ON CERTAIN STABLE WEDGE SUMMANDS OF $B(Z/p)_+^n$

NGUYEN GIA DINH

ABSTRACT. By using representation theory and explicit idempotents in the group ring $F_p[GL_n(Z/p)]$, we give a new splitting of $B(Z/p)^n_+$ into p-1 stable wedge summands in which the numbers of occurrences of the indecomposable stable wedge summands are known. As a consequence, we find an information on the Cartan matrices of $F_p[GL_n(Z/p)]$ and $F_p[M_n(Z/p)]$. Moreover we point out the occurrence of some indencomposable stable wedge summands of $B(Z/p)^n_+$ in the Campbell-Selick summands.

1. INTRODUCTION

Let p be a prime number, P an abelian p-group, and BP_+ its classifying space with a disjoint basepoint. One of the most, significant problems in homotopy theory at present is the problem of finding a stable splitting

$$BP_+ \simeq X_1 \lor X_2 \lor \cdots \lor X_N$$

into wedge summands, completed at p. With Carlsson's solution of the Segal Conjecture [1], this topological problem is reduced to the pure algebraic problem of writing the identity of the Burnside rings as a sum of orthogonal idempotents. It suffices to write the identity of the ring F_p [End(P)] as a sum of orthogonal idempotents [6]. This can be reduced to the special case of an elementary abelian p-group [8]. Harris and Kuhn have given a splitting of $B(Z/p)^n_+$ into indecomposable stable wedge summands which is equivalent to a decomposition of 1 into primitive orthogonal idempotents in $F_p[M_n(Z/p)]$ [8]. This splitting is finest, but in general most of the idempotents have not yet been known explicitly. Campbell and Selick have given a natural splitting of $H^*(B(Z/p)^n; F_p)$ into a direct sum of $(p^n - 1)$ modules over the Steenrod algebra \mathcal{A} [3]. Then $B(Z/p)^n_+$ is splitted into $(p^n - 1)$ stable wedge summands that are called Campbell - Selick summands. Harris has pointed out the existence of the corresponding idempotents in $F_p[G]$, where G is a certain subgroup of

Received June 18, 1994; in revised form December 1, 1995.

 $GL_n(Z/p)$ [7], but they also have not been described explicitly. Also in [7], Harris gives a splitting of $B(Z/p)^n_+$ into stable wedge summands by constructing explicitly the primitive orthogonal idempotents in $F_p[F_{p^n}^*]$. However, the numbers of occurrences of the indecomposable summands in these summands are very difficult to determine.

In this paper, we construct explicitly the primitive orthogonal idempotents which sum to 1 in $F_p[F_p^*]$. From that we obtain a stable splitting of $B(Z/p)_+^n$ into p-1 wedge summands in which the multiplicities of the indecomposable summands in these summands are known. As a consequence, we find an information on the Cartan matrices of $F_p[GL_n(Z/p)]$ and $F_p[M_n(Z/p)]$. Moreover, we describe the occurrence of some stable wedge summands of $B(Z/p)_+^n$ in the Campbell-Selick summands. In particular, when p = 2, every Campbell-Selick summand contains a copy of the Steinberg summand.

I would like to express special thanks to my supervisor Professor Huynh Mui for his generous help and inspiring guidance.

2. IRREDUCIBLE REPRESENTATIONS OF $M_n(Z/p)$, $GL_n(Z/p)$ and $F_{p^n}^*$ over F_p

In [8], Harris and Kuhn follow the constructions of the irreducible representations of $F_p[M_n(Z/p)]$ and $F_p[GL_n(Z/p)]$ as given by James and Kerber in chapter 8, particularly Exercise 8.4 of [9].

A nonincreasing sequence $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n)$ of nonnegative integers whose sum is m is called a partition of m. This partition α can be illustrated by the corresponding Young diagram $[\alpha]$, which consists of mnodes x placed in rows. The i th row of $[\alpha]$ consists of α_i nodes, $1 \leq i$, and all the rows start in the same column. The lengths α'_i of the columns of $[\alpha]$ form another partition $\alpha' = (\alpha'_1, \alpha'_2, \ldots)$ of m. This partition α' is called the partition associated with α . An α -tableau arises from $[\alpha]$ by replacing the nodes x of $[\alpha]$ by the points i of $\{1, \ldots, m\}$. A generalized Young tableau of shape $[\alpha]$, and content $(\beta_1, \beta_2, \ldots)$ arises from $[\alpha]$ by replacing the nodes of the diagram by positive integers in such a way that the integer i occurs exactly β_i times. A generalized Young tableau is said to be semistandard if the numbers are nondecreasing along each row and strictly increasing down each column.

Let W be the n-dimensional vector space over the arbitrary field F with basis w_1, w_2, \ldots, w_n on which $GL_n(F)$ acts in the natural way. Let $L^{(m)}$ denote the m-fold tensor product of W. $GL_n(F)$ acts on $L^{(m)}$ by the diagonal action and S_m acts on $L^{(m)}$ by place permutations of the subscripts.

For a given partition $\alpha = (\alpha_1, \ldots, \alpha_n)$ of m, let

$$w^{\alpha} = w_1 \otimes \cdots \otimes w_{\alpha'_1} \otimes w_1 \otimes \cdots \otimes w_{\alpha'_2} \otimes \cdots \otimes w_1 \otimes \cdots \otimes w_{\alpha'_k},$$
$$\mathcal{V}^{\alpha} = \sum_{\pi \in S_{\alpha'_1} \times \cdots \times S_{\alpha'_k}} (\operatorname{sgn} \pi) \pi,$$

where $(\alpha'_1, \ldots, \alpha'_k)$ is the partition associated with α . If charF = 2 and α is 2-singular (i.e., $\alpha_{i+1} = \alpha_{i+2} > 0$ for some $i \ge 0$), let

$$W^{\alpha} = \left\{ w \in L^{(m)} | sw = 0 \text{ for all } s \in FS_m \text{ such that } s\mathcal{V}^{\alpha}w^{\alpha} = 0 \right\} \cap \mathcal{V}^{\alpha}L^{(m)}.$$

In all other cases, let

$$W^{\alpha} = \left\{ w \in L^{(m)} \mid sw = 0 \text{ for all } s \in FS_m \text{ such that } s\mathcal{V}^{\alpha}w^{\alpha} = 0 \right\}.$$

Since the action of $GL_n(F)$ commutes with the action of S_m on $L^{(m)}$, W^{α} is a $GL_n(F)$ -module. It is called the Weyl module associated to α .

With each α -tableau T (in general containing repeated entries), we associate a tensor w_T in $L^{(m)}$ as follows. Let $T(1), T(2), \ldots, T(m)$ be the entries in T, reading down successive columns. Then define $W_T = w_{T(1)} \otimes w_{T(2)} \otimes \cdots \otimes w_{T(m)}$.

Two tableaux T_1 and T_2 are said to be row equivalent if T_2 can be obtained from T_1 by permuting the order of appearance of the numbers in each row of T_1 .

If T is an α -tableau, let

$$E_T = \mathcal{V}^{\alpha} \sum \{ w_{T_1} \mid T_1 \text{ is row-equivalent to } T \}.$$

Then $\{E_T || T \text{ is a semistandard } \alpha\text{-tableau}\}$ is a basis for W^{α} ([9], 8.1.16).

On W^{α} there exists a bilinear form ϕ^{α} such that $\phi^{\alpha}(mx, y) = \phi^{\alpha}(x, m^{t}y)$ for $m \in M_{n}(F)$, and $x, y \in W^{\alpha}(m^{t}$ is the transpose of m). Let

$$W^{\alpha}_{\perp} = \left\{ w \in W^{\alpha} \mid \phi^{\alpha}(w, v) = 0 \text{ for all } v \in W^{\alpha} \right\}.$$

Then W_{\perp}^{α} is a $M_n(F)$ -module. Let $\lambda_i = \alpha_i - \alpha_{i+1}$ with $1 \leq i \leq n-1$ and $\lambda_n = \alpha_n$. Then we have the sequence $\lambda = (\lambda_1, \ldots, \lambda_n)$ and we can write $S_{(\lambda_1, \ldots, \lambda_n)}$ or $S_{(\lambda)}$ instead of $W^{\alpha}/W_{\perp}^{\alpha}$. Conversely, for each sequence $\lambda = (\lambda_1, \ldots, \lambda_n)$ of nonnegative integers, there exists a unique sequence $\alpha = (\alpha_1, \ldots, \alpha_n)$ satisfying $\alpha_i - \alpha_{i+1} = \lambda_i$ $(1 \le i \le n-1)$ and $\alpha_n = \lambda_n$. Then α is a partition of m_{λ} , where $m_{\lambda} = \lambda_1 + 2\lambda_2 + \ldots + n\lambda_n$. Let

$$\Lambda = \Big\{ (\lambda_1, \dots, \lambda_n) \, \| \, 0 \le \lambda_k \le p - 1, \ 1 \le k \le n \Big\},$$

$$\Lambda' = \Big\{ (\lambda_1, \dots, \lambda_n) \, \| \, 0 \le \lambda_k \le p - 1, \ 1 \le k \le n - 1, \ 0 \le \lambda_n \le p - 2 \Big\}.$$

We obtain the following results in the case $F = F_p$.

Theorem 2.1 [8, §6]. Let $S'_{(\lambda)} = Res^{M_n}_{GL_n}(S_{(\lambda)})$. Then

$$\operatorname{Irr}(F_p[M_n(Z/p)]) = \{S_{(\lambda)} \mid \lambda \in \Lambda\},\$$

$$\operatorname{Irr}(F_p[GL_n(Z/p)]) = \{S'_{(\lambda)} \mid \lambda \in \Lambda'\}.$$

Denote the stable summand of $B(Z/p)^n_+$ corresponding to $S_{(\lambda)}$ (resp. $S'_{(\lambda)}$) by $X_{(\lambda)}$ (resp. $X'_{(\lambda)}$). Particularly, let M(n) be the summand corresponding to the Steinberg module $S'_{(p-1,\ldots,p-1,0)}$ (it is also called the Steinberg summand). Then $M(n) \simeq L(n) \vee L(n-1)$, where $L(n) = \sum_{k=1}^{n} SP^{p^n}(S^0)/SP^{p^{n-1}}(S^0)$ and $SP^k(S)$ denotes the k th symmetric product of the sphere spectrum S [11].

Theorem 2.2 [8, §6].

(i) $B(Z/p)_{+}^{n} \simeq \bigvee_{\lambda \in \Lambda} \dim S_{(\lambda)} X_{(\lambda)}, \ B(Z/p)_{+}^{n} \simeq \bigvee_{\lambda \in \Lambda'} \dim S'_{(\lambda)} X'_{(\lambda)},$ (ii) $X_{(\lambda_{1},\dots,\lambda_{n-1},0)} \simeq X_{(\lambda_{1},\dots,\lambda_{n-1})},$ (iii) $X'_{(\lambda_{1},\dots,\lambda_{n})} \simeq X_{(\lambda_{1},\dots,\lambda_{n})}$ if $0 < \lambda_{n} < p - 1,$ (iv) $X'_{(\lambda_{1},\dots,\lambda_{n-1},0)} \simeq X_{(\lambda_{1},\dots,\lambda_{n-1},0)} \bigvee X_{(\lambda_{1},\dots,\lambda_{n-1},p-1)}.$

Corollary 2.3.

(i) dim
$$S'_{(\lambda_1,\dots,\lambda_n)} = \dim S_{(\lambda_1,\dots,\lambda_n)}$$
 if $1 \le \lambda_n \le p-2$, and
dim $S'_{(\lambda_1,\dots,\lambda_{n-1},0)} = \dim S_{(\lambda_1,\dots,\lambda_{n-1},0)} = \dim S_{(\lambda_1,\dots,\lambda_{n-1},p-1)}$,
(ii) dim $S_{(\lambda_1,\dots,\lambda_k)} \le \dim S_{(\lambda_1,\dots,\lambda_k,0,\dots,0)}$.

Proof. (i) follows from Theorem 2.2 and the Krull-Schmidt Theorem. (ii) follows from 8.1.16 and 8.3.7 of [9].

In F_{p^n} choose an element ω such that ω generates the cyclic group of units in F_{p^n} and $\{\omega, \phi(\omega), \ldots, \phi^{n-1}(\omega)\}$ forms a basis for F_{p^n} over F_p [4],

where $\phi(a) = a^p$ is the Frobenius. Let $p(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + x^n$ be the minimal polynomial for ω . Let

$$\theta = \begin{pmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & -a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -a_{n-1} \end{pmatrix}$$

be the $n \times n$ matrix over F_p representing multiplication by ω in the basis $\{1, \omega, \ldots, \omega^{n-1}\}$. Since ω is a generator of $F_{p^n}^*$, we see that θ has order $p^n - 1$ in $GL_n(Z/p)$. Therefore we can consider

$$F_{p^n}^* = \langle \theta \rangle \subseteq GL_n(Z/p).$$

Since $F_{p^n}^*$ is abelian and p does not divide the order of $F_{p^n}^*$, there are $p^n - 1$ distinct one-dimensional representations of $F_{p^n}^*$ defined over F_{p^n} . Label them by $R_j, j \in \mathbb{Z}/(p^n - 1)$, with $R_j(\theta) = \omega^j$. Explicit idempotents in $F_{p^n}[F_{p^n}^*]$ associated to these are $e_j = -\sum_{k=0}^{p^n-2} \omega^{-kj} \theta^k$ [2, 33.8].

We let $Z/n = \langle \phi \rangle$ act on $Z/(p^n - 1)$ by $\phi(i) = ip$. Let J_i be the orbit containing i, and let I be a set consisting of one element from each orbit. The cardinality of J_i is z_i , where z_i is the smallest positive exponent k with $ip^k \equiv i \pmod{p^n - 1}$. By defining $f_i = \sum_{j \in J_i} e_j$, with $i \in I$,

Harris has proved that for each $i \in I$, f_i is an idempotent in $F_p[F_{p^n}^*]$ and $\{F_p[F_{p^n}^*]f_i \mid i \in I\}$ is a full set of irreducible representations $F_{p^n}^*$ over F_p [7, 3.5].

Remark 2.4. In [3] Campbell and Selick give a very natural splitting of $H^*(B(Z/p)^n; F_p)$ into a direct sum of $(p^n - 1)$ modules over the mod-p Steenrod algebra \mathcal{A} , called the weight summands, $M_n(j)$ when p = 2 and $ME_n(j)$ when p > 2 for $j \in Z/(p^n - 1)$. These weight summands give a splitting of $B(Z/p)^n_+$ into $(p^n - 1)$ stable wedge summands for which Harris uses the notation $Y_n(j)$ for $j \in Z/(p^n - 1)$, where $Y_n(j) \simeq Y_n(j')$ for all $j, j' \in J_i$, and he calls them the Campell-Selick summands [7]. Let $\widehat{Y}_n(i) = \bigvee_{j \in J_i} Y_n(j)$. Then $\widehat{Y}_n(i) \simeq f_i B(Z/p)^n_+$ [7, 4.4] and

$$\widehat{Y}_n(i) \simeq \bigvee_{\lambda \in \Lambda'} z_i a'_{\lambda i} X'_{(\lambda)},$$

where $a'_{\lambda i}$ is the number of times the representation $F_p[F^*_{p^n}]f_i$ occurs in a composition series for $\operatorname{Res}_{F^*_{n^n}}^{GL_n}(S'_{(\lambda)})$ [7, 4.6].

3. Main results

Definition 3.1. For i = 0, 1, ..., p - 2, let $g_i = \sum_{j \equiv i \pmod{p-1}} e_j$.

Proposition 3.2.

(i) $g_i \in F_p[F_p^*]$.

(ii) $\{F_p[F_p^*]g_i \mid 0 \le i \le p-2\}$ is a full set of irreducible representations of F_p^* over F_p .

 $\begin{array}{l} \textit{Proof. (i) We have } g_i = -\sum_{k=1}^{p^n - 1} \left(\sum_{l=0}^{q-1} \omega^{-k(i+l(p-1))} \right) \theta^k \text{, where } q = \frac{p^n - 1}{p-1} \\ (\equiv 1(\text{mod}p))\text{, and} \\ \sum_{l=0}^{q-1} \omega^{-k(i+l(p-1))} = \begin{cases} 0 & \text{if } q \not \mid k, \\ q \omega^{-ki} & \text{if } q \mid k. \end{cases} \end{array}$

Hence $g_i = -\sum_{j=1}^{p-1} \omega^{-q_{ij}} \theta^{q_j}$. Since $\omega^q \in F_p$ and $\theta^q \in F_p^*$, we have $g_i \in F_p[F_p^*]$.

(ii) It is clear that the elements g_i are orthogonal idempotents which sum to the identity and $F_p[F_p^*]$ has p-1 distinct one dimensional representations.

Remark 3.3. Let $Z_n(i) = g_i B(Z/p)_+^n$. Then

$$B(Z/p)^n_+ \simeq \bigvee_{\substack{0 \le i \le p-2 \\ j \in I \\ j \equiv i \pmod{p-1}}} \widehat{Y_n}(j) \simeq \bigvee_{\substack{\lambda \in \Lambda' \\ j \equiv i \pmod{p-1}}} \bigvee_{\substack{j \in I \\ j \equiv i \pmod{p-1}}} \sum_{\substack{\lambda \in \Lambda' \\ j \equiv i \pmod{p-1}}} \sum_{\substack{\lambda \in \Lambda' \\ j \equiv i \pmod{p-1}}} \sum_{\substack{j \in I \\ z_j a'_{\lambda j}} X'_{(\lambda)}.$$

Lemma 3.4. The eigenvalues of θ acting on the vector space $F_p[F_{p^n}^*]f_i$ are

$$\{\omega^i,\omega^{ip},\ldots,\omega^{ip^{s_i-1}}\}.$$

Proof. The action of θ on $F_p[F_{p^n}^*]f_i$ has ω^j as an eigenvalue if and only if $F_{p^n}[F_{p^n}^*]e_j$ is a composition factor of $F_{p^n}[F_{p^n}^*]f_i$. This happens if and only if $e_jf_i \neq 0$ [2, 54.12]. And since the e_j are orthogonal, this happens if and only if $j \in J_i$.

Lemma 3.5. The eigenvalues for the action of θ on the Weyl module W^{α} are $\omega^{\beta(T)}$ where T is a semistandard α -tableau of content $(\beta_1, \ldots, \beta_n)$ and $\beta(T) \equiv \left(\sum_{k=1}^n p^{k-1}\beta_k\right) \pmod{p^n-1}$.

Proof. Since the eigenvalues of θ are $\omega, \omega^p, \ldots, \omega^{p^{n-1}}$, the eigenvalues for the actions of θ and diag $(\omega, \omega^p, \ldots, \omega^{p^{n-1}})$ are the same. The lemma follows from [9, 8.1.18].

Lemma 3.6. The eigenvalues for the action of θ on $S_{(\lambda)}$ are ω^j with $j \equiv m_{\lambda} \pmod{p-1}$.

Proof. Let $\alpha = (\alpha_1, \ldots, \alpha_n)$ be the partition of m_{λ} . By Lemma 3.5 we see that the eigenvalues for the action of θ on W^{α} is $\omega_{k=1}^{\sum p^{k-1}\beta_k}$. Here $m_{\lambda} = \sum_{k=1}^n \beta_k \equiv \left(\sum_{k=1}^n p^{k-1}\beta_k\right) \pmod{p-1}$. The conclusion follows from the fact that S_{λ} is a composition factor of W^{α} .

Theorem 3.7.

$$Z_{n,1}(i) \simeq \bigvee_{\substack{\lambda \in \Lambda' \\ m_{\lambda} \equiv i \pmod{p-1}}} \left(\dim S'_{(\lambda)}\right) X'_{(\lambda)} ,$$
$$Z_{n,1}(i) \simeq \bigvee_{\substack{\lambda \in \Lambda \\ m_{\lambda} \equiv i \pmod{p-1}}} \left(\dim S_{(\lambda)}\right) X_{(\lambda)} .$$

Proof. By Remark 3.3, $X'_{(\lambda)}$ is a summand of $Z_n(i)$ if and only if there exists $j \in I$ such that $j \equiv i \pmod{p-1}$ and $a'_{\lambda j} \neq = 0$. By Lemma 3.4, Lemma 3.6 and Remark 2.4, $\{\omega^j, \ldots, \omega^{jp^{z_j-1}}\} \subseteq \{\omega^k \mid k \equiv m_\lambda \pmod{p-1}\}$ and $j \equiv i \pmod{p-1}$ for some $j \in I$. It follows that $m_\lambda \equiv i \pmod{p-1}$. Hence

$$\sum_{\substack{v \in I \\ v \equiv i \pmod{p-1}}} z_v a'_{\lambda v} = \begin{cases} \dim S'_{(\lambda)} \text{ if } m_\lambda \equiv i \pmod{p-1}, \\ 0 \text{ otherwise }. \end{cases}$$

The proof of the first part is completed. The second part is a consequence of Theorem 2.2, Lemma 2.3 and the first part.

Corollary 3.8.

$$F_p[GL_n(Z/p)]g_i \cong \bigoplus_{\substack{\lambda \in \Lambda' \\ m_\lambda \equiv i \pmod{p-1}}} \left(\dim S'_{(\lambda)}\right) P'_{(\lambda)} ,$$

$$F_p[M_n(Z/p)]g_i \cong \bigoplus_{\substack{\lambda \in \Lambda \\ m_\lambda \equiv i \pmod{p-1}}} \left(\dim S_{(\lambda)}\right) P_{(\lambda)} ,$$

where $P'_{(\lambda)}$ (resp. $P_{(\lambda)}$) is the projective cover of $S'_{(\lambda)}$ (resp. $S_{(\lambda)}$).

Proof. The first part is immediate from Theorem 3.7 and [7, 3.8]. The second part follows Theorem 3.7 and the Krull-Schmidt Theorem.

Corollary 3.9. For any $1 \le k \le n$ and $0 \le i \le p - 2, Z_n(i)$ contains a copy of the summand $Z_k(i)$.

Proof. This follows from Theorem 3.7, Theorem 2.2 (ii) and Lemma 2.3 (ii).

Lemma 3.10. The eigenvalues for the actions of θ on $F_p[GL_n(Z/p)]g_i$ and $F_p[M_n(Z/p)]g_i$ are ω^j with $j \equiv i \pmod{p-1}$.

Proof. ω^j is an eigenvalue for the action of θ on $F_p[GL_n(Z/p)]g_i$ if and only if $F_{p^n}[F_{p^n}^*]e_j$ is a composition factor of $F_{p^n}[GL_n(Z/p)]g_i$ as a $F_{p^n}^*$ -module. This is equivalent to $e_j(F_{p^n}[GL_n(Z/p)]g_i) \neq 0$ [2, 54.12], which holds if and only if $e_jg_i \neq 0$ (since g_i belongs to the center of $F_{p^n}[M_n(Z/p)]$) i.e., $j \equiv i \pmod{p-1}$.

Theorem 3.11. If $S'_{(\mu)}$ (resp. $S_{(\mu)}$) is a composition factor of $P'_{(\lambda)}$ (resp. $P_{(\lambda)}$), then $m_{\mu} \equiv m_{\lambda} \pmod{p-1}$.

Proof. $P'_{(\lambda)}$ (resp. $P_{(\lambda)}$) is a summand of $F_p[GL_n(Z/p)]g_i$ (resp. $F_p[M_n(Z/p)]g_i$), where $i \equiv m_{\lambda} \pmod{p-1}$ (3.8). Thus, By Lemma (3.10) the eigenvalues for the action of θ on $P'_{(\lambda)}$ (resp. $P_{(\lambda)}$) are ω^j with $j \equiv m_{\lambda}$ (mod p-1). Hence by Lemma 3.6, if $S_{(\mu)}$ is a composition factor of $P'_{(\lambda)}$ (resp. $P_{(\lambda)}$), then $m_{\mu} \equiv m_{\lambda} \pmod{p-1}$.

Theorem 3.11 means that the entries $c_{\mu\lambda}$ of the Cartan matrices for $F_p[M_n(Z/p)]$ and $F_p[GL_n(Z/p)]$ are zero when $m_\mu \not\equiv m_\lambda \pmod{p-1}$ ([5]).

Example 3.12. For p = 3:

$$\begin{split} Z_1(0) &\simeq X'_{(0)}, \\ Z_1(1) &\simeq X'_{(1)}, \\ Z_2(0) &\simeq X'_{(0,0)} \lor X'_{(0,1)} \lor 3X'_{(2,0)} \lor 3X'_{(2,1)}, \\ Z_2(1) &\simeq 2X'_{(1,0)} \lor 2X'_{(1,1)}, \\ Z_3(0) &\simeq X'_{(0,0,0)} \lor 3X'_{(0,1,0)} \lor 3X'_{(1,0,1)} \lor 6X'_{(2,0,0)} \lor 6X'_{(0,2,0)} \\ & \lor 7X'_{(1,1,1)} \lor 15X'_{(2,1,0)} \lor 15X'_{(1,2,1)} \lor 27X'_{(2,2,0)}, \\ Z_3(1) &\simeq X'_{(0,0,1)} \lor 3X'_{(0,1,1)} \lor 3X'_{(1,0,0)} \lor 6X'_{(2,0,1)} \lor 6X'_{(0,2,1)} \\ & \lor 7X'_{(1,1,0)} \lor 15X'_{(2,1,1)} \lor 15X'_{(1,2,0)} \lor 27X'_{(2,2,1)}. \end{split}$$

Example 3.13. For p = 5, we have:

$$\begin{aligned} Z_1(0) &\simeq X'_{(0)}, \quad Z_1(1) \simeq X'_{(1)}, \\ Z_1(2) &\simeq X'_{(2)}, \quad Z_1(3) \simeq X'_{(3)}, \\ Z_2(0) &\simeq X'_{(0,0)} \lor X'_{(0,2)} \lor 3X'_{(2,3)} \lor 3X'_{(2,1)} \lor 5X'_{(4,0)} \lor 5X'_{(4,2)}, \\ Z_2(1) &\simeq 2X'_{(1,0)} \lor 2X'_{(1,2)} \lor 4X'_{(3,1)} \lor 4X'_{(3,3)}, \\ Z_2(2) &\simeq X'_{(0,1)} \lor X'_{(0,3)} \lor 3X'_{(2,0)} \lor 3X'_{(2,2)} \lor 5X'_{(4,1)} \lor 5X'_{(4,3)}, \\ Z_2(3) &\simeq 2X'_{(1,1)} \lor 2X'_{(1,3)} \lor 4X'_{(3,0)} \lor 4X'_{(3,2)}. \end{aligned}$$

For $1 \leq k \leq n$, let S(k) denote the irreducible $F_p[M_n(Z/p)]$ -representation $S_{(0,\ldots,0,1,0,\ldots,0)}$, where 1 is in the k-th position. Let $S(0) = S_{(0,\ldots,0)}$. For $0 \leq k \leq n$, let X(k) denote the indecomposable wedge summand of $B(Z/p)^n_+$ corresponding to S(k).

Let $j = (j_{n-1}, j_{n-2}, \dots, j_0)$ be the base-*p* representation of *j*, let $\sigma(j) = j_0 + \dots + j_{n-1}$, and let $\alpha(j)$ be the cardinality of $\{k \mid j_k \neq 0\}$. Note that $\sigma(j) = \alpha(j)$ when p = 2.

Theorem 4.11 in [7] is a special case (p = 2) of the following theorem.

Theorem 3.14. For $0 \le j \le p^n - 2$, $Y_n(j)$ contain exactly one copy of the summand X(k) if and only if $k = \alpha(j) = \sigma(j)$. Also, $Y_n(0)$ contains a copy of X(n).

Proof. S(k) corresponds to the partition $\alpha = (\alpha_1, \ldots, \alpha_n)$, where $\alpha_1 = \ldots = \alpha_k = 1$, and $\alpha_{k+1} = \ldots = \alpha_n = 0$. From [9, 8.3.9] we have $W^{\alpha}_{\perp} = 0$. Therefore,

$$\left\{\omega^{p^{i_1-1}+\ldots+p^{i_k-1}} \,|\, 1 \le i_1 < \ldots < i_k \le n\right\} = \left\{\omega^j \,|\, \alpha(j) = \sigma(j) = k\right\}$$

is the set of the Eigenvalues of θ acting on S(k) (3.5). The theorem then follows from Remark 2.4 and Lemma 3.4.

Theorem 3.15. For $0 \le j \le p^n - 2$, and $0 \le k \le p - 1$, $Y_n(j)$ contains exactly one copy of the summand $X_{(0,\ldots,0,k)}$ if and only if $j = \frac{k(p^n - 1)}{p - 1}$.

Proof. $S_{(0,\ldots,0,k)}$ is exactly $(\det)^k$, where $\det : F_p[M_n(Z/p)] \longrightarrow F_p$ is the determinant representation [8, 6.2]. Hence the Eigenvalue of θ acting on \det^k is $\left(\omega^{\sum_{i=0}^{n-1}p}\right)^k = \omega^{\frac{k(p^n-1)}{p-1}}$. The conclusion then follows from Remark 2.4 and Lemma 3.4.

Theorem 3.16. Let p = 2 and $n \ge 3$. For each $j \in Z/(p^n - 1)$, $Y_n(j)$ contains at least one copy of the Steinberg summand M(n).

Proof. The partition corresponding to $(\lambda) = (1, \ldots, 1, 0)$ is $\alpha = (n-1, n-2, \ldots, 1, 0)$. From [9, 8.1.17, 2.3.19] we have dim $W^{\alpha} = \prod_{i=1}^{n-1} f(i)$, where

$$f(i) = \prod_{j=1}^{n-i} (n-i+j)/(2n-2i-2j+1) =$$

= $\frac{n-i+1}{2(n-i)-1} \frac{n-i+2}{2(n-i)-3} \cdots \frac{2(n-i)-1}{3} \frac{2(n-i)}{1} \cdot$

By induction, we obtain $f(i) = 2^{n-i}$. Then dim $W^{\alpha} = \prod_{i=1}^{n-1} 2^{n-i} = 2^{\frac{n(n-1)}{2}} = \dim S_{(1,\dots,1,0)}$, where the last equality is implied from 2.3 and [10, 6.5]. Hence it is enough to show that for each $j \in Z/(2^n - 1)$, there exists a semistandard α -tableau T of content $(\beta_1, \dots, \beta_n)$ such that $\sum_{k=1}^n 2^{k-1}\beta_k = j + (2^n - 1)$ (Theorem 2.2, Lemma 3.4). We first consider the case j = 0. We can construct T by induction on n. Suppose that there exists an α -tableau T. Let $\gamma_{ij}(1 \leq j \leq n - i, 1 \leq i \leq n - 1)$ denote the entry of T which lies in the i th row and j th column. Adding 1 to T, we can find another α -tableau T_1 . Let T' be the tableau obtained from T_1 by adding the column $(1, 2, \dots, n)^t$ to the left of T_1 . Then T' is a semistandard α' - tableau of content $(\beta'_1, \dots, \beta'_{n+1})$, where $\alpha' = (n, n - 1, \dots, 1, 0)$ and

$$\sum_{k=1}^{n+1} 2^{k-1} \beta'_k = \sum_{k=1}^n 2^{k-1} \beta_k + 1 + (2^n - 1) = 2^{n+1} - 1.$$

For example,

n	=	3 :	$\frac{1}{2}$	3	,	n =	4:	$egin{array}{c} 1 \\ 2 \\ 3 \end{array}$	$\frac{2}{3}$		2,		<i>n</i> =	= 5	:	$1 \\ 2 \\ 3 \\ 4$	$egin{array}{c} 1 \\ 2 \\ 3 \end{array}$	$\frac{1}{3}$	3	,		
n	=	6 :	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} $	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	2 3	3	,	<i>n</i> =	= '	7:	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $	$1 \\ 2 \\ 3 \\ 4 \\ 5$		L 2 3 4	$egin{array}{c} 1 \\ 2 \\ 3 \end{array}$	1 4	2	,			
n	_	8:	$egin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array}$	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	$\begin{array}{c}1\\2\\3\\4\end{array}$	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	2 4	2	,	n		9 :	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array} $	$egin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array}$		$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6$	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	$\begin{array}{c}1\\2\\3\\4\end{array}$	1 2 3	1 4	3
n	_	10	$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array} $	1 2 3 4 5 6 7	$ \begin{array}{cccc} 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 6 \\ \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $		2 2 3 3	1 2 3	2 4											

For $n \ge 10$, suppose $\gamma_{1,n-2} = 1$ or 2, $\gamma_{1,n-1} = 2$ or 3, $\gamma_{2,n-2} = 4, \gamma_{i,1} = i$, and $\gamma_{k,n-k} = k$ or k+1 for $3 \le k \le n-2$. Then the entries γ'_{ij} of T' are chosen as follows.

If $\gamma_{1,n-2} = 1$, then

$$\gamma'_{ij} = \begin{cases} 2 & \text{if } i = 1 \text{ and } j = n - 1, \\ i & \text{if } j = 1, \\ \gamma_{ij} & \text{otherwise;} \end{cases}$$

If $\gamma_{1,n-2} = \gamma_{1,n-1} = 2$, then

$$\gamma'_{ij} = \begin{cases} 1 & \text{if } i = 1 \text{ and } j = n - 1, \\ 3 & \text{if } i = 1 \text{ and } j = n, \\ i & \text{if } j = 1, \\ \gamma_{ij} & \text{otherwise;} \end{cases}$$

If $\gamma_{1,n-2} = 2$ and $\gamma_{1,n-1} = \gamma_{3,n-3} = 3$, then

$$\gamma'_{ij} = \begin{cases} 1 & \text{if } i = 1 \text{ and } j = n - 1, \\ 2 & \text{if } i = 1 \text{ and } j = n, \\ 4 & \text{if } i = 3 \text{ and } j = n - 3, \\ i & \text{if } j = 1, \\ \gamma_{ij} & \text{otherwise;} \end{cases}$$

If $\gamma_{1,n-2} = 2$, $\gamma_{1,n-1} = 3$, and $\gamma_{3,n-3} = 4$, then

$$\gamma'_{ij} = \begin{cases} 1 & \text{if } i = 1 \text{ and } j = n - 1, \\ 2 & \text{if } i = 1 \text{ and } j = n, \\ i & \text{if } i \leq i_0 \text{ and } j = n - i \text{ or } i \geq i_0 + 2 \\ & \text{and } j = n - i \text{ or } j = 1, \\ i_0 + 2 & \text{if } i = i_0 + 1 \text{ and } j = n - i_0 - 1, \\ \gamma_{ij} & \text{otherwise.} \end{cases}$$

where i_0 is the smallest positive integer such that $\gamma_{i_0,n-i_0} = \gamma_{i_0+1,n-i_0-1}$.

Note that we can construct $T_i (i \ge 2)$ from T_1 by adding 1 to T_{i-1} as above. By this way we can prove the remaining cases $1 \le j \le 2^n - 2$.

References

- G. Carlson, Equivariant stable homology and Segal's Burnside ring conjecture, Ann. Math. 120 (1984), 189-224.
- 2. C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience, New York 1962.
- H. E. A. Campbell and P. S. Selick, *Polynomial algebras over the Steenrod algebra*, Comment. Math. Helv. 65 (1990), 171-180.
- 4. H. Davenport, Bases for finite fields, J. London Math. Soc. 43 (1968), 21-39.
- 5. N. G. Dinh, On the Cartan matrices of $F_p[M_n(Z/p)]$ and $F_p[GL_n(Z/p)]$, Hue Univ. Bull. Science **1** (1995).
- 6. L. C. Harirs, *Stable splittings of classifying spaces*, Ph. D. thesis, University of Chicago, 1985.
- 7. _____, On certain stable wedge summands of $B(Z/p)_+^n$, Can. J. Math. 44(1) (1992), 104-118.
- 8. _____ and N. J. Kuhn, Stable decompositions of classifying spaces of finite abelian p-groups, Math. Proc. Camb. Phil. Soc. **103** (1988), 427-449.
- 9. G. James and A. Kerber, *The Representation Theory of Symmetric Group*, Encyclopedia of Math. and its Applications, 16, Addison-Wesley 1981.
- N. J. Kuhn, The Morava K-theory of some classifying spaces, Trans. Amer. Math. Soc. 304 (1987), 193-205.
- S. A. Mitchell and S. B. Priddy, Stable splittings derived from the Steinberg module, Topology 22 (1983), 285-298.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HUE