for which

1l =M1l forall f e H(X).

By the desingularization theorem of Hironaka there exists a proper
map v from a complex manifold Z onto X. Since Hogimz_1 (7_1(5)) =
Hadgimx—1(S) = 0 and by [6], it follows that for every z € v~ 1(K) there

0 ——n
exists a neighbourhood W, (which we can assume that W, = A", the
closed unit polydisc in C™) such that

o~ (A" x 9A) NyH(S) = 0.
From the maximum principle we have, with W} = =1 (Zn_l X aA),

sup |g| =suplg| for g€ H(Z).
W, w}i

This yields the existence of W; = W, and W} = W] (j = 1,...,m)
such that

v HE) S (W
j=1

and
sup [g| <sup|g| for g€ H(Z) and j=1,...,m.
W; wl

Put

L= 7< U le).
j=1
This is a compact set in X for which

sup |f| <sup|f| for fe H(X)
K L

and

LﬂSzv(G leﬂv_l(S)> = 0.

j=1
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(ii) Assume that H(X) € (DN). Consider the normalization v : X —
X of X. By Theorem 1.1, H(X) € (DN) and hence by Theorem 2.2 every
plurisubharmonic function on X which is bounded from above is constant
on every irreducible branch of X. By the Steiness and the normality of X
each irreducible branch of X\ v~1(S) is extended to an irreducible branch
of X and each ¢ € PSH(X \ 771(9)) is extended to a ¢ € PSH(X).
Hence each ¢ € PSH (X' \ 7~!(S)) which is bounded from above is con-
stant on every irreducible branch of X \ v~1(S).

Let {Kp} be an increasing exhaustion sequence of compact sets in
X\ v 1(S) with IntK; # (). For each p > 1 and z € IntK, put

wp(z)zlirrll sup{supgo(z) (pGPSH(X\V ) g0|K <0, go’K < }
and

wp(2) =0 for ze€ (X\7y'(9))\Intk,.

Then w, are plurisubharmonic functions on X \ v~(S) and they are
decreasing to w € PSH (X \ v %(9)). Since w, are bounded from above
on X \ v (S) and IntK; # () we have

wp =0 forevery p>1.

Hence w = 0.

Given ¢ > 1 and 0 < p < 1. By Hartogs Lemma there exists r(q, i)
such that
wr(2) =w(K,, K1,2z) <p for zeK,.

It follows that

| f(2)
ee(J,)

N
e 71)

for z € K, and f € H(X \ v~!(S)). This means that

<u

11, < 1A 1AL for fe H(X\A7H(S)).

Hence H(X \771(S)) € (DN). On the other hand, by the inclusion
H(X\S)— H(X\fy 1(S)) we also have H(X \ §) € (DN).
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Conversely, assume that H(X \ S) € (DN). By (i) we have
H(X)— H(X\®9).
Hence H(X) € (DN).

4. PROOF OF THEOREM B
Assume that H(Y) € (DN). Consider the commutative diagram

7 0

J

X

~ o =G
)

where v : Y — Y is the normalization of Y and Z = X x »Y the fiber
product of X and Y for §. By Theorem 1.1, H(Y) € (DN). Since 7 is
proper, it suffices to show that H(Z) € (DN). Let A denote the critical
set of §. Consider f : A — Y. Then Q(A) = B is a union of analytic sets of
dimension which is smaller than dim Y [4]. Thus H,y, s _,(B) = 0. Put

Zo=Z\6"'(B) and 0y =0|, :Zy— Yo=Y \B.
First check that Zj is open and 50 is open. Givgn 20 € Zp. Then we
can find neighbourhoods U and V of zy and o = 0(z) respectively and

a biholomorphism « : U — V x W for some complex space W such that
the following diagram

U 2 VxW

80 ™

v

is commutative, where 7 : V' x W — V is the canonical projection. Then
O(U)N B = 0 and hence V = §(U) C Y,. This means that Zy and Y; are
open in Z and Y respectively and hence B is a closed pluri-polar set in
Y. Since H,y, v_,(B) =0 and H(Y) € (DN), by Theorem A, it follows

that H(Yy) = H(Y \ B) € (DN).
On the other hand, since

071 (5) = {(@.9) € X x ¥ :00) = () } = 07 (+(3)
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we have 0~1() is connected and H(é‘l(y)) € (DN) for all § € Y. Given
¢ € PSH(Z) such that ¢ is bounded from above. Then by Theorem 2.2,
90|911(g) —const for §ev.
Since 6, is open, we can write go‘ZO = ), for some 1) € PSH(?O)
which is bounded from above.

By H(Y;) € (DN) and Theorem 2.2, it follows that ¢ is constant on
every irreducible branch of Y;. Put

V¥ () = limsup (7)) for gev.
¥ —7,5' €Yo

Since B is closed pluri-polar, by the normalization of ¥ we have ¢* €
PSH(Y). Moreover, the intersection of every irreducible branch of Y with
Yy is connected. Hence * is constant on every irreducible branch of Y.
For each z € Z, 2/ € Zy put g = 0(2), ¥ = 0o(z'). By ¢ € PSH(Z) we
have

©(z) = lim sup ¢(2') = lim sup ¥y = lim sup (7))
Z/HZ,Z/GZO Z/HZ,Z/GZO g/_)gv?j/ei/o

and hence ¢ is constant on every irreducible branch of Z. On the other

hand, since Z has a finite number of irreducible branches, by Theorem
2.2, it follows that H(Z) € (DN).

Conversely, assume that H(X) € (DN). Then every plurisubharmonic
function on X which is bounded from above is constant on every irre-
ducible branch of X. Since 6 is surjective, this holds for Y. By Theo-
rem 2.2 and since Y has a finite number of irreducible branches we have
H(Y) € (DN).
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