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THE INHERITANCE OF THE LINEAR
TOPOLOGICAL INVARIANT (DN)

DINH HUY HOANG AND THAI THUAN QUANG

Abstract. It is shown that if X is a Stein space and S is a closed

set in X with H2dimX−1(S) = 0, then H(X) ∈ (DN) if and only

if H(X \ S) ∈ (DN). Moreover it is also shown that the property

(DN) is invariant under holomorphic surjections between Stein spaces

with connected fibres having the property (DN).

Let F be a Frechet space with a fundamental system of semi-norms{∥∥ ·
∥∥

k

}
k≥1

. We say that E has the property (DN) (shortly write E ∈
(DN)) if

∃p ∀q, d > 0 ∃k, c > 0 :
∥∥ ·

∥∥1+d

q
≤ c

∥∥ ·
∥∥

k

∥∥ ·
∥∥d

p
.

The property (DN) and other properties were introduced and inves-
tigated by Vogt [8, 9]. The aim of the present paper is to study the
inheritance of the property (DN). The main results are the following

Theorem A. Let X be a locally irreducible Stein space and S a closed
subset of X such that H2dimX−1(S) = 0. Then H(X) ∈ (DN) if and only
if H(X \ S) ∈ (DN).

Here H2dimX−1(S) denotes the (2dimX − 1)-Hausdorff measure of S ∩
R(X) where R(X) is the regular locus of X.

Theorem B. Let θ : X → Y be a holomorphic surjection between locally
irreducible Stein spaces with connected fibres. Assume that

H(θ−1(y)) ∈ (DN) for all y ∈ Y.

Then H(X) ∈ (DN) if and only if H(Y ) ∈ (DN).
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For other linear topological invariants, these theorems are not true.
The proofs of Theorems A and B are given in Section 3 and Section 4



46 DINH HUY HOANG AND THAI THUAN QUANG

respectively. In Section 1 we show that Theorem B is true when θ is a
proper surjection. Recently [3] Le Mau Hai and Dinh Huy Hoang have
proved this result for the linear topological invariants Ω, Ω̃ and finite
proper surjections. For the definition of Ω, Ω̃ we refer to the papers of
Vogt [8, 9]. In Section 2 we extend Zaharjuta’s result [10] to the Stein
space case.

1. The property (DN) and finite proper
holomorphic surjections

In this section we shall prove the following.

Theorem 1.1. Let θ : X → Y be a finite proper holomorphic surjection
between Stein spaces. Then H(X) ∈ (DN) if and only if H(Y ) ∈ (DN).

Proof. Assume that H(Y ) ∈ (DN).

(i) First consider the case that Y is a normal space. Then by the
integrity lemma [2] θ is a branched covering map. Moreover there exists a
natural number p such that for each f ∈ H(X) we can find a polynomial
Pf (λ) of degree p with coefficients in H(Y ):

Pf (λ) = λp + ap−1(f)λp−1 + · · ·+ a0(f)

such that
Pf (f) = 0,

where ap−1, . . . , a0 are continuous symmetric polynomials on H(X) with
values in H(Y ).

To prove H(X) ∈ (DN), by Vogt [10] it suffices to check that every
continuous linear map from the space Λ1(α) to H(X) is bounded on a
neighbourhood of 0 ∈ Λ1(α) for every exponent sequence α = (αn), where

Λ1(α) =
{

(ξj) ⊂ C :
∑

j≥1

|ξj |rαj < ∞ for 0 < r < 1
}

.

Given such a map T . Since aj (o ≤ j ≤ p− 1) are continuous polynomials
on H(X) with values in H(Y ) and by the hypothesis H(Y ) ∈ (DN), again
by Vogt [10] we can find a neighbourhood U of 0 ∈ Λ1(α) such that aj(T )
are bounded on U . From the relation

(Tξ)p + ap−1(Tξ)(Tξ)p−1 + · · ·+ a0(Tξ) = 0 for ξ ∈ U,
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it follows that T is bounded on U . Hence H(X) ∈ (DN).

(ii) In the case where Y is not normal, consider the normalization
γ : Ỹ → Y of Y . Let J denote the coherent sheaf on Y given by

Jy =
{
f ∈ HY,y : f(γ∗HỸ )y ⊆ HY,y

}
,

where HỸ and HY are structure sheaves of Ỹ and Y respectively and
γ∗HỸ is the direct image of HỸ under γ. Then Jy 6= 0 for y ∈ Y [2].
By Cartan Theorem A [2] we have H0(Y, J) 6= 0. Moreover, there exists
f ∈ H0(Y, J) such that f 6= 0 on every irreducible branch of Y . Indeed,
write Y =

⋃
i≥1

Yi, where Yi are irreducible branches of Y . For each i ≥ 1

put

Gi =
{
f ∈ H0(Y, J) : f

∣∣
Yi
6= 0

}

= H0(Y, J) \ {
f ∈ H0(Y, J) : f

∣∣
Yi

= 0
}
.

Thus Gi is open. We prove that Gi is dense in H0(Y, J) for i ≥ 1. For
i ≥ 1 take yi ∈ R(Yi), the regular locus of Yi. Since 1yi ∈ Jyi , by Cartan
Theorem A [2] there exist g1, . . . , gm ∈ H0(Y, J) and δ1, . . . , δm ∈ HY,yi

such that ∑

1≤j≤m

gj,yiδj,yi = 1yi .

This yields the existence of j0 such that gj0 ∈ Gi. Thus Gi 6= ∅ for
i ≥ 1, and hence Gi is dense in H0(Y, J) for i ≥ 1. By Baire Theorem
there exists f ∈ ⋂

i≥1

Gi.

Thus H(Ỹ ) ∼= fH(Ỹ ). Since fH(Ỹ ) ⊂ H(Y ) ∈ (DN), it follows that
fH(Ỹ ) and hence H(Ỹ ) ∈ (DN).

(iii) Finally consider the following commutative diagram of finite proper
surjections of Stein spaces

Z
θ̃−−−−−−−−−−−−−−→ Ỹ

γ̃
y

y γ

X
θ−−−−−−−−−−−−−−→ Y

where Z = X × Y Ỹ is the fibre product of X and Ỹ and θ̃, γ̃ are canonical
projections.
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By (ii) H(Ỹ ) ∈ (DN) and by (i) H(Z) ∈ (DN). Since H(X) is a
subspace of H(Z), we have H(X) ∈ (DN). This completes the proof for
the sufficiency.

Since H(Y ) is a subspace of H(X), the necessity is trivial.

Corollary 1.2. Let X be a Stein space. Then H(X) ∈ (DN) if and only
if H(Z) ∈ (DN) for every irreducible branch Z of X and X has a finite
number of irreducible branches.

Proof. Let H(X) ∈ (DN). By Theorem 1.1, H(X̃) ∈ (DN), where
γ : X̃ → X is the normalization of X. Since every irreducible branch Z̃
of X̃ is open - closed in X̃ [2], it follows that H(Z̃) ∈ (DN). Given Z

an irreducible branch of X. Then there exists an irreducible branch Z̃
of X̃ such that γ(Z̃) = Z. Applying Theorem 1.1 to γ

∣∣
Z̃

: Z̃ → Z we
get H(Z) ∈ (DN). On the other hand, by the definition of the property
(DN), H(X) has a continuous norm. This means that there exists a
compact subset K of X such that

∥∥f
∥∥

K
= 0 for f ∈ H(X) implies that

f = 0. Hence by Cartan Theorem B, X has a finite number of irreducible
branches.

Conversely, assume that X has a finite number of irreducible branches
Z1, . . . , Zm and let H(Zi) ∈ (DN) for i = 1, . . . , m. For each i take an
irreducible branch Z̃i of X̃ such that γ(Z̃i) = Zi. Since Z̃i is open-closed
in X̃, it follows from the relations H(Zi) ∈ (DN) and from Theorem 1.1
that

H(X̃) =
∏

1≤i≤m

H(Z̃i) ∈ (DN)

Again by Theorem 1.1, H(X) ∈ (DN).

2. The property (DN) and extremal
plurisubharmonic functions

Let X be a complex space and E a subset of X. Define the function
ω(X, E, .) on X by

ω(X,E, x) = lim
y→x

sup
{

supϕ(y) : ϕ ∈ PSH(X), ϕ
∣∣
E
≤ 0, ϕ ≤ 1

}
.

In [13] Zaharjuta proved that if X is a Stein manifold, then H(X) ∈
(DN) if and only if there exists a compact set K in X such that

ω(X,K, x) = 0 for x ∈ X.
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The following theorem is an extension of this result to the case of Stein
spaces.

Theorem 2.1. Let X be a locally irreducible Stein space. Then H(X) ∈
(DN) if and only if there exists a compact set K in X such that

ω(X,K, x) = 0 for x ∈ X.

Proof. Let H(X) ∈ (DN). Then there exists p such that

∀q, 0 < µ < 1, ∃r(q, µ), c(q, µ) > 0 :

∥∥f
∥∥

q
≤ c

∥∥f
∥∥µ

r

∥∥f
∥∥1−µ

p
for f ∈ H(X).

As in [3, Proposition 1.4] we have

(1)
log

(|f(x)|/‖f‖p

)

log
(‖f‖r/‖f‖p

) ≤ µ

for x ∈ Kq and f ∈ H(X).

Now assume that ϕ ∈ PSH(X) with ϕ
∣∣
Kp

≤ 0 and ϕ ≤ 1. Since X is
Stein, by Fornaess and Narasimhan [3] there exists a decreasing sequence
of continuous plurisubharmonic functions ϕj on X such that

ϕj(x) ↓ ϕ(x) for x ∈ X.

Using Hartogs Lemma we may assume that

(ϕj − εj)
∣∣
Kp

≤ 0 and (ϕj − εj)
∣∣
Kr
≤ 1,

where εj ↓ 0. Again by the Steiness of X as in the regular case [7] for each
j ≥ 1, we can write

ϕj = lim
n→∞

max
1≤k≤mj

n

cn
jklog|fn

jk|,

where fn
jk ∈ H(X) and 0 < cn

jk < 1 for all j, k ≥ 1 and the convergence is
uniform on compact sets in X.

Without loss of generality we may assume that

cn
jklog|fn

jk| − 2εj ≤ 0 on Kp for j, k, n ≥ 1
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and
cn
jklog|fn

jk| − 2εj ≤ 1 on Kr for j, k, n ≥ 1.

Since

cn
jklog|fn

jk| − 2εj = cn
jklog

( ∥∥fn
jk

∥∥
r

exp(2εj/cn
jk)

)
×

log
( |fn

jk|
exp(2εj/cn

jk)

)

log
( ‖fn

jk‖r

exp(2εj/cn
jk)

)

≤
log

( |fn
jk|

exp(2εj/cn
jk)

)

log
( ‖fn

jk‖r

exp(2εj/cn
jk)

)

by (1) we get

(2) cn
jklog|fn

jk(x)| − 2εj ≤ µ for x ∈ Kq and j, k, n ≥ 1.

(2) yields

(3) ϕj(x)− 2εj ≤ µ for x ∈ Kq j ≥ 1.

From (3) we get as j →∞
(4) ϕ(x) ≤ µ for x ∈ Kq and 0 < µ < 1.

Hence, as µ → 0, it follows that

(5) ϕ(x) ≤ 0 for x ∈ Kq.

Since q is arbitrary, we have

ω(X,Kp, x) = 0 for x ∈ X.

Conversely, assume that ω(X, K, x) = 0 for some compact set K in X.
Then we can choose a holomorphic function δ̂ on X such that δ̂ is not
zero on every irreducible branch of X and the singular locus S(X) of X

is contained in the zero set Z(δ̂) of δ̂. Indeed, let {Xj} be the system of
irreducible branches of X. For each j ≥ 1 take

xj ∈ Xj \
( ⋃

k 6=j

Xk

⋃
S(X)

)
.
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Since {Xj} is locally finite, the set {xj} is discrete and hence Y =
{xj} ∪ S(X) is an analytic set in X. Define a holomorphic function σ on
Y by

σ(x) =
{

1 for x ∈ {xj}
0 for x ∈ S(X).

By Cartan Theorem B there exists δ̂ ∈ H(X) such that δ̂
∣∣
Y

= σ and
hence δ̂ is not zero on Xj for each j ≥ 1 and S(X) ⊆ Z(δ̂).

Now, we find a compact set L in X \ Z(δ̂) such that

(6) sup
K

ϕ ≤ sup
L

ϕ for each ϕ ∈ PSH(X).

By the desingularization theorem of Hironaka there exists a proper
holomorphic map γ from a complex manifold X̂ onto X such that Z(δ̂γ)
is a locally finite union of smooth hypersurfaces having normal crossings
everywhere. For each x ∈ K take z ∈ X̂ such that γ(z) = x. If z 6∈
Z(δ̂γ) we can take a sufficiently small neighbourhood Wz of z such that
Wz ∩Z(δ̂γ) = ∅. Put Lz = γ(∂Wz) and Vz = γ(Wz). Then Lz ∩Z(δ̂) = ∅
and

sup
Wz

ϕγ = sup
∂Wz

ϕγ for ϕ ∈ PSH(X)

or
sup
Vz

ϕ = sup
Lz

ϕ for ϕ ∈ PSH(X).

If z ∈ Z(δ̂γ), we choose a neighbourhood Wz of z in X̂ which is biholo-
morphic to the closed unit polydisc ∆

n
of Cn by a biholomorphic map θ

such that

∆
n ∩ θ

(
Z(δ̂γ)

)
=

p⋃

i=1

{
z = (z1, . . . , zn) : zi = 0

}
for some p.

Put Mz = ∂∆×∆n−1∪∆×∂∆×∆n−2∪ · · · ∪∆×∆× · · · × ∂∆︸ ︷︷ ︸
p times

×∆n−p,

and Lz = γθ−1(Mz), Vz = γ(Wz). Then Lz ∩ Z(δ̂) = ∅ and

sup
Wz

ϕγ = sup
θ−1(Mz)

ϕγ for ϕ ∈ PSH(X)

or
sup
Vz

ϕ = sup
Lz

ϕ for ϕ ∈ PSH(X).
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Since γ is proper, it follows that γ−1(K) is compact. Cover γ−1(K) by
a finite system of neighbourhoods Wz1 ,Wz2 , . . . ,Wzq

. Put

L =
q⋃

j=1

Lzj
.

Then
sup
K

ϕ ≤ sup
γ
( q⋃

j=1
Wzj

)ϕ = sup
L

ϕ for ϕ ∈ PSH(X)

and L ∩ Z(δ̂) = ∅.
By the inequality (6) and hypothesis, it follows that

ω(X,L, x) = 0 for x ∈ X.

On the other hand, by Zeriahi [14] we may assume that L is locally
L-regular. Take an increasing exhaustion sequence of compact sets Kp

with K1 = L. For each p ≥ 1 and x ∈ IntKp, put

ω̃(Kp, L, x) = lim
y→x

sup
{

sup ϕ(y) : ϕ ∈ PSH(X), ϕ
∣∣
L
≤ 0, ϕ

∣∣
Kp

≤ 1
}

and ω̃(Kp, L, x) = 0 for x ∈ X \ IntKp.

Since L is locally L-regular, we have

ω̃(Kp, L, .)
∣∣
L
≤ 0 for p ≥ 1

and hence the function ω̃ on X defined by

ω̃(x) = lim
p→∞

ω̃(Kp, L, x) for x ∈ X

satisfies the condition

ω̃ ∈ PSH(X), ω̃
∣∣
L
≤ 0 and ω̃ ≤ 1 on X.

This yields ω̃ = 0. By Hartogs Lemma for each q > 1 and 0 < µ < 1 there
exists r(q, µ) such that

ω̃(Kr, L, x) ≤ µ for x ∈ Kq.
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It follows that
log

(|f(x)|/‖f‖1
)

log
(‖f‖r/‖f‖1

) ≤ µ

for x ∈ Kq and f ∈ H(X). This means that

∥∥f
∥∥

q
≤ ∥∥f

∥∥µ

r
· ∥∥f

∥∥1−µ

1
for f ∈ H(X).

Hence H(X) ∈ (DN).

Theorem 2.2. Let X be a locally irreducible Stein space. Then H(X) ∈
(DN) if and only if every plurisubharmonic function ϕ on X which is
bounded from above is constant on every irreducible branch of X and X
has a finite number of irreducible branches.

Proof. Let H(X) ∈ (DN). By Corollary 1.2, X has a finite number of
irreducible branches. Given ϕ ∈ PSH(X) such that

sup
X

ϕ = M < ∞.

Let Z be an irreducible branch of X. By Corollary 1.2, H(Z) ∈ (DN),
and by Theorem 2.1, there exists a compact set K ⊂ Z such that

ω(Z,K, x) = 0

for x ∈ Z.

Let m = sup
K

ϕ. Applying the two constant theorem which is proved

as in the non-singular case [5] we have for x ∈ Z

ϕ(x) ≤ Mω(Z, K, x)−m
(
ω(Z,K, x)− 1

)
= m.

By the connectivity of Z and the maximum principle it follows that ϕ
is constant on Z.

Conversely, let X have a finite number of irreducible branches.
Choose a compact set K in X such that Int(K ∩ Z) 6= ∅ for every ir-
reducible branch Z of X. By the hypothesis

ω(X, K, x)
∣∣
Z

= 0 for x ∈ Z

and, hence, ω(X, K, x) = 0 for x ∈ X. By Theorem 2.1, H(X) ∈ (DN).
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3. Proof of Theorem A

(i) First we prove that H(X) ↪→ H(X \ S). It suffices to show that for
every compact set K in X there exists a compact set L in X \S for which

∥∥f
∥∥

K
≤ ∥∥f

∥∥
L

for all f ∈ H(X).

By the desingularization theorem of Hironaka there exists a proper
map γ from a complex manifold Z onto X. Since H2dimZ−1

(
γ−1(S)

)
=

H2dimX−1(S) = 0 and by [6], it follows that for every z ∈ γ−1(K) there

exists a neighbourhood Wz (which we can assume that Wz

θ∼= ∆
n
, the

closed unit polydisc in Cn) such that

θ−1
(
∆

n−1 × ∂∆
) ∩ γ−1(S) = ∅.

From the maximum principle we have, with W 1
z = θ−1

(
∆

n−1 × ∂∆
)
,

sup
Wz

|g| = sup
W 1

z

|g| for g ∈ H(Z).

This yields the existence of Wj = Wzj and W 1
j = W 1

zj
(j = 1, . . . , m)

such that

γ−1(K) ⊆
m⋃

j=1

Wj

and
sup
Wj

|g| ≤ sup
W 1

j

|g| for g ∈ H(Z) and j = 1, . . . , m.

Put

L = γ
( m⋃

j=1

W 1
j

)
.

This is a compact set in X for which

sup
K
|f | ≤ sup

L
|f | for f ∈ H(X)

and

L ∩ S = γ
( m⋃

j=1

W 1
j ∩ γ−1(S)

)
= ∅.
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(ii) Assume that H(X) ∈ (DN). Consider the normalization γ : X̃ →
X of X. By Theorem 1.1, H(X̃) ∈ (DN) and hence by Theorem 2.2 every
plurisubharmonic function on X̃ which is bounded from above is constant
on every irreducible branch of X̃. By the Steiness and the normality of X̃
each irreducible branch of X̃ \γ−1(S) is extended to an irreducible branch
of X̃ and each ϕ ∈ PSH

(
X̃ \ γ−1(S)

)
is extended to a ϕ̃ ∈ PSH(X̃).

Hence each ϕ ∈ PSH
(
X̃ \ γ−1(S)

)
which is bounded from above is con-

stant on every irreducible branch of X̃ \ γ−1(S).

Let
{
Kp

}
be an increasing exhaustion sequence of compact sets in

X̃ \ γ−1(S) with IntK1 6= ∅. For each p ≥ 1 and z ∈ IntKp put

ωp(z) = lim sup
z′→z

{
supϕ(z′) : ϕ ∈ PSH

(
X̃\γ−1(S)

)
, ϕ

∣∣
K1
≤ 0, ϕ

∣∣
Kp

≤ 1
}

and
ωp(z) = 0 for z ∈ (

X̃ \ γ−1(S)
) \ IntKp.

Then ωp are plurisubharmonic functions on X̃ \ γ−1(S) and they are
decreasing to ω ∈ PSH

(
X̃ \ γ−1(S)

)
. Since ωp are bounded from above

on X̃ \ γ−1(S) and IntK1 6= ∅ we have

ωp ≡ 0 for every p ≥ 1.

Hence ω ≡ 0.

Given q ≥ 1 and 0 < µ < 1. By Hartogs Lemma there exists r(q, µ)
such that

ωr(z) = ω(Kr,K1, z) ≤ µ for z ∈ Kq.

It follows that

log
( |f(z)|∥∥f

∥∥
1

)

log
(∥∥f

∥∥
r∥∥f

∥∥
1

) ≤ µ

for z ∈ Kq and f ∈ H
(
X̃ \ γ−1(S)

)
. This means that

∥∥f
∥∥

q
≤

∥∥f
∥∥µ

r

∥∥f
∥∥1−µ

1
for f ∈ H

(
X̃ \ γ−1(S)

)
.

Hence H
(
X̃ \ γ−1(S)

) ∈ (DN). On the other hand, by the inclusion
H(X \ S) ↪→ H

(
X̃ \ γ−1(S)

)
we also have H(X \ S) ∈ (DN).
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Conversely, assume that H(X \ S) ∈ (DN). By (i) we have

H(X) ↪→ H(X \ S).

Hence H(X) ∈ (DN).

4. Proof of Theorem B

Assume that H(Y ) ∈ (DN). Consider the commutative diagram

Z
θ̃−−−−−−−−−−−−−−→ Ỹ

γ̃
y

y γ

X
θ−−−−−−−−−−−−−−→ Y

where γ : Ỹ −→ Y is the normalization of Y and Z = X × θỸ the fiber
product of X and Ỹ for θ. By Theorem 1.1, H(Ỹ ) ∈ (DN). Since γ̃ is
proper, it suffices to show that H(Z) ∈ (DN). Let A denote the critical
set of θ̃. Consider θ̃ : A → Ỹ . Then θ̃(A) = B is a union of analytic sets of
dimension which is smaller than dim Ỹ [4]. Thus H2dimỸ−1(B) = 0. Put

Z0 = Z \ θ̃−1(B) and θ̃0 = θ̃
∣∣
Z0

: Z0 → Ỹ0 = Ỹ \B.

First check that Z0 is open and θ̃0 is open. Given z0 ∈ Z0. Then we
can find neighbourhoods U and V of z0 and ỹ0 = θ̃(z0) respectively and
a biholomorphism α : U → V ×W for some complex space W such that
the following diagram

U
α−−−−−−−−−−→V ×W

θ̃0 π

V

is commutative, where π : V ×W → V is the canonical projection. Then
θ̃(U) ∩ B = ∅ and hence V = θ̃(U) ⊆ Ỹ0. This means that Z0 and Ỹ0 are
open in Z and Ỹ respectively and hence B is a closed pluri-polar set in
Ỹ . Since H2dimỸ−1(B) = 0 and H(Ỹ ) ∈ (DN), by Theorem A, it follows
that H(Ỹ0) = H(Ỹ \B) ∈ (DN).

On the other hand, since

θ̃−1(ỹ) =
{

(x, ỹ) ∈ X × Ỹ : θ(x) = γ(ỹ)
} ∼= θ−1

(
γ(ỹ)

)
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we have θ̃−1(ỹ) is connected and H
(
θ̃−1(y)

) ∈ (DN) for all ỹ ∈ Ỹ . Given
ϕ ∈ PSH(Z) such that ϕ is bounded from above. Then by Theorem 2.2,

ϕ
∣∣
θ̃−1(ỹ)

= const for ỹ ∈ Ỹ .

Since θ̃0 is open, we can write ϕ
∣∣
Z0

= ψθ̃0 for some ψ ∈ PSH(Ỹ0)
which is bounded from above.

By H(Ỹ0) ∈ (DN) and Theorem 2.2, it follows that ψ is constant on
every irreducible branch of Ỹ0. Put

ψ∗(ỹ) = lim sup
ỹ′→ỹ,ỹ′∈Ỹ0

ψ(ỹ′) for ỹ ∈ Ỹ .

Since B is closed pluri-polar, by the normalization of Ỹ we have ψ∗ ∈
PSH(Ỹ ). Moreover, the intersection of every irreducible branch of Ỹ with
Ỹ0 is connected. Hence ψ∗ is constant on every irreducible branch of Ỹ .
For each z ∈ Z, z′ ∈ Z0 put ỹ = θ(z), ỹ′ = θ0(z′). By ϕ ∈ PSH(Z) we
have

ϕ(z) = lim sup
z′→z,z′∈Z0

ϕ(z′) = lim sup
z′→z,z′∈Z0

ψθ̃0 = lim sup
ỹ′→ỹ,ỹ′∈Ỹ0

ψ(ỹ′)

and hence ϕ is constant on every irreducible branch of Z. On the other
hand, since Z has a finite number of irreducible branches, by Theorem
2.2, it follows that H(Z) ∈ (DN).

Conversely, assume that H(X) ∈ (DN). Then every plurisubharmonic
function on X which is bounded from above is constant on every irre-
ducible branch of X. Since θ is surjective, this holds for Y . By Theo-
rem 2.2 and since Y has a finite number of irreducible branches we have
H(Y ) ∈ (DN).
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