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THE STRONG LAW OF LARGE NUMBERS
FOR TWO-DIMENSIONAL ARRAYS OF

ORTHOGONAL OPERATOR IN
VON NEUMANN ALGEBRA

NGUYEN VAN QUANG

Abstract. We investigate the strong law of large numbers for two-
dimensional arrays of pairwise orthogonal operators in a von Neumann
algebra A with faithful normal state. Some related results are considered.

1. Introduction and notations

The strong limit theorems for sequences of orthogonal operators in
von Neumann algebra have been considered by some authors. In [3] the
Randemacher-Menshov theorem has been proved. An other version of this
theorem can be found in [1]. The non-commutative extension of the Weyl
theorem was shown in [2]. In particular, the strong law of large numbers
was given by R. Jajte in [4].

The aim of this paper is to give the strong law of large numbers for two-
dimensional arrays of pairwise orthogonal operators in a von Neumann
algebra with faithful normal state. Our results extend some results of
[4], [5] to two-dimensional arrays and can be viewed as non-commutative
extensions of some results of [6].

Note that in the special case when the state is tracial, some results
on law of large numbers for sequences and for two-dimensional arrays of
independent measurable operators have been considered in [5], [8], [10].
In particular, one can find the law of large numbers of Hsu-Robbins type
for two-dimensional arrays of independent measurable operators in [11].

We start with some notations and definitions. Throughout of this pa-
per, A denote a von Neumann algebra with faithful normal state Φ, and
N is the set of all natural numbers.

For each self-adjoint operators X in A, we denote by e∆(X) the spectral
projection of X corresponding to the Borel subset ∆ of the real line R.
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Let X be a operator in A and X∗ the adjoint of X. Then X∗.X is a
positive operator in A and there exists the positive operator |X| in A such
that

|X|.|X| = X∗X.

|X| is called the positive square root of X∗X and is denoted by (X∗X)1/2.

Two operators X and Y in A are said to be orthogonal if Φ(X∗.Y ) = 0.
An array (Xmn, (m,n) ∈ N2) is said to be the array of pairwise orthogonal
operators in A if for all (m, n) ∈ N2, (p, q) ∈ N2, (m,n) 6= (p, q), Xmn

and Xpq are orthogonal.

Now let (Xmn(m,n) ∈ N2) be an array of operators in A. We say that
Xmn is convergent almost uniformly (a.u) to X ∈ A as (m.n) →∞ if for
each ε > 0 there exists a projection p ∈ A such that Φ(p) > 1 − ε and
‖(Xmn −X)p‖ → 0 as max(m,n) →∞.

An array (Xmn, (m,n) ∈ N2) ⊂ A is said to be convergent almost
completely (a.c) to an operator X ∈ A as (m.n) → ∞, if for each ε > 0
there exists an array (qmn, (m, n) ∈ N2) of projections in A such that

∞∑
m=1

∞∑
n=1

Φ(q⊥mn) < ∞ and ‖(Xmn −X)qmn‖ < ε

for all (m,n) ∈ N2 (where q⊥mn = E − qmn, E is the identity operator).

By the same method as for one-dimensional sequences we can prove
that if the state Φ is tracial and Xmn → X(a, c), then Xmn → X(a, u) as
(m,n) →∞ (see [4]).

For further information we refer to [7], [8], [10].

2. Preliminaries

In the sequel we’ll need the following lemmas

Lemma 2.1. Let (Ymn) be a two-dimensional array of pairwise orthogonal
operators in A. Put

tmn =
m∑

i=1

n∑

j=1

Yi,j .

Then there exists an array (Bmn) of positive operators in A such that

|tmn|2 ≤ (m + 1)(n + 1)Bmn for 1 ≤ i ≤ 2m 1 ≤ j ≤ 2n
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and

Φ(Bmn) ≤ (m + 1)(n + 1)
2m∑

i=1

2n∑

j=1

Φ(|Yij |2)

Proof. We start with the dyadic representations of i and j. Divide the
interval I = (, 2m] into intervals (0, 2m−1] and (2m−2, 2m], each of these
intervals into halves, and so on, we obtain in this way a sequence of parti-
tions of I. For a positive integer i ≤ 2m, we take its dyadic representation.
Then the interval (0, i] can be written as the sum of at most m disjoint
intervals I(i), each of which belongs to different partition; that is

(2.1) (0, i] =
m∑

k=0

I
(i)
k ,

where I
(i)
k is empty or element of kth partition. Analogously, we have

(2.2) (0, j] =
m∑

`=1

J
(i)
`

where j
(i)
` is empty or a element of `th partition of [0, 2n].

Using (2.1) and (2.2) we obtain

(0, i]× (0, j] =
m∑

k=0

n∑

`=0

I
(i)
k × J

(j)
` =

m∑

k=0

n∑

`=0

∆(ij)
k` ,

and therefore

tij =
i∑

u=1

j∑
v=1

Yuv =
m∑

k=0

n∑

`=0

( ∑

u,v∈∆i,j
k`

Yuv

)

Bmn =
∑

∆k`

∣∣∣
∑

(u,v)∈∆k`

Yuv

∣∣∣
2

,

where ∆k` = I × J , I (and J) runs over all intervals with appear as
the elements of the partitions of (0, 2m] (and of (0, 2n], respectively). By
Schwarz inequality, ∣∣∣

n∑

k=1

Zk

∣∣∣
2

≤ n
∑

|Zk|2.
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Thus,

|tij |2 ≤ (m + 1)(n + 1)
m∑

k=1

n∑

`=1




∣∣∣
∑

(u,v)∈∆ij

Yuv

∣∣∣
2


 ≤ (m + 1)(n + 1)Bmn.

Moreover, Bmn does not depend on i ∈ (0, 2m], j ∈ (0, 2n] and

Φ(Bmn) ≤
∑

∆k`

Φ




∣∣∣
∑

(u,v)∈∆k`

Yuv

∣∣∣
2


 =

∑

∆k`

∑

(u,v)∈∆k`

Φ(|Yuv|2)

= (m + 1)(n + 1)
2m∑

i=1

2n∑

j=1

Φ(|Yij |2)

which completes the proof.

Lemma 2.2. Let (Xmn) be an array of positive operators in A and (εmn)
an array of positive numbers. If

∞∑
m=1

∞∑
n=1

ε−1
mnΦ(Xmn) <

1
2

,

then there exists a projection p ∈ A such that for all m, n ∈ N

Φ(p) ≥ 1− 2
∞∑

m=1

∞∑
n=1

ε−1
mnΦ(Xmn) and ‖pXmnp‖ ≤ 2εmn.

For sequences this lemma was proved in [5], (2.2.13). It also holds for
arrays because all Xmn are positive operators and all εmn are positive
numbers.

Lemma 2.3. Let (Xmn) be an array of operators in A. If

(2.3)
∞∑

m=1

∞∑
n=1

Φ(|Xmn|2) < ∞,

then Xmn converge almost uniformly to zero as (m,n) →∞.
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Proof. Let ε > 0 be given. By (2.3) we can find an array (εmn) of positive
numbers such that εmn →∞ as (m,n) →∞ and

∞∑
m=1

∞∑
n=1

εmnΦ(|Xmn|2) < ε/2.

By Lemma 2.2 there exists a projection p ∈ A such that

Φ(p) ≥ 1− 2
∞∑

m=1

∞∑
n=1

ε−1
mnΦ(|Xmn|2) > 1− ε

‖p|Xmn|2p‖ ≤ 2εmn.

Thus 0 ≤ ‖Xmnp‖ = ‖p|Xmn|2p‖1/2 ≤ √
2εmn → 0 as (m,n) → ∞. This

means Xmn → 0 (a.u) as (m,n) →∞, and the proof is completed.

3. Strong law of large numbers

The main result of this section is following theorem

Theorem 3.1. Let A be a von Neumann algebra with a faithful normal
state Φ and let (Xmn) be a two-dimensional array of pairwise orthogonal
operators in A. If

∞∑
m=1

∞∑
n=1

( lgm lgn

mn

)2

Φ(|Xmn|2) < ∞

then

Smn =
1

m.n

m∑

i=1

n∑

j=1

Xij

converge almost uniformly to zero as (m, n) →∞.

Proof. Put

Smn =
1

m.n

m∑

i=1

n∑

j=1

Xij .

Let 2k < m ≤ 2k+1, 2` < n ≤ 2`+1. Then
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|Smn − S2k2` |2 =
[( 1

m.n
− 1

2k2`

) 2k∑

i=1

2`∑

j=1

Xij

(3.1)

+
1

m.n

( m∑

i=2k+1

n∑

j=2`+1

Xij

)
+

2k∑

i=1

n∑

j=2`+1

Xij +
m∑

i=2k+1

n∑

j=1

Xij

]2

≤ 4




( 1
m.n

− 1
2k+1

)2∣∣∣
2k∑

i=1

2`∑

j=1

Xij

∣∣∣
2

+
1

(m, n)2

∣∣∣
m∑

i=2k+1

n∑

j=2`+1

Xij

∣∣∣
2




+
4

(m,n)2




∣∣∣
2k∑

i=1

n∑

j=2`+1

Xij

∣∣∣
2

+
∣∣∣

m∑

i=2k+1

n∑

j=1

Xij

∣∣∣
2




We have

S(1) = 4




( 1
m.n

− 1
2k+1

)2∣∣∣
2k∑

i=1

2`∑

j=1

Xij

∣∣∣
2

+
1

(m,n)2

∣∣∣
m∑

i=2k+1

n∑

j=1

Xij

∣∣∣
2




≤ 4




( 1
2k+`+2

− 1
2k+`

)2∣∣∣
2k∑

i=1

2`∑

j=1

Xij

∣∣∣
2

+
1

22(k+1)

∣∣∣
m∑

i=2k+1

n∑

j=2`+1

Xij

∣∣∣
2




≤ 4


9.2−2(k+`+2)

∣∣∣
2k∑

i=1

2`∑

j=1

Xij

∣∣∣
2

+
1

2−2(k+1)

∣∣∣
m∑

i=2k+1

n∑

j=2`+1

Xij

∣∣∣
2




≤ 22−2(k+1)




∣∣∣
2k∑

i=1

2`∑

j=1

Xij

∣∣∣
2

+
∣∣∣

m∑

i=2k+1

n∑

j=2`+1

Xij

∣∣∣
2


 .

Applying Lemma 2.1 we obtain:

∣∣∣
m∑

i=2k+1

n∑

j=2`+1

Xij

∣∣∣
2

≤ (k + 2)(` + 2)Bk`

where Bk` is a positive operator independent of m ∈ (2k, 2k+1], n ∈
(2`, 2`+1) and

Φ(Bk`) ≤ (k + 1)(` + 2)
2k+1∑

i=2k+1

2`+1∑

j=2`+1

Φ(|Xij |2).
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Thus S(1) ≤ Dk,`, where Dk` ∈ A+ and

Φ(Dk`) ≤ 22−2(k+1)




2k∑

i=1

2`∑

j=1

Φ(|Xij |2)



+ (k + 2)(` + 2)
2k+1∑

i=2k+1

2`+1∑

j=2`+1

Φ(|Xij |2).

By the assumption

∞∑
m=1

∞∑
n=1

( lgm lgn

m.n

)2

Φ(|Xij |2) < ∞.

We have

∞∑

k=1

∞∑

`=1

Φ(Dk`) ≤
∞∑

k=1

∞∑

`=1

22−2(k+1) 2
k+`

k2`2

2k∑

i=1

2`∑

j=1

Φ(|Xij |2)
( lg i lg j

ij

)2

+
∞∑

k=1

∞∑

j=1

22−2(k+`) 2
2(k+`+2)(k + 2)2(` + 2)2

(k + 1)2(` + 2)2
·

2k+1∑

i=2k+1

2`+1∑

j=2`+1

Φ(|Xij |2)
( lg i lg j

ij

)2

≤
∞∑

k=1

∞∑

`=1

4
k2`2

∞∑

j=1

∞∑

i=1

Φ(|Xij |2)
( lg i lg j

ij

)2

(3.2)

+
∞∑

k=1

∞∑

`=1

C2

∞∑

i=2k+1

∞∑

j=2k+1

Φ(|Xij |2)
( lg i lg j

ij

)2

(C1 + C2)
∞∑

i=1

∞∑

j=1

Φ(|Xij |2)
( lg i lg j

ij

)2

< ∞

where C1 =
∞∑

k=1

∞∑
`=1

4
k2`2

and C2 is the constant satisfying

25(k + 1)2(` + 2)2

(k + 1)2(` + 2)2
< C2 (∀k, ∀`).



22 NGUYEN VAN QUANG

We now estimate the second term of (3.1). We have

∣∣∣
2k∑

i=1

n∑

j=2`

Xij

∣∣∣
2

=
2k∑

i=1

∣∣∣
n∑

j=2`+1

Xij

∣∣∣.

Applying proposition 4.4.2 of [5] for sequences (Xij), j ∈ N , i = 1, . . . , 2k,
we obtain ∣∣∣

∑

j=2`+1

Xij

∣∣∣
2

≤ (` + 2)Bi`

where Bi` is a positive operator independent of n ∈ (2`, 2`+1) and

∞∑

i=1

n−2(` + 2)Bi` ≤
∞∑

j=1

( lg j

j

)2

Φ(|Xij |2)

≤
∞∑

i=1

∞∑

j=1

( lg i lg j

ij

)2

Φ(|Xij |2) < ∞.

Put Bk` = (`+1)
2k∑
i=1

Bi`. Then Bk` depends only k, `,
∞∑

k=1

∞∑
`=1

Φ((mn)2Bk`) <

∞ and
∣∣∣

2k∑

i=1

n∑

j=2i+1

Xij

∣∣∣ ≤ Bk`.

Analogously, we can find a positive operator Bk` such that Bk` depends

only on k, `,
∞∑

k=1

∞∑
`=1

Φ((mn)−2Bk`) < ∞ and

∣∣∣
m∑

i=2k+1

2`∑

j=1

Xij

∣∣∣
2

=
2`∑

j=1

∣∣∣
m∑

j=1

Xij

∣∣∣
2

≤ Bk`

Thus

S(2) =
4

(mn)2




∣∣∣
2k∑

i=1

n∑

j=2`+1

Xij

∣∣∣
2

+
∣∣∣

m∑

i=2k+1

2k∑

j=1

Xij

∣∣∣
2




≤ 4
(mn)2

((Bk,`) + (Bk`)) = Dk`(3.3)
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where Dk` ∈ A and
∞∑

k=1

∞∑
`=1

Φ(Dk`) < ∞. Combining (3.1), (3.2). (3.3),

we get
|Smn − S2k2` |2 ≤ S(1) + S(2) ≤ Dk` + Dk` = Dk`

where Dk` ∈ A and
∞∑

k=1

∞∑
`=1

Φ(Dk`) < ∞. Moreover

∞∑

k=1

∞∑

`=1

Φ(|Sk
2 .2`|2) =

∞∑

k=1

∞∑

`=1

1
22(k+`)

2k∑

i=1

2`∑

j=1

Φ(|Xi|2)

∞∑

k=1

∞∑

`=1

1
22(k+`)

22(k+`)

k2`2

2k∑

i=1

2`∑

j=1

Φ(|Xi|2)
( lg i lg j

ij

)2

< ∞.

Using the Lemma 2.3 for (Smn − Sk
2 .2`) and (Sk

2 .2`) we obtain

Smn = (Smn − Sk
2 .2`) + Sk

2 .2` → 0 + 0 (a.u) as

2k2` < m.n < 2k+1.2`+1 → 0.

This completes the proof.

Under some conditions stronger than those of Theorem 3.1 we can
obtain the almost completely convergence of the averages. Namely, it is
easy to prove the following theorem.

Theorem 3.2. Let (Xmn) be an array of pairwise orthogonal operators
in A. If there exists an array (amn) of positive numbers such that amn ↓ 0
as (m,n) → 0 and

(3.4)
∞∑

i=1

∞∑

j=1

aijΦ(|Xij |2) < ∞

(3.5)
∞∑

i=1

∞∑

j=1

1
(ij)2aij

< ∞

Then
1

mn

∞∑

i=1

∞∑

j=1

Xij → 0 (a.c) as (m,n) →∞.
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Proof. Put

Smn =
1

mn

m∑

k=1

n∑

j=1

Xij

Then

Φ(|Smn|2) =
1

(m, n)2

m∑

i=1

n∑

j=1

Φ(|Xij |2)

≤ 1
(m, n)2.amn

m∑

i=1

n∑

j=1

aijΦ(|Xij |2)

Using (3.4) and (3.5) we obtain

∞∑
m=1

∞∑
n=1

Φ(|Smn|2) ≤
∞∑

m=1

∞∑
n=1

1
(m,n)2.amn

m∑

i=1

n∑

j=1

aijΦ(|Xij |2)

≤
( ∞∑

m=1

∞∑
n=1

1
(m,n)2amn

)( ∞∑

i=1

∞∑

j=1

aijΦ(|Xij |2)
)

< ∞.

Now, let ε > 0 be given. Put qmn = e[0,ε2](|Smn|2). By Lemma 2.2 of
[8], we have

‖|Smn|2qmn‖ < ε2.

Thus

‖|Smn|qmn‖ = (‖Smnqmn‖2)1/2 ≤ ‖qmn|Smn|2qmn‖1/2

≤ ‖|Smn|2qmn‖)1/2 < ε ∀m ∈ N, ∀n ∈ N.

Moreover ∞∑
m=1

∞∑
n=1

Φ(q⊥mn) ≤ ε2
∞∑

m=1

∞∑
n=1

Φ(|Smn|2) < ∞.

This means that

Smn =
1

mn

m∑

i=1

n∑

j=1

Xij

converges almost completely to zero as (m, n) →∞, which completes the
proof.
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