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ON THE PROBLEM OF AIR POLLUTION

HOANG DINH DUNG AND NGUYEN CONG DIEU

Abstract. One of the first steps in studying problems of mathematical
modelling of environment pollution is the consideration of the correctness
of the posed problems. We shall investigate the existence and uniqueness
of the solutions under some general assumptions concerning the right-hand
member of equation describing an air pollution process, and we give some
exact solutions for nonstationary problems.

1. Introduction

Let D be a cylindrical region in the space R3 with sufficiently smooth
boundary. Denote by Ω the set D×(0, T ) = {(x, t) : x = (x1, x2, x3) ∈ D,
0 < t < T < ∞}.

The process of pollutant transport and diffusion in the atmosphere is
described by the following equations [4]

(1) LF =
∂ F

∂ t
− div λ5 F + div ~V F + σ F = f in Ω

(2) div ~V = 0

where F = F (x, t) is the concentration of pollutant, ~V = (u, v, w) is the
wind velocity, f = f(x, t) is the power of the source, λ = λ(x) is the
diffusion coefficient and σ = σ(x) is the rate of chemical decay transfor-
mation, and λ(x) and σ(x) are continuous functions in D, 0 ≤ λ(x) ≤ λ0 ;
0 ≤ σ(x) ≤ σ0 ; λ0, σ0 being constants.

The mixed problem of an air pollution process [4] consists of equations
(1)-(2) with the initial condition
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(3) F = I(x) for t = 0, x ∈ D,

and boundary conditions

F = Fc on the lateral surface ∂Dc if Vn = ~V .~n < 0,

~n is the outer normal to ∂D,

∂F

∂n
= 0 on ∂Dc if Vn ≡ V +

n ≥ 0,

∂F

∂x3
+ βF = 0 on the bedding surface ∂D0 (x3 = 0),

and Vn = 0, β = β(x) ∈ C(∂D0),

0 ≤ β(x) ≤ β0, β0 is a constant,
∂F

∂x3
= 0 on the upper base ∂DH and Vn = 0,(4)

where ∂Dc ∪ ∂D0 ∪ ∂DH = ∂D, t ∈ (0, T ).

We shall consider the correctness of the posed problem with some more
general boundary conditions for the equation (1) in an open cylinder Ω =
D × (0, T ), D ⊂ R`, (` is a natural number):

F = F1 on ∂D1 and Vn < 0,

∂F

∂n
= 0 on ∂D2 and Vn ≡ V +

n ≥ 0,(4’)

∂F

∂n
+ β F = 0 on ∂D3 and Vn = V +

n ≥ 0,

where ∂D1 ∪ ∂D2 ∪ ∂D3 = ∂D, t ∈ (0, T ).

2. Proof of uniqueness

We shall deal with the generalized solution in Ω of the problem (1)-(3),
(4’). Since here we consider the uniqueness for solution of a boundary
value problem of mathematical physics, the concentration F (x, t) always
satisfies the condition F (x, y) ≥ 0 ∀(x, y) ∈ Ω. It is well known that
for the first boundary condition, we may always assume without loss of
generality, that

(4”) F = 0 on ∂D1 × (0, T ).
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Let
^

H1(Ω) be the space of all functions F (x, t) which satisfy the con-
dition (4”) and which belong to L2(Ω) together with all their generalized

derivatives DF . The scalar product in
^

H1(Ω) is defined by the same way
as in H1(Ω). Let

^

H1(D) =
{

h : h ∈ H1(D), h = 0 on ∂D1

}
.

Following [3] we denote by L2(0, T ;
^

H1(D)) the space of all functions

F (x, t): t → F (x, t) of (0, T ) →
^

H1(D) such that

T∫

0

∥∥F (x, t)
∥∥2

^
H1(D)

dt < ∞.

Let f be a given function in L2(Ω) and I(x) ∈ L2(D).

Definition. A function F ∈ L2(0, T,
^

H1(D)) is said to be a generalized
solution in Ω of the problem (1)-(3), (4’) if it satisfies the following equality

∫

Ω

[− Fψt + λ∇F.∇ψ + ψdiv~V F + σFψ
]
dxdt(5)

+
∫

∂Ω3

λβFψdsdt =
∫

∂Ω0

Iψdx +
∫

Ω

fψdxdt,

for any ψ(x, t) ∈ H1(Ω),
∂ψ

∂t
∈ L2(Ω) with

(6) ψ
∣∣
∂ΩT∪∂Ω1

= 0,

where

∂Ω0 =
{
(x, t) : x ∈ D, t = 0

}
,

∂ΩT =
{
(x, t) : x ∈ D, t = T

}
,

∂Ωi =
{
(x, t) : x ∈ ∂Di, t ∈ (0, T )

}
, i = 1, 2, 3,

∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3 = ∂Ω =
{
(x, t) : x ∈ ∂D, 0 < t < T

}
.

It is easy to verify that the classical solution of the continuously differ-
entiable class for Problem (1)-(3),(4’) is its generalized solution.
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Theorem 1. The initial boundary problem (1)-(3), (4’) can’t have more

than one generalized solution in L2(0, T ;
^

H1(D)).

Proof. Let F satisfy the homogeneous integral equality corresponding to

(5) with f = 0 and I = 0. We shall show that F = 0 in L2(0, T,
^

H1(D)).
Consider the function ψ in Ω :

ψ(x, t) =

T∫

t

F (x, τ)dτ.

Then

ψ
∣∣
∂ΩT = 0, ψ

∣∣
∂Ω1

=

T∫

t

F
∣∣
∂Ω1

dτ = 0, ψt = −F.

Putting the function ψ into (5) we obtain

∫

Ω

[
F 2 + λ∇F ·

T∫

t

∇Fdτ − σψψt + div~V F

T∫

t

Fdτ
]
dxdt(7)

+
∫

∂Ω3

λβF

∫ T

t

F (x(s), τ)dτdsdt = 0.

One has

∫

Ω

λ(x)∇F (x, t) ·
T∫

t

∇F (x, τ)dτdxdt =
1
2

∫

D

λ
∣∣∣

T∫

0

∇Fdt
∣∣∣
2

dx ≥ 0,

∫

Ω

σψ(x, t)ψt(x, t)dxdt = −1
2

∫

∂Ω0

σψ2dx ≤ 0,

∫

∂Ω3

λβF (x(s), t)

T∫

t

F (x(s), τ)dτdsdt =
1
2

∫

∂Ω3

λβ
[ ∫ T

0

F (x(s), t)dt
]2

ds ≥ 0.

Applying the Gauss formula and taking into account that F (x, t) ≥ 0
∀(x, t) ∈ Ω, we get from assumption (4’)

(8)
∫

D

FdivF ∗~V dx =
∫

∂D2∪∂D3

F ∗V +
n ds ≥ 0,
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where F ∗ = F (x, t)F (x, τ), 0 ≤ t ≤ τ , 0 ≤ τ ≤ T . Therefore,

(8’)
∫

Ω

divF ~V

T∫

t

F (x, τ)dτdxdt ≥ 0.

From (7) it follows that

∫

Ω

F 2(x, t)dxdt ≤ 0.

Hence F = 0, which proves the theorem.

As an immediate consequence we obtain

Corollary 1. The mixed problem (1)-(3), (4’) has at most one classical
solution in the class of continuously differentiable functions.

3. Proof of existence

Like for the space H1(D) [5] it can be showed that
^

H1(D) is separable.

Therefore, there exists a “basis” G1, G2, . . . , Gm, . . . in
^

H1(D) and the
(finite) linear combinations of the elements Gk, k = 1, . . . , m, . . . are dense

in
^

H1(D). We will find an “approximate solution” of the problem (1)-(3),
(4’) in the form

(9) Fm(x, t) =
m∑

k=1

gkm(t)Gk(x),

where the gkm(t) ∈ H1(0, T ) are defined by the following system:

∫

D

{[∂Fm

∂t
+ div ~V Fm + σFm

]
G` + λ∇Fm · ∇G`

}
dx(10)

+
∫

∂D3

λβFmG`ds =
∫

D

fG`dx, ` = 1, 2, . . . , m

(11) Fm(x, 0) = Im(x).
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Here Im(x) is the orthogonal projection of I(x) on the space Vm (generated
by the system G1, G2, . . . , Gm):

Im(x) =
m∑

k=1

Im
k Gk(x),

and

(11’) Im(x) → I(x) as m →∞.

The system (10), (11) is a linear system of m differential equations with
constant coefficients :

Km
dgm

dt
+ Lmgm(t) = fm(t)

gm(0) = {Im
k }, k = 1, 2, . . . ,m,

where the matrix coefficients Km, Lm are defined by (10). Since

detKm = det ||(Gk, G`)|| 6= 0; k, ` = 1, 2, . . . , m,

the problem (10), (11) has a unique solution gm(t) = {gkm(t)}.
We now show that as m → ∞, Fm → F , where F is the generalized

solution of problem(1)-(3), (4’). To do this, we multiply (10) by g`m, sum
up over ` and integrate over (0, T ). Then we obtain

∫

Ω

[ ∂

∂t

(1
2
F 2

m

)
+ λ|∇Fm|2 + Fm div ~V Fm + σF 2

m]dxdt(12)

+
∫

∂Ω3

λβF 2
mdsdt =

∫

Ω

f.Fmdxdt.

In view of (11) we get

(13)
1
2

∫

Ω

∂

∂t
F 2

mdxdt =
1
2

∫

∂ΩT

F 2
mdx− 1

2

∥∥Im(x)
∥∥2

L2(D)
.

By analogy with (8),

(14)
∫

Ω

Fm div ~V Fmdxdt =
1
2

∫

∂Ω2∪∂Ω3

F 2
mV +

m dsdt ≥ 0.
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Let
^

H1(D) be endowed with the norm

(15)
∥∥F̂

∥∥^
H1(D)

=
( ∫

D

(λ|∇F̂ |2 + σF̂ 2)dx
)1/2

.

Summing up (12)-(15) we get

∥∥Fm(x, t)
∥∥2

L2(0,T ;
^
H1(D))

≤ 1
2

∥∥Im(x)
∥∥2

L2(D)
+

∫

Ω

|f | |Fm|dxdt

≤ 1
2

∥∥Im(x)
∥∥2

L2(D)
+

∥∥Fm

∥∥
L2(Ω)

·
∥∥f

∥∥
L2(Ω)

≤ 1
2

∥∥Im(x)
∥∥2

L2(D)
+

1
2

∥∥Fm

∥∥2

L2(0,T ;
^
H1(D))

+
1
2

∥∥f
∥∥2

L2(Ω)
.

Hence

(16)
∥∥Fm(x, t)

∥∥2

L2(0,T ;
^
H1(D))

≤
∥∥Im(x)

∥∥2

L2(D)
+

∥∥f
∥∥2

L2(Ω)
= C.

Thus, the set {Fm} is bounded in L2(0, T ;
^

H1(D)) and it is possible to
extract a subsequence (denote by {Fm} too) such that

(17) Fm → K(x, t) weakly in L2(0, T ;
^

H1(D)).

We shall show that K = F is the desired solution. To this end, we first
multiply both sides of (10) by ϕ(t), where

(18) ϕ(t), ϕ′(t) ∈ L2[0, T ], ϕ(T ) = 0.

Let ` be arbitrarily fixed. Setting ψ`(x, t) = ϕ(t)G`(x) and integrating
over (0, T ), by virtue of (11) we get, for m ≥ `,

∫

Ω

[
− Fm

∂ψ`

∂t
+ (div ~V Fm + σFm)ψ` + λ∇Fm.∇ψ`

]
dxdt

+
∫

∂Ω3

λβFmψ`dsdt =
∫

∂Ω0

Imψ`dx +
∫

Ω

fψ`dxdt.

(19)
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Further, since ` is arbitrary and the finite linear combinations of G` are

dense in L2(0, T ;
^

H1(D)), letting m → ∞ in (19) we obtain that K is
the generalized solution of the problem (1)-(3), (4’). So we obtain the
following result

Theorem 2. The mixed problem (1)-(3), (4’) admits a generalized solution

in L2(0, T ;
^

H1(D)). This solution satisfies the estimate (16).

Remark. When β0 ≤ β < 0 Theorem 2 can be proved similarly.

It is easy to verify that a generalized solution of the problem (1)-(3),
(4’) in the class of continuously differentiable functions (in the classical
sense) is a classical one.

4. Exact solution

Since the right-hand side f(x, t) (the power of source) of the differential
equation describing an air pollution process is often a density distribution
of masses concentrated at distinct points or on the surfaces, we next con-
sider the mixed problem (1)-(3), (4’) in the space of distributions.

Note that we have proved the uniqueness and existence of the solution
in the space of mixed distribution for differential operators with variable
coefficients corresponding to the generalized solution of the mixed problem
(1)-(3), (4’) [2].

Let Ω ⊂ R
1

+ × Rn = {(x, t) : x ∈ Rn, t ∈ [0,∞]} be an open set, ∂D
a bounded piecewise smooth two-sided surface. We now wish to find a
solution in D′(R1

+ ×Rn) of our mixed problem.

Assuming that ~V = ~const, λ, σ = const > 0, we obtain (1) in the
following form

(1’) PF =
∂F

∂t
− λ4F + ~V .∇F + σF = f in Ω.

We rewrite the condition on ∂D3 in the form

(4”’) lim
(x,t)→(xs,ts)

∂F

∂n
= −βF0(xs, ts), (y, τ) ∈ ∂Ω3,

where F0(y, τ) is a given continuous functions on ∂Ω3.

In accordance with the general theory [6] the differential equation cor-
responding to (1’) for the mixed problem (1’), (3) and (4’) (with (4”) and



ON THE PROBLEM OF AIR POLLUTION 35

(4”’) in D′(R1

+ ×Rn)) has the form

(20) PF̂ = f̂ +
_

I(x)× δ(t) + F̂3δ∂Ω = K

where F̂ is the extended distribution of F by zero onto Ω− = R1×R` \Ω,

(21) f̂ =
{

f, 0 < t < T, x ∈ D,

0, t < 0, x ∈ Rn,

provided f is a finite (with respect x) distribution on D, δ(t) is the Dirac
distribution, F̂3δ∂Ω is the generalized simple layer on ∂Ω with surface
density F̂3 uniquely defined by the function F̂0

∣∣
∂Ω3

, F̂0 is the extended
function of F0 by zero onto ∂Ω1∪∂Ω2, by the surface ∂Ω and the operator

P (.), and
_

I (x) is the extended distribution of I(x) by zero onto D− (the
complement of D with respect to Rn).

We consider the fundamental solution E(x, t) of (20) in D′(R1
+ ×Rn):

(22) PE = δ(x, t).

Applying the Fourier transform Fx to (22) we obtain

∂Fx[E](ξ)
∂t

+
[− i~V .~ξ + σ + λ|~ξ|2]Fx(E) = 1(ξ)× δ(t).

The solution in S′(R1
+ ×Rn) ⊂ D′(R1

+ ×Rn) of the last equation is

Fx[E](ξ, t) = θ(t)[i~V .~ξ−σ−λ|~ξ|2]t
e .

Therefore,

(23) E(x, t) = F−1
ξ [Fx(E)] =

θ(t)
(4λπt)n/2

exp
{
− [σt +

|x− ~V t|2
4λt

]
}

,

where θ(t) is the Heaviside unit function. Thus, the unique solution in
D′(R1

+×Rn) of the mixed problem (20), (3), (4’) is expressed by the form
of a “dispersion potential”

(24) F̂ = K ∗ E = f̂ ∗ E + [
_

I (x)× δ(t)] ∗ E + F̂3δ∂Ω
s∗ E.
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We next consider the summands of the dispersion potential. Let f̂ ∈
L2(Ω) and f̂ satisfy the following estimate in each strip 0 ≤ t ≤ T , x ∈ Rn:

(25) |f(x, t)| ≤ CT,ε(f)eε|x|2

for an arbitrary ε > 0, where the quantity CT,ε does not decrease with
respect to T . Then, in view of (21) one has

f1 = f̂ ∗ E =
(26)

T∫

0

∫

Rn

f̂(ξ, τ)
(4λπ(t− τ)n/2

exp
{
−

[
σ(t− τ) +

|(x− ξ)− ~V (t− τ)|2
4λ(t− τ)

]}
dξdτ.

It follows that the potential f1 satisfies the following estimate

(27) |f1(x, t)| ≤ Ct,ε(f)e2ε|x|2

(1− 16ελt)n/2
t.e4ε|~V |2t2 for 0 < t <

1
16ελ

·

Thus, for arbitrary A > 0,

(28) f1(x, t)
|x|<A−→
t→+0

0.

We now consider the surface dispersive potential f2:

(29) f2(x, t) = [
_

I (x)× δ(t)] ∗ E =
θ(t)e−σt

(4λπt)n/2

∫

Rn

_

I (y)e−
|x−y−~V t|2

4λt dy

where the density I(x) ∈ L2(D) is a finite function in D. Using the
equality

1
πn/2

∫

Rn

e−|ξ|
2
dξ = 1

we get

(30) lim
t→0

f2(x, t) = I(x).

The third summand f3 in (20) is the generalized potential of simple layer
on ∂Ω :

(31) f3(x, t) = F̂ δ∂Ω
s∗E =

∫ T

0

∫

∂D

F̂3(x−xs− y, t− ts− τ)E(y, τ)dsdτ,



ON THE PROBLEM OF AIR POLLUTION 37

where (x, t) ∈ Ω, (xs, ts) is an arbitrary fixed point on ∂Ω3 and

F̂3 =





+ β
Cn,D

F0(xs, ts)F̂0

∣∣
∂D3

, x ∈ ∂D3, t ∈ (0, T )

0, x ∈ ∂D1 ∪ ∂D2, t ∈ (0, T )

0, x ∈ D, t ≤ 0

Cn,D =

T∫

0

∫

∂D3

F0(−y,−τ)
∂E(y, τ)

∂ny
dsydτ

(32)

which depends on F̂0

∣∣
∂D3

and the dimension of D. One has

∂f3

∂n
= − β

Cn,D
F0(xs, ts)

T∫

0

∫

∂D3

F0(x− xs − y, t− ts − τ)
∂E(y, τ)

∂ny
dsydτ

where F0(y, τ) =
_

F0|∂D3 . Hence, we get

(33) lim
(x,t)→(xs,ts)

∂f3

∂n
= −βF0(xs, ts).

Finally, it is easy to verify that Pc`E = 0 for (x, t) ∈ Ω, where Pc`

is the differential operator P with classical derivatives. Hence, by virtue
of (21), (28), (30), (32) and (33), we find that the dispersive potential is
the classical solution of the mixed problem (1’), (3), (4’).

We have thus proved the following result

Theorem 3. The unique solution in D′(R1

+ × Rn) of the generalized
problem for air pollution (20), (3), (4’) is expressed by the form (24) of
a dispersive potential. The classical solution in the class of continuously
differentiable functions for the problem (1’),(3), (4’) is given as a sum of
three potentials

F =

t∫

0

∫

Rn

f(ξ, τ)
[4λπ(t− τ)]n/2

exp
{
− σ(t− τ) +

|(x− ξ)− ~V (t− τ)|2
4λ(t− τ)

}
dξdτ

+
θ(t)e−σt

(4λπt)n/2

∫

Rn

_

I (y) exp
{
− |x− y − ~V t|2

4λt

}
dy

+

T∫

0

∫

∂D

F̂3(y, τ)E(x− xs − y, t− ts − τ)dsydτ, (x, t) ∈ Ω.
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where the function E is defined by (23) and F̂3(x, t) by (32).

Remark. Finally, in the special case β = 0 we give in [1] a numerical
solution of the problem (1)-(3), (4).
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