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CHARACTERISTIC FUNCTION FOR

RANDOM SETS AND CONVERGENCE OF

SUMS OF INDEPENDENT RANDOM SETS

MARC LAVIE

Abstract. The purpose of this paper is to present a notion of characte-

ristic function for a random set. Some basic properties of this characteristic
function are given. Then, we extend classical results on the convergence

of independent random variables to the case of independent random sets

taking closed and bounded convex values.

0. Introduction

In this paper, we extend the notion of characteristic function to the
case of random sets and we study the convergence of sums of independent
random sets.

Section 1 contains the basic definitions and notations.
In Section 2 a new and useful notion of characteristic function for a ran-

dom set taking values in closed bounded convex subsets of a Banach space
with separable topological dual is presented. Stability results, pointwise
convergence and Lévy-Cramer convergence theorems for multifunctions
are given. The main interest of this characteristic function is that it con-
nects distributions of random sets with distributions of random vectors.

In Section 3, we shall discuss the convergence of sums of independent
random sets, with closed bounded convex sets, and we prove for this class
of multifunctions that almost sure convergence, convergence in probability
and convergence in distribution with respect to the Hausdorff metric are
equivalent. Theorem 3.4 is the multivalued version of a classical result
in probability theory. The difficulties encountered in this extension come
from the fact that the class of closed bounded convex subsets endowed
with the Minkowski addition is not a group. In the real case, relations
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between almost sure convergence and convergence in probability were first
studied by Lévy [9] and extended to metric group valued random variables
by Tortrat [13]. Kahane [8] proved it using Lévy’s inequalities. Relations
between convergence in probability and convergence in distribution were
first studied by Tortrat [13], connecting this result with the convolution
equation of measures ν∗ν′ = ν, and then by Itô and Nisio [7], using char-
acteristic functions.

Before closing this introduction, we also recall that convergence in pro-
bability and convergence in distribution of random sets were studied by
Salinetti and West [10], [11].

1. Notations

Let (Ω,Σ, P ) be a probability space, E a Banach space. Throughout
this paper, the topological dual space E∗ of E is assumed to be separable
with respect to its strong topology.

The set of nonempty closed bounded convex subsets of E will be de-
noted by cb(E).

For each open subset U of E, we shall set

U− :=
{

C ∈ cb(E) : C ∩ U 6= ∅
}

and we shall denote the Effrös σ-algebra of cb(E) by E , that is the smallest
σ-algebra over cb(E) containing the class

{

U− : U open in E
}

.
We recall that the support functional δ∗(., A) of A ∈ cb(E) is the func-

tion from E∗ to lR defined by

δ∗(x∗, A) = sup
{

〈a, x∗〉, a ∈ A
}

.

A random set will be a multifunction X : Ω → cb(E) which is mea-
surable with respect to the σ-algebras Σ and E .

If C1 and C2 are two elements of cb(E), the Hausdorff metric between
C1 and C2 is given by

h(C1, C2) = sup
(

{

d(x, C1) : x ∈ C2

}

∪
{

d(x, C2) : x ∈ C1

}

)

.

The set cb(E) will be equipped with the Hausdorff metric topology τH .
A strongly random set is a multifunction X : Ω → cb(E) which is

measurable with respect to the σ-algebras Σ and β(τH), where β(τH)
denotes the Borel σ-field of (cb(E), τH).
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The probability distribution Px of a random set X is defined by

Px(T ) = P [X−1(T )] for every T in E .

Two random sets X1 and X2 are independent if and only if, for any S
and T in E , we have

P (X−1
1 (S) ∩X−1

2 (T )) = P (X−1
1 (S)) · P (X−1

2 (T )).

For more details about the notions of distribution and independence of
random sets, we refer the read to Hess’ paper [6].

2. Characteristic function for random sets

In this section, we present a definition of characteristic function or
Fourier transform for random sets and probability measures on (cb(E), E).

Let `0(lR) denote the space of real sequences with a finite number of
non zero terms.

For an integrable random real variable f on (Ω,Σ, P ), we denote its
expectation by

lE(f) =

∫

Ω

f(ω)P (dω).

In this paper D =
(

z∗j
)

j≥1
will denote a countable subset of E∗ which

is norm-dense in the closed unit ball B∗ of E∗.
We need to introduce the notations below.

Notations 2.1. Let X be a random set taking values in cb(E). We set
for each u =

(

uj

)

j≥1
in `0(lR)

ϕD
X(U) :=

(

ϕp,D
X (u)

)

p≥1

with

ϕp,D
X (u) = lE

[

exp
(

i

p
∑

j=1

ujδ
∗(z∗j , X)

)]

.

For each positive integer p, for every C ∈ cb(E) and for each probability
measure ν on (cb(E), E), we define a mapping ∆p from cb(E) to lRp by

∆p(C) =
(

δ∗(z∗j , C)
)

1≤j≤p
,
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and we set
ϕD

ν (u) :=
(

ϕp,D
ν (u)

)

p≥1

with

ϕp,D
ν (u) =

∫

lRp

exp
[

i

p
∑

j=1

tj · uj

]

(ν ◦ ∆−1
p )(dt),

where t = (t1, . . . , tp).
Here ν ◦ ∆−1

p denotes the image measure of ν by ∆p.
AD will be the algebra of elements of cb(E) which are the subsets

∆−1
n (G) =

{

C ∈ cb(E) :
(

δ∗(z∗1 , C), . . . , δ∗(z∗n, C)
)

∈ G
}

for all n ∈ lN∗ and all borelian subsets G in lRn and J (AD) will denote
the σ-algebra generated by AD.

Let us recall that, for each n ≥ 1, the Borel σ-field B(lRn) is generated
by the subsets G = B1 ×B2 × · · · ×Bn, where Bj are borelian subsets in
lR, for j such that 1 ≤ j ≤ n. Then, for this subset G, we have

∆−1
n (G) =

⋂

j≥1

{

C ∈ cb(E)/δ∗(z∗j , C) ∈ Bj

}

.

We start with a result concerning the restriction of the Effrös σ-field
to cb(E).

Lemma 2.2. J (AD) is equal to the Effrös σ-algebra E of cb(E).

Proof. For each r in lQ and z∗ in E∗, we set

W (z∗, r) :=
{

x ∈ E : 〈z∗, x〉 ≤ r
}

.

Then, we have

{

C ∈ cb(E) : δ∗(z∗, C) > r
}

=
[

E \W (z∗, r)
]−

which implies, for each z∗ in E∗, the measurability of the map C →
δ∗(z∗, C) with respect to the σ-algebra E .

Further, for each n ≥ 1 and for all subset G = B1 × B2 × · · · × Bn in
B(lRn), we have

∆−1
n (G) =

⋂

j≥1

{

C ∈ cb(E)/δ∗(z∗, C) ∈ Bj

}

∈ E .
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Then, for all borelian subset G in lRn, we have

∆−1
n (G) ∈ E

and this entails the inclusion J (AD) ∈ E .
Let us show now the inclusion E ∈ J (AD).
Using the separability of E, we have the existence of a countable dense

subset {xi, i ∈ lN} of E. As E is a separable Banach space, for each U
open subset of E, we can set

U =
⋃

i∈I

B(xi, ri)

where I is a countable set and B(xi, ri) denotes the open ball of radius ri,
centered at xi. This equality implies that

U− =
⋃

i∈I

[

B(xi, ri)
]−
.

Moreover, as

[

B(xi, ri)
]−

=
{

C ∈ cb(E)/d(xi, C) < ri
}

,

we show that
[

B(xi, ri)
]−

∈ E assuming that, for each x in E, the map
C → d(x, C) is E-measurable. But, for any x in E and C in cb(E), the
following equality holds true

d(x, C) = sup
[

〈z∗j , x〉 − δ∗(z∗j , C)
∣

∣ j ∈ lN
]

,

and we obtain, for each r > 0,

{

C ∈ cb(E)
∣

∣d(x, C) ≤ r
}

=
⋂

j≥1

{

C ∈ cb(E)
∣

∣ 〈z∗j , x〉 − δ∗(z∗j , C) ≤ r
}

=
⋂

j≥1

{

C ∈ cb(E)
∣

∣ δ∗(z∗j , C) ≥ 〈z∗j , x〉 − r
}

Then x→ d(x, C) is E-measurable and the inclusion follows.

Remarks 2.3. 1) If A is the algebra of subsets of cb(E) whose elements
are the subsets

{

C ∈ cb(E) :
(

δ∗(x∗1, C), . . . , δ∗(x∗n, C)
)

∈ G
}
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for all n ∈ lN, all borelian subsets G in lRn and x∗i in B∗, and J (A) is the
smallest σ-algebra containing A, one has in the same way

J (A) = E = J (AD).

2) The above lemma shows that the σ-algebra AD is independent of the
choice of the countable subset D.

Corollary 2.4. The following conditions are equivalent:

(i) X and Y are identically distributed random sets taking values in

cb(E),
(ii) For each finite subset J of lN∗ and each sequence

(

z∗j
)

j∈J
in D,

(

δ∗(z∗j , X)
)

j∈J
and

(

δ∗(z∗j , Y )
)

j∈J
are identically distributed random vari-

ables,

(iii) For each finite subset J of lN∗ and each sequence
(

x∗j
)

j∈J
in B∗,

(

δ∗(x∗j , X)
)

j∈J
and

(

δ∗(x∗j , Y )
)

j∈J
are identically distributed random vari-

ables.

Proof. It is well known that two probability measures on a measurable
space (S,S) are equal on S if and only if they are equal on a generating
subclass J of S, which is stable under finite intersections. Therefore, (i)
⇔ (ii) by Lemma 2.2 and (ii) ⇔ (iii) by Remark 2.3.

This corollary completes Proposition 8 in [6].

Remark 2.5. The results above also hold for random sets taking weakly
compact convex values, without the assumption of separability of E∗. It
is well known that E∗ is separable with respect to the Mackey topology
whenever E is norm-separable ([2] and theorem 0.12 in [14]).

The following proposition is an immediate consequence of Corollary
2.4.

Proposition 2.6. (i) Let ν and ν′ be probability measure on (cb(E), E).
Then ν = ν′ if and only if, for each u in `0(lR),

ϕD
ν (u) = ϕD

ν′(u).

(ii) Let X and Y be random sets taking values in cb(E). Then PX = PY

if and only if, for each u in `0(lR),

ϕD
X(u) = ϕD

Y (u).
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Remark 2.7. By Proposition 2.6, we note that ϕD
X and ϕD

ν are indepen-
dent of the choice of the countable dense subset D.

The definition of characteristic function can now be introduced.

Definition 2.8. If X is a random set taking values in cb(E), ϕX = ϕD
X

will be called the characteristic function ofX . If ν is a probability measure
on (cb(E), E), ϕν = ϕD

ν will be called the characteristic function of ν.

Remark 2.9. For each p ∈ lN∗, each random set X taking values in
cb(E) and each u =

(

uj

)

j≥1
in `0(lR), we have with Notations 2.1 and

ϕp
X := ϕp,D

X :
ϕp

X(u) = φ(δ∗(z∗
j
,X))1≤j≤p

(u1, . . . , up)

where φ is the usual characteristic function of random vectors. This links
Definition 2.8 with the classical definition of characteristic function.

Now we verify the stability by convolution of this function and several
classical properties.

Proposition 2.10. Let X and Y be independent random sets taking

values in cb(E) and let

cl(X + Y )(ω) = cl
{

a+ b : a ∈ X(ω), b ∈ Y (ω)
}

for each ω in Ω. Then, for each u in `0(lR),

ϕcl(X+Y )(u) =
(

ϕp
X(u) · ϕp

Y (u)
)

p≥1

Proof. The measurability of the multifunction ω → cl(X + Y )(ω) is given
by Lemma 3.2.1 in [5]. Moreover, because of Remark 2.3, two probability
measures on (cb(E), E) which coincide on the algebra A are equal. Then,
it follows from Corollary 2.4 that

(

δ∗(z∗j , X)
)

1≤j≤n
and

(

δ∗(z∗j , Y )
)

1≤j≤n

are independent random variables for each n ∈ lN∗. So for all p ∈ lN∗ and
u ∈ `0(lR), we have

ϕp

cl(X+Y )(u) = lE
[

exp
(

i

p
∑

j=1

uj

(

δ∗(z∗j , X) + δ∗(z∗j , Y )
)

)]

=
(

lE
(

exp
(

i

p
∑

j=1

ujδ
∗(z∗j , X)

))

· lE
(

exp
(

i

p
∑

j=1

ujδ
∗(z∗j , Y )

))

)

= ϕp
X(u) · ϕp

Y (u).
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Definition 2.11. Let
(

Xn

)

n∈lN∗∪{∞}
be a sequence of random sets taking

values in cb(E) and let τ be a topology on cb(E). We say thatXn converges

in distribution to X∞ with respect to τ if, for every bounded real-valued
function f on cb(E) which is continuous with respect to τ ,

lim
n

∫

Ω

f(Xn(ω))P (dω) =

∫

Ω

f(X∞(ω))P (dω).

The following result provides a multivalued version of Lévy-Cramer
convergence theorem.

Proposition 2.12. Let
(

Xn

)

n∈lN∗∪{∞}
be a sequence of strongly random

sets taking values in cb(E). If Xn converges in distribution to X∞ with

respect to τH then, for each u in `0(lR) and for each p in lN∗,

(1) lim
n
ϕp

Xn
(u) = ϕp

X∞
(u).

Proof. It follows from Remark 2.9 and Lévy-Cramer convergence theorem
([4], Theorem 6.3.1) that equality (1) holds if and only if, for each p ∈
lN∗, the sequence in n of random vectors

(

δ∗(z∗j , Xn)
)

1≤j≤p
converges in

distribution to
(

δ∗(z∗j , X∞)
)

1≤j≤p
. If, for each bounded continuous real-

valued function g on lRp and for each C in cb(E), we set

ψp(C) = g(δ∗(z∗1 , C), . . . , δ∗(z∗p , C)),

then the Hörmander’s formula ([3], Theorem 2.18) implies that the real
function ψp on cb(E) is bounded and continuous with respect to τH . Then
by the assumptions we have

lim
n

∫

Ω

ψp(Xn(ω))P (dω) =

∫

Ω

ψp(X∞(ω))P (dω)

for each p ∈ N , and hence (1) is satisfied.

3. Sums of independent random sets

This section is devoted to the convergence of sums of independent ran-
dom sets and especially to an extension of Itô-Nisio theorem ([7], Theorem
3.1).
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Let
(

Xn

)

n∈lN∗∪{∞}
be a sequence of independent random sets taking

values in cb(E). For each positive integer n, we set

Sn = cl(X1 +X2 + · · ·+Xn)

We prove the equivalence of the following assertions:

(i) Sn converges almost surely to X∞ with respect to τH ,

(ii) Sn converges in probability to X∞ with respect to τH ,

(iii) Sn converges in distribution to X∞ with respect to τH .

This will be achieved in two steps.
At first, we show the equivalence between (i) and (ii) for convex closed

bounded random sets. Next, we obtain the equivalence of the three as-
sertions for random sets taking values in a τH-separable subset of cb(E),
using a topology embedding.

We begin by establishing the following lemmas in order to prove The-
orem 3.4.

Lemma 3.1. For each positive integer n, Sn is a random set taking values

in cb(E).

Proof. For every A, B in cb(E), put

T (A,B) = cl(A+B).

Lemma 3.2.1 in [5] implies the measurability of T with respect to the Effrös
σ-algebra E . Then the measurability of Sn with respect to E follows by
induction.

Lemma 3.2. For each i in lN∗, let ui be an application from cb(E) to

cb(E) which is measurable with respect to E . Then, for each n in lN∗, the

random sets u1(X1), u2(X2), . . . , un(Xn) are independent.

Proof. Let U1, U2, . . . , Un−1 and Un be open subsets of E. Then

P
[

n
⋂

i=1

(ui ◦Xi)
−1(U−

1 )
]

= P
[

n
⋂

i=1

X−1
i (u−1

i (U−
i ))

]

=
n

∏

i=1

P (X−1
i (u−1

i (U−
i )))

=
n

∏

i=1

P ((ui ◦Xi)
−1(U−

i ))
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and the independence of u1(X1), u2(X2), . . . , un−1(Xn−1) and un(Xn) fol-
lows.

The following result extends an inequality given by Ottaviani and Sko-
rohod [12] in the real case.

Lemma 3.3. For each n in lN∗ and each t > 0, consider the real number

an(t) := max
1≤k≤n

P
({

ω : h(Sn(ω), Sk(ω)) >
t

2

})

.

If an(t) < 1, then

P
({

ω : max
1≤k≤n

h(0, Sk(ω)) > t
})

≤
1

1 − an(t)
P

({

ω : h(0, Sn(ω)) >
t

2

})

.

Proof. For each k ≤ n, set

Ak :=
{

ω : max
j<k

h(0, Sj(ω)) ≤ t, h(0, Sk(ω)) > t
}

.

Then

P
({

ω : h(0, Sn(ω)) >
t

2

})

≥ P
({

ω : h(0, Sn(ω)) >
t

2
,max

k≤n
h(0, Sk(ω)) > t

})

≥
n

∑

k=1

P
(

Ak ∩
{

ω : h(Sn(ω), Sk(ω)) ≤
t

2

}}

.

Let

A :=
{

ω : max
j≤n

h(0, Sj(ω)) > t
}

=

n
⋃

k=1

Ak.

The Hörmander formula ([13]. Theorem 2.18) implies

h(Sn(ω), Sk(ω)) = h(0, cl(Xk+1(ω) + · · · +Xn(ω)))

for each ω in Ω. It follows from the independence of (X1, X2, . . . , Xk) and
(Xk+1, . . . , Xn) and from Lemma 3.2 that

P
(

Ak ∩
{

ω : h(Sn(ω), Sk(ω)) >
t

2

})

= P (Ak) · P
({

ω : h(Sn(ω), Sk(ω)) >
t

2

})

.



CHARACTERISTIC FUNCTION FOR RANDOM SETS 97

Therefore

n
∑

k=1

P
(

Ak ∪
{

ω : h(Sn(ω), Sk(ω)) ≤
t

2

}}

≥ P (A) −
n

∑

k=1

P (Ak) · P
({

ω : h(Sn(ω), Sk(ω)) >
t

2

})

≥ P (A) − P (A)
[

max
k≤n

P
({

ω : h(Sn(ω), Sk(ω)) >
t

2

})]

= (1 − an(t))P (A).

We are now ready to establish our theorem about the convergence of a
sum of independent random sets.

Theorem 3.4. Let
(

Xn

)

n∈lN∗∪{+∞}
be a sequence of independent ran-

dom sets taking values in the metric space (cb(E), h). Then the following

conditions are equivalent:

(i) Sn converges almost surely to X∞,

(ii) Sn converges in probability to X∞,

(iii) Sn has a subsequence which converges in probability to X∞.

Proof. The implications “(i) =⇒ (ii)” and “(ii) =⇒ (iii)” are obvious. To
prove “(iii) =⇒ (i)” let us denote by

(

Snk

)

k∈lN∗ a subsequence of
(

Sn

)

n∈lN∗

which converges in probability to X∞ in (cb(E), h). As (cb(E), h) is a
complete metric space ([3], Theorem II.3), we may assume, in the same
way as in the real case ([8] or [9]) that

(

Snk

)

k≥1
has a subsequence which

converges almost surely to X∞ in (cb(E), h). We may also denote this
subsequence by

(

Snk

)

k≥1
. By the construction of this subsequence, we

can choose nk such that

P
({

ω : h
(

Snk
(ω), Snk+1

(ω)
)

≥
1

2k

})

<
1

2k
·

Put

Sn,m(ω) = cl
(

Xm+1(ω) + · · ·+Xn(ω)
)

for each (m,n) in lN × lN with m ≤ n, and

Tk(ω) = max
nk≤n≤nk+1

h
(

0, Sn,nk
(ω)

)
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for each ω in Ω and each k ≥ 1. With the notations of Lemma 3.3, if

t =
1

2k−1
then an(t) ≤

1

2
. Therefore, applying this lemma, we obtain

P
({

ω : Tk(ω) >
1

2k−1

})

≤ 2P
({

ω : h(Snk

(

ω), Snk+1
(ω)

)

>
1

2k

})

,

hence
∑

k≥1

P
({

ω : Tk(ω) >
1

2k−1

})

< +∞.

It follows that
(

Tk

)

k≥1
converges to 0 in probability. Hence, by the trian-

gular inequality, (i) follows.

We shall use the topological embedding of (cb(E), τH) into the space
of bounded continuous real-valued functions on E∗. The following result
is well known.

Proposition 3.5 ([3], Theorem II.19). Let F be the vector space of po-

sitively homogeneous real-valued functions on E∗ which are bounded and

strongly continuous on B∗ equipped with the norm

‖f‖ = sup
{

|f(x∗)|
∣

∣ ‖x∗‖ ≤ 1
}

.

For each C in cb(E), we define an application φ of cb(E) into F by

φ(C) = δ∗(., C).

Then φ is an isometry of (cb(E), τH) into F .

The following result extends the Itô-Nisio theorem ([7], Theorem 3.1 or
[13]).

Theorem 3.6. Let C be a subset of the metric space (cb(E), h) which is

separable. Let
(

Xn

)

n∈lN∗
∪{∞}

be a sequence of independent random sets

taking values in (C, h). Then the following conditions are equivalent

(i) Sn converges almost surely to X∞,

(ii) Sn converges in probability to X∞,

(iii) Sn converges in distribution to X∞.

Proof. It is well known that F equipped with the topology of uniform
convergence is a Banach space. By theorem 3.4, (i) and (ii) are equivalent.

(ii) =⇒ (iii) can be verified as in the real case ([1], Theorem 4.3).
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To prove (iii) =⇒ (i), let us denote by F1 the closed separable vector
space which is generated by φ(C). By Proposition 3.5, φ is an homeomor-
phism. Then φ(Sn) converges in distribution to φ(X∞) in F1. It follows
from Itô-Nisio theorem ([7], Theorem 3.1) that φ(Sn) converges almost
surely in F1 to φ(X∞). As Sn = φ−1[φ(Sn)] and X∞ = φ−1[φ(X∞)], (i)
follows.
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14. M. Valadier, Contribution à l’Analyse Convexe. Thesis, Paris, 1970.
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