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ON CERTAIN STABLE WEDGE SUMMANDS OF B(Z/p)n
+

NGUYEN GIA DINH

Abstract. By using representation theory and explicit idempotents in

the group ring Fp[GLn(Z/p)], we give a new splitting of B(Z/p)n
+ into

p− 1 stable wedge summands in which the numbers of occurrences of the
indecomposable stable wedge summands are known. As a consequence,

we find an information on the Cartan matrices of Fp[GLn(Z/p)] and

Fp[Mn(Z/p)]. Moreover we point out the occurrence of some inden-

composable stable wedge summands of B(Z/p)n
+ in the Campbell-Selick

summands.

1. Introduction

Let p be a prime number, P an abelian p-group, and BP+ its classifying
space with a disjoint basepoint. One of the most, significant problems in
homotopy theory at present is the problem of finding a stable splitting

BP+ ' X1 ∨X2 ∨ · · · ∨XN

into wedge summands, completed at p. With Carlsson’s solution of the Se-
gal Conjecture [1], this topological problem is reduced to the pure algebraic
problem of writing the identity of the Burnside rings as a sum of orthog-
onal idempotents. It suffices to write the identity of the ring Fp [End(P )]
as a sum of orthogonal idempotents [6]. This can be reduced to the special
case of an elementary abelian p-group [8]. Harris and Kuhn have given a
splitting of B(Z/p)n

+ into indecomposable stable wedge summands which
is equivalent to a decomposition of 1 into primitive orthogonal idempo-
tents in Fp[Mn(Z/p)] [8]. This splitting is finest, but in general most of
the idempotents have not yet been known explicitly. Campbell and Selick
have given a natural splitting of H∗(B(Z/p)n;Fp) into a direct sum of
(pn− 1) modules over the Steenrod algebra A [3]. Then B(Z/p)n

+ is split-
ted into (pn−1) stable wedge summands that are called Campbell - Selick
summands. Harris has pointed out the existence of the corresponding
idempotents in Fp[G], where G is a certain subgroup of
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GLn(Z/p) [7], but they also have not been described explicitly. Also in
[7], Harris gives a splitting of B(Z/p)n

+ into stable wedge summands by
constructing explicitly the primitive orthogonal idempotents in Fp[F ∗pn ].
However, the numbers of occurrences of the indecomposable summands in
these summands are very difficult to determine.

In this paper, we construct explicitly the primitive orthogonal idempo-
tents which sum to 1 in Fp[F ∗p ]. From that we obtain a stable splitting
of B(Z/p)n

+ into p− 1 wedge summands in which the multiplicities of the
indecomposable summands in these summands are known. As a conse-
quence, we find an information on the Cartan matrices of Fp[GLn(Z/p)]
and Fp[Mn(Z/p)]. Moreover, we describe the occurrence of some stable
wedge summands of B(Z/p)n

+ in the Campbell-Selick summands. In par-
ticular, when p = 2, every Campbell-Selick summand contains a copy of
the Steinberg summand.

I would like to express special thanks to my supervisor Professor Huynh
Mui for his generous help and inspiring guidance.

2. Irreducible representations of
Mn(Z/p), GLn(Z/p) and F ∗pn over Fp

In [8], Harris and Kuhn follow the constructions of the irreducible rep-
resentations of Fp[Mn(Z/p)] and Fp[GLn(Z/p)] as given by James and
Kerber in chapter 8, particularly Exercise 8.4 of [9].

A nonincreasing sequence α = (α1, α2, . . . , αn) of nonnegative integers
whose sum is m is called a partition of m. This partition α can be il-
lustrated by the corresponding Young diagram [α], which consists of m
nodes x placed in rows. The i th row of [α] consists of αi nodes, 1 ≤ i,
and all the rows start in the same column. The lengths α′i of the columns
of [α] form another partition α′ = (α′1, α

′
2, . . . ) of m. This partition α′ is

called the partition associated with α. An α-tableau arises from [α] by
replacing the nodes x of [α] by the points i of {1, . . . , m}. A generalized
Young tableau of shape [α], and content (β1, β2, . . . ) arises from [α] by
replacing the nodes of the diagram by positive integers in such a way that
the integer i occurs exactly βi times. A generalized Young tableau is said
to be semistandard if the numbers are nondecreasing along each row and
strictly increasing down each column.

Let W be the n-dimensional vector space over the arbitrary field F
with basis w1, w2, . . . , wn on which GLn(F ) acts in the natural way. Let
L(m) denote the m-fold tensor product of W . GLn(F ) acts on L(m) by
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the diagonal action and Sm acts on L(m) by place permutations of the
subscripts.

For a given partition α = (α1, . . . , αn) of m, let

wα = w1 ⊗ · · · ⊗ wα′1 ⊗ w1 ⊗ · · · ⊗ wα′2 ⊗ · · · ⊗ w1 ⊗ · · · ⊗ wα′k ,

Vα =
∑

π∈Sα′1
×···×Sα′

k

(sgnπ)π,

where (α′1, . . . , α′k) is the partition associated with α. If charF = 2 and α
is 2-singular (i.e., αi+1 = αi+2 > 0 for some i ≥ 0), let

Wα =
{
w ∈ L(m)|sw = 0 for all s ∈ FSm such that sVαwα = 0

}∩VαL(m).

In all other cases, let

Wα =
{
w ∈ L(m) | sw = 0 for all s ∈ FSm such that sVαwα = 0

}
.

Since the action of GLn(F ) commutes with the action of Sm on L(m), Wα

is a GLn(F )-module. It is called the Weyl module associated to α.

With each α-tableau T (in general containing repeated entries), we
associate a tensor wT in L(m) as follows. Let T (1), T (2), . . . , T (m) be
the entries in T , reading down successive columns. Then define WT =
wT (1) ⊗ wT (2) ⊗ · · · ⊗ wT (m).

Two tableaux T1 and T2 are said to be row equivalent if T2 can be
obtained from T1 by permuting the order of appearance of the numbers
in each row of T1.

If T is an α-tableau, let

ET = Vα
∑{

wT1 | T1 is row-equivalent to T
}
.

Then {ET ‖T is a semistandard α-tableau } is a basis for Wα ([9], 8.1.16).

On Wα there exists a bilinear form φα such that φα(mx, y) = φα(x,mty)
for m ∈ Mn(F ), and x, y ∈ Wα(mt is the transpose of m). Let

Wα
⊥ =

{
w ∈ Wα | φα(w, v) = 0 for all v ∈ Wα

}
.

Then Wα
⊥ is a Mn(F )-module. Let λi = αi − αi+1 with 1 ≤ i ≤ n − 1

and λn = αn. Then we have the sequence λ = (λ1, . . . , λn) and we can
write S(λ1,... ,λn) or S(λ) instead of Wα/Wα

⊥ . Conversely, for each sequence
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λ = (λ1, . . . , λn) of nonnegative integers, there exists a unique sequence
α = (α1, . . . , αn) satisfying αi − αi+1 = λi (1 ≤ i ≤ n− 1) and αn = λn.
Then α is a partition of mλ, where mλ = λ1 + 2λ2 + . . . + nλn. Let

Λ =
{

(λ1, . . . , λn) ‖ 0 ≤ λk ≤ p− 1, 1 ≤ k ≤ n
}

,

Λ′ =
{

(λ1, . . . , λn) ‖ 0 ≤ λk ≤ p− 1, 1 ≤ k ≤ n− 1, 0 ≤ λn ≤ p− 2
}

.

We obtain the following results in the case F = Fp.

Theorem 2.1 [8, §6]. Let S′(λ) = ResMn

GLn
(S(λ)). Then

Irr(Fp[Mn(Z/p)]) =
{
S(λ) |λ ∈ Λ

}
,

Irr(Fp[GLn(Z/p)]) =
{
S′(λ) | λ ∈ Λ′

}
.

Denote the stable summand of B(Z/p)n
+ corresponding to S(λ) (resp.

S′(λ)) by X(λ) (resp. X ′
(λ)). Particularly, let M(n) be the summand cor-

responding to the Steinberg module S′(p−1,... ,p−1,0) (it is also called the
Steinberg summand). Then M(n) ' L(n) ∨ L(n − 1), where L(n) =
−n∑

SP pn

(S0)/SP pn−1
(S0) and SP k(S) denotes the k th symmetric prod-

uct of the sphere spectrum S [11].

Theorem 2.2 [8, §6].

(i) B(Z/p)n
+ '

∨
λ∈Λ

dim S(λ)X(λ), B(Z/p)n
+ '

∨
λ∈Λ′

dim S′(λ)X
′
(λ),

(ii) X(λ1,... ,λn−1,0) ' X(λ1,... ,λn−1),

(iii) X ′
(λ1,... ,λn) ' X(λ1,... ,λn) if 0 < λn < p− 1,

(iv) X ′
(λ1,... ,λn−1,0) ' X(λ1,... ,λn−1,0)

∨
X(λ1,... ,λn−1,p−1).

Corollary 2.3.

(i) dim S′(λ1,... ,λn) = dim S(λ1,... ,λn) if 1 ≤ λn ≤ p− 2, and

dim S′(λ1,... ,λn−1,0) = dim S(λ1,... ,λn−1,0) = dim S(λ1,... ,λn−1,p−1),

(ii) dim S(λ1,... ,λk) ≤ dim S(λ1,... ,λk,0,... ,0).

Proof. (i) follows from Theorem 2.2 and the Krull-Schmidt Theorem. (ii)
follows from 8.1.16 and 8.3.7 of [9].

In Fpn choose an element ω such that ω generates the cyclic group of
units in Fpn and {ω, φ(ω), . . . , φn−1(ω)} forms a basis for Fpn over Fp [4],
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where φ(a) = ap is the Frobenius. Let p(x) = a0+a1x+· · ·+an−1x
n−1+xn

be the minimal polynomial for ω. Let

θ =




0 0 . . . 0 −a0

1 0 . . . 0 −a1

0 1 . . . 0 −a2
...

...
. . .

...
...

0 0 . . . 1 −an−1




be the n× n matrix over Fp representing multiplication by ω in the basis
{1, ω, . . . , ωn−1}. Since ω is a generator of F ∗pn , we see that θ has order
pn − 1 in GLn(Z/p). Therefore we can consider

F ∗pn = < θ > ⊆ GLn(Z/p).

Since F ∗pn is abelian and p does not divide the order of F ∗pn , there are
pn − 1 distinct one-dimensional representations of F ∗pn defined over Fpn .
Label them by Rj , j ∈ Z/(pn−1), with Rj(θ) = ωj . Explicit idempotents

in Fpn [F ∗pn ] associated to these are ej = −
pn−2∑
k=0

ω−kjθk [2, 33.8].

We let Z/n =< φ > act on Z/(pn − 1) by φ(i) = ip. Let Ji be
the orbit containing i, and let I be a set consisting of one element from
each orbit. The cardinality of Ji is zi, where zi is the smallest positive
exponent k with ipk ≡ i (mod pn−1). By defining fi =

∑
j∈Ji

ej , with i ∈ I,

Harris has proved that for each i ∈ I, fi is an idempotent in Fp[F ∗pn ] and{
Fp[F ∗pn ]fi | i ∈ I

}
is a full set of irreducible representations F ∗pn over Fp

[7, 3.5].

Remark 2.4. In [3] Campbell and Selick give a very natural splitting of
H∗(B(Z/p)n; Fp) into a direct sum of (pn − 1) modules over the mod-p
Steenrod algebra A, called the weight summands, Mn(j) when p = 2 and
MEn(j) when p > 2 for j ∈ Z/(pn − 1). These weight summands give
a splitting of B(Z/p)n

+ into (pn − 1) stable wedge summands for which
Harris uses the notation Yn(j) for j ∈ Z/(pn − 1), where Yn(j) ' Yn(j′)
for all j, j′ ∈ Ji, and he calls them the Campell-Selick summands [7]. Let
Ŷn(i) =

∨
j∈Ji

Yn(j). Then Ŷn(i) ' fiB(Z/p)n
+ [7, 4.4] and

Ŷn(i) '
∨

λ∈Λ′
zia

′
λiX

′
(λ),
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where a′λi is the number of times the representation Fp[F ∗pn ]fi occurs in a
composition series for ResGLn

F∗
pn

(S′(λ)) [7, 4.6].

3. Main results

Definition 3.1. For i = 0, 1, . . . , p− 2, let gi =
∑

j≡i(modp−1)

ej .

Proposition 3.2.

(i) gi ∈ Fp[F ∗p ].

(ii) {Fp[F ∗p ]gi | 0 ≤ i ≤ p−2} is a full set of irreducible representations
of F ∗p over Fp.

Proof. (i) We have gi = −
pn−1∑
k=1

(
q−1∑
l=0

ω−k(i+l(p−1))

)
θk , where q =

pn − 1
p− 1

(≡ 1(modp)), and
q−1∑

l=0

ω−k(i+l(p−1)) =
{

0 if q 6 | k,

qω−ki if q | k.

Hence gi = −
p−1∑
j=1

ω−qijθqj . Since ωq ∈ Fp and θq ∈ F ∗p , we have gi ∈
Fp[F ∗p ].

(ii) It is clear that the elements gi are orthogonal idempotents which
sum to the identity and Fp[F ∗p ] has p − 1 distinct one dimensional repre-
sentations.

Remark 3.3. Let Zn(i) = giB(Z/p)n
+. Then

B(Z/p)n
+ '

∨

0≤i≤p−2

Zn(i) ,

Zn(i) '
∨

j∈I

j≡i(modp−1)

Ŷn(j) '
∨

λ∈Λ′

∨

j∈I

j≡i( mod p−1)

zja
′
λjX

′
(λ)

'
∨

λ∈Λ′

( ∑

j∈I

j≡i( mod p−1)

zja
′
λj

)
X ′

(λ).

Lemma 3.4. The eigenvalues of θ acting on the vector space Fp[F ∗pn ]fi

are {
ωi, ωip, . . . , ωipsi−1}

.
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Proof. The action of θ on Fp[F ∗pn ]fi has ωj as an eigenvalue if and only
if Fpn [F ∗pn ]ej is a composition factor of Fpn [F ∗pn ]fi. This happens if and
only if ejfi 6= 0 [2, 54.12]. And since the ej are orthogonal, this happens
if and only if j ∈ Ji.

Lemma 3.5. The eigenvalues for the action of θ on the Weyl module Wα

are ωβ(T ) where T is a semistandard α-tableau of content (β1, . . . , βn) and

β(T ) ≡
( n∑

k=1

pk−1βk

)
(mod pn − 1).

Proof. Since the eigenvalues of θ are ω, ωp, . . . , ωpn−1
, the eigenvalues

for the actions of θ and diag(ω, ωp, . . . , ωpn−1
) are the same. The lemma

follows from [9, 8.1.18].

Lemma 3.6. The eigenvalues for the action of θ on S(λ) are ωj with
j ≡ mλ( mod p− 1).

Proof. Let α = (α1, . . . , αn) be the partition of mλ. By Lemma 3.5 we

see that the eigenvalues for the action of θ on Wα is ω

n∑
k=1

pk−1βk

. Here

mλ =
n∑

k=1

βk ≡
( n∑

k=1

pk−1βk

)
( mod p − 1). The conclusion follows from

the fact that Sλ is a composition factor of Wα.

Theorem 3.7.

Zn,1(i) '
∨

λ∈Λ′
mλ≡i(mod p−1)

(
dim S′(λ))X

′
(λ) ,

Zn,1(i) '
∨
λ∈Λ

mλ≡i(mod p−1)

(
dimS(λ)

)
X(λ) .

Proof. By Remark 3.3, X ′
(λ) is a summand of Zn(i) if and only if there

exists j ∈ I such that j ≡ i (mod p − 1) and a′λj 6== 0. By Lemma 3.4,

Lemma 3.6 and Remark 2.4, {ωj , . . . , ωjpzj−1} ⊆ {ωk | k ≡ mλ( mod p−
1)} and j ≡ i (mod p − 1) for some j ∈ I. It follows that mλ ≡ i (mod
p− 1). Hence

∑
v∈I

v≡i(mod p−1)

zva′λv =
{

dim S′(λ) if mλ ≡ i( mod p− 1),

0 otherwise .
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The proof of the first part is completed. The second part is a consequence
of Theorem 2.2, Lemma 2.3 and the first part.

Corollary 3.8.

Fp[GLn(Z/p)]gi
∼=

⊕
λ∈Λ′

mλ≡i( mod p−1)

(
dim S′(λ)

)
P ′(λ) ,

Fp[Mn(Z/p)]gi
∼=

⊕
λ∈Λ

mλ≡i( mod p−1)

(
dim S(λ)

)
P(λ) ,

where P ′(λ) (resp. P(λ)) is the projective cover of S′(λ) (resp. S(λ)).

Proof. The first part is immediate from Theorem 3.7 and [7, 3.8]. The
second part follows Theorem 3.7 and the Krull-Schmidt Theorem.

Corollary 3.9. For any 1 ≤ k ≤ n and 0 ≤ i ≤ p − 2, Zn(i) contains a
copy of the summand Zk(i).

Proof. This follows from Theorem 3.7, Theorem 2.2 (ii) and Lemma 2.3
(ii).

Lemma 3.10. The eigenvalues for the actions of θ on Fp[GLn(Z/p)]gi

and Fp[Mn(Z/p)]gi are ωj with j ≡ i (mod p− 1).

Proof. ωj is an eigenvalue for the action of θ on Fp[GLn(Z/p)]gi if and only
if Fpn [F ∗pn ]ej is a composition factor of Fpn [GLn(Z/p)]gi as a F ∗pn -module.
This is equivalent to ej(Fpn [GLn(Z/p)]gi) 6= 0 [2, 54.12], which holds if
and only if ejgi 6= 0 (since gi belongs to the center of Fpn [Mn(Z/p)]) i.e.,
j ≡ i (mod p− 1).

Theorem 3.11. If S′(µ) (resp. S(µ)) is a composition factor of P ′(λ) (resp.
P(λ)), then mµ ≡ mλ (mod p− 1).

Proof. P ′(λ) (resp. P(λ)) is a summand of Fp[GLn(Z/p)]gi (resp.
Fp[Mn(Z/p)]gi), where i ≡ mλ(mod p− 1) (3.8). Thus, By Lemma (3.10)
the eigenvalues for the action of θ on P ′(λ) (resp. P(λ)) are ωj with j ≡ mλ

(mod p− 1). Hence by Lemma 3.6, if S(µ) is a composition factor of P ′(λ)

(resp. P(λ)), then mµ ≡ mλ (mod p− 1).

Theorem 3.11 means that the entries cµλ of the Cartan matrices for
Fp[Mn(Z/p)] and Fp[GLn(Z/p)] are zero when mµ 6≡ mλ(mod p−1) ([5]).

Example 3.12. For p = 3 :
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Z1(0) ' X ′
(0),

Z1(1) ' X ′
(1),

Z2(0) ' X ′
(0,0) ∨X ′

(0,1) ∨ 3X ′
(2,0) ∨ 3X ′

(2,1),

Z2(1) ' 2X ′
(1,0) ∨ 2X ′

(1,1),

Z3(0) ' X ′
(0,0,0) ∨ 3X ′

(0,1,0) ∨ 3X ′
(1,0,1) ∨ 6X ′

(2,0,0) ∨ 6X ′
(0,2,0)

∨7X ′
(1,1,1) ∨ 15X ′

(2,1,0) ∨ 15X ′
(1,2,1) ∨ 27X ′

(2,2,0),

Z3(1) ' X ′
(0,0,1) ∨ 3X ′

(0,1,1) ∨ 3X ′
(1,0,0) ∨ 6X ′

(2,0,1) ∨ 6X ′
(0,2,1)

∨7X ′
(1,1,0) ∨ 15X ′

(2,1,1) ∨ 15X ′
(1,2,0) ∨ 27X ′

(2,2,1).

Example 3.13. For p = 5, we have:

Z1(0) ' X ′
(0), Z1(1) ' X ′

(1),

Z1(2) ' X ′
(2), Z1(3) ' X ′

(3),

Z2(0) ' X ′
(0,0) ∨X ′

(0,2) ∨ 3X ′
(2,3) ∨ 3X ′

(2,1) ∨ 5X ′
(4,0) ∨ 5X ′

(4,2),

Z2(1) ' 2X ′
(1,0) ∨ 2X ′

(1,2) ∨ 4X ′
(3,1) ∨ 4X ′

(3,3),

Z2(2) ' X ′
(0,1) ∨X ′

(0,3) ∨ 3X ′
(2,0) ∨ 3X ′

(2,2) ∨ 5X ′
(4,1) ∨ 5X ′

(4,3),

Z2(3) ' 2X ′
(1,1) ∨ 2X ′

(1,3) ∨ 4X ′
(3,0) ∨ 4X ′

(3,2).

For 1 ≤ k ≤ n, let S(k) denote the irreducible Fp[Mn(Z/p)]-rep-
resentation S(0,... ,0,1,0,... ,0), where 1 is in the k-th position. Let S(0) =
S(0,... ,0). For 0 ≤ k ≤ n, let X(k) denote the indecomposable wedge
summand of B(Z/p)n

+ corresponding to S(k).

Let j = (jn−1, jn−2, . . . , j0) be the base-p representation of j, let σ(j) =
j0 + · · ·+ jn−1, and let α(j) be the cardinality of {k | jk 6= 0}. Note that
σ(j) = α(j) when p = 2.

Theorem 4.11 in [7] is a special case (p = 2) of the following theorem.

Theorem 3.14. For 0 ≤ j ≤ pn − 2, Yn(j) contain exactly one copy of
the summand X(k) if and only if k = α(j) = σ(j). Also, Yn(0) contains
a copy of X(n).

Proof. S(k) corresponds to the partition α = (α1, . . . , αn), where α1 =
. . . = αk = 1, and αk+1 = . . . = αn = 0. From [9, 8.3.9] we have Wα

⊥ = 0.
Therefore,

{
ωpi1−1+...+pik−1 | 1 ≤ i1 < . . . < ik ≤ n

}
=

{
ωj |α(j) = σ(j) = k

}
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is the set of the Eigenvalues of θ acting on S(k) (3.5). The theorem then
follows from Remark 2.4 and Lemma 3.4.

Theorem 3.15. For 0 ≤ j ≤ pn − 2, and 0 ≤ k ≤ p − 1, Yn(j) contains

exactly one copy of the summand X(0,... ,0,k) if and only if j =
k(pn − 1)

p− 1
·

Proof. S(0,... ,0,k) is exactly (det)k, where det : Fp[Mn(Z/p)] −→ Fp is the
determinant representation [8, 6.2]. Hence the Eigenvalue of θ acting on

detk is
(
ω

n−1∑
i=0

p)k

= ω
k(pn−1)

p−1 . The conclusion then follows from Remark
2.4 and Lemma 3.4.

Theorem 3.16. Let p = 2 and n ≥ 3. For each j ∈ Z/(pn − 1), Yn(j)
contains at least one copy of the Steinberg summand M(n).

Proof. The partition corresponding to (λ) = (1, . . . , 1, 0) is α = (n−1, n−
2, . . . , 1, 0). From [9, 8.1.17, 2.3.19] we have dim Wα =

n−1∏
i=1

f(i), where

f(i) =
n−i∏

j=1

(n− i + j)/(2n− 2i− 2j + 1) =

=
n− i + 1

2(n− i)− 1
n− i + 2

2(n− i)− 3
· · · 2(n− i)− 1

3
2(n− i)

1
·

By induction, we obtain f(i) = 2n−i. Then dim Wα =
n−1∏
i=1

2n−i =

2
n(n−1)

2 = dimS(1,... ,1,0), where the last equality is implied from 2.3 and
[10, 6.5]. Hence it is enough to show that for each j ∈ Z/(2n − 1),
there exists a semistandard α-tableau T of content (β1, . . . , βn) such that

n∑
k=1

2k−1βk = j + (2n − 1) (Theorem 2.2, Lemma 3.4). We first consider

the case j = 0. We can construct T by induction on n. Suppose that there
exists an α-tableau T . Let γij(1 ≤ j ≤ n − i, 1 ≤ i ≤ n − 1) denote the
entry of T which lies in the i th row and j th column. Adding 1 to T , we
can find another α-tableau T1. Let T ′ be the tableau obtained from T1 by
adding the column (1, 2, . . . , n)t to the left of T1. Then T ′ is a semistan-
dard α′- tableau of content (β′1, . . . , β′n+1), where α′ = (n, n− 1, . . . , 1, 0)
and

n+1∑

k=1

2k−1β′k =
n∑

k=1

2k−1βk + 1 + (2n − 1) = 2n+1 − 1.
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For example,

n = 3 : 1 3
2 , n = 4 :

1 2 2
2 3
3

, n = 5 :

1 1 1 3
2 2 3
3 3
4

,

n = 6 :

1 1 1 2 3
2 2 2 3
3 3 3
4 4
5

, n = 7 :

1 1 1 1 1 2
2 2 2 2 4
3 3 3 3
4 4 4
5 5
6

,

n = 8 :

1 1 1 1 1 2 2
2 2 2 2 2 4
3 3 3 3 3
4 4 4 4
5 5 5
6 6
7

, n = 9 :

1 1 1 1 1 1 1 3
2 2 2 2 2 2 4
3 3 3 3 3 3
4 4 4 4 4
5 5 5 5
6 6 6
7 7
8

,

n = 10 :

1 1 1 1 1 1 1 2 3
2 2 2 2 2 2 2 4
3 3 3 3 3 3 3
4 4 4 4 4 4
5 5 5 5 5
6 6 6 6
7 7 7
8 8
9

.

For n ≥ 10, suppose γ1,n−2 = 1 or 2, γ1,n−1 = 2 or 3, γ2,n−2 = 4, γi,1 = i,
and γk,n−k = k or k + 1 for 3 ≤ k ≤ n− 2. Then the entries γ′ij of T ′ are
chosen as follows.

If γ1,n−2 = 1, then

γ′ij =





2 if i = 1 and j = n− 1,

i if j = 1,

γij otherwise;



12 NGUYEN GIA DINH

If γ1,n−2 = γ1,n−1 = 2, then

γ′ij =





1 if i = 1 and j = n− 1,

3 if i = 1 and j = n,

i if j = 1,

γij otherwise;

If γ1,n−2 = 2 and γ1,n−1 = γ3,n−3 = 3, then

γ′ij =





1 if i = 1 and j = n− 1,

2 if i = 1 and j = n,

4 if i = 3 and j = n− 3,

i if j = 1,

γij otherwise;

If γ1,n−2 = 2, γ1,n−1 = 3, and γ3,n−3 = 4, then

γ′ij =





1 if i = 1 and j = n− 1,

2 if i = 1 and j = n,

i if i ≤ i0 and j = n− i or i ≥ i0 + 2
and j = n− i or j = 1,

i0 + 2 if i = i0 + 1 and j = n− i0 − 1,

γij otherwise.

where i0 is the smallest positive integer such that γi0,n−i0 = γi0+1,n−i0−1.

Note that we can construct Ti(i ≥ 2) from T1 by adding 1 to Ti−1 as
above. By this way we can prove the remaining cases 1 ≤ j ≤ 2n − 2.
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