
ACTA MATHEMATICA VIETNAMICA

Volume 25, Number 1, 2000, pp. 67–85
67

A CONVEX-CONCAVE PROGRAMMING METHOD FOR

OPTIMIZING OVER THE EFFICIENT SET

LE DUNG MUU

Abstract. The problem of optimizing a real valued function over the
efficient set of a multiple objective linear program has some applications

in multiple objective decision making. The main difficulty of this prob-

lem arises from the fact that its feasible domain, in general, is nonconvex
and not given explicitly. In this paper we formulate this problem as a

linearly constrained convex-concave program where the number of “non-

convex variables” is just equal to the number of independent criteria. We
propose inner and outer procedures to constructing an initial set allowing

convex-concave programming decomposition methods to be applied.

1. Introduction

Let X be a closed convex set in the Euclidean space Rn and C a
(p × n)-matrix whose ith row is denoted by ci. We recall that a point
x0 ∈ X is said to be efficient of C on X if whenever Cx ≥ Cx0, x ∈
X , then Cx = Cx0. By E(C, X) we shall denote the set of all efficient
points of C on X . The efficient-set even in the case when X is polyhedral
may not necessarily be convex. Generating this set in its entirely is thus
possible only in certain special cases. Even in these special cases the
computational efforts required to generate all of the efficient points become
rapidly unmanageable and seem to growth exponentially with problem
size. In many situations however a real valued function, say f , is available
which acts as a criterion function for measuring the importance of or for
discriminating among the efficient alternatives. The problem of finding
a most preferred (with respect to f) efficient point can be written as a
mathematical programming problem

(1.1) max
{

f(x) : x ∈ E(C, X)
}

.

Received June 23, 1998

1991 Mathematics Subject Classification. 90C29
Key words and phrases. Optimization over the efficient set, initial polyhedron, linearly
constrained, convex-concave programming, decomposition algorithm.
This paper is supported in part by the Basic Program in Natural Sciences.

68 LE DUNG MUU

Note that when X is polyhedral and f is quasiconvex, Problem (1.1)
attains its global optimal solution at a vertex of X . This is an immediate
consequence of the well known fact that XE is the union of faces of X .
Employing this property Philip [15] outlined a cutting plane procedure for
solving (1.1) with f linear. This procedure was implemented recently in
[5] with f quasiconvex.

A main difficulty of this problem is raised from the fact that the con-
strained set E(C, X) is not convex and not given explicitly. To overcome
this difficulty some equivalent representations of E(C, X) have been pre-
sented.

In [3] Beson used Philip’s simplex to describe the efficient set E(C, X)
as a system of infinite inequalities defined by bilinear forms. Using this
formulation Beson developed a branch-and-bound algorithm for Problem
(1.1) with f linear. This algorithm consists of finite iterations but each
iteration requires solving a bilinear program. In [4] the computational
effort for solving the encountered bilinear programs in [3] is weakened to
finding a feasible point better than the current one.

In [12] (see also [1]) E(C, X) is defined by adding to X a convex-concave
constraint and branch-and-bound algorithms using an adaptive simplicial
subdivision were proposed for solving the resulting convex-concave con-
strained problem with f concave. In the bicriteria case this method re-
sults in a parametric simplex procedure [6, 12] for optimizing a linear
function over E(C, X). In [8] the convex-concave constraint is replaced
by a reverse convex one, and a cutting plane method using convexity and
disjunctive cuts is developed there for maximizing a quasiconvex function
over E(C, X). The cutting planes in this algorithm, as in those of Philip
and Bolintineanu, are created in x-space.

In [17] Thach et al formed E(C, X) as a d.c. set (difference of two
convex sets) and used its dual form to develop an outer approximation
algorithm whose vertex-searching takes place in the criteria space Rp.

Recently an inner approximation algorithm using a vertex-searching
operation performed in a k-dimensional Euclidean space with k = rank C
was described in [11] for solving the reverse convex constrained form of
Problem (1.1) with f quasiconvex.

From an algorithmic viewpoint a new difficulty raised when applying
basic techniques of global optimization such as branch-and-bound and
outer approximation is that the effective domain of function defining the
efficient set is not given explicitly. In this case the available methods in [9,
19] for constructing an initial polyhedral convex set (simplex, cone, box)
to a branch-and-bound or an outer approximation algorithm cannot be
used.

A CONVEX-CONCAVE PROGRAMMING METHOD 69

In this paper we first continue our works in [11] by presenting lin-
early constrained convex-concave programming formulations to optimizing
a function (not necessarily convex) over the efficient set. In this case the
optimal value may not attain at a vertex of X , therefore solution methods
using inner approximation techniques fail to apply. Next we show how to
reduce “nonconvexity size” of the resulting problem. Finally we propose
the use of inner and outer approximation techniques for constructing an
initial polyhedral convex set which allows convex-concave programming
decomposition methods to be applied for maximizing a concave function
over E(C, X).

2. Linearly Constrained Mathematical

Programming Formulations

As usual, for two vector a = (a1, ..., ap) and b = (b1, ..., bp) the inequal-
ity a ≥ b means that ai ≥ bi for all i. We shall use the following definition
which is well known in vector optimization.

Definition 2.1. Let Q : Rn → Rp and K be a convex set in Rn. A real
valued function q defined on K is said to be nondecreasing with respect to

Q (or briefly Q-nondecreasing) on K if q(x) ≤ q(x′) for every x, x′ ∈ K
satisfying Q(x) ≤ Q(x′).

The function q is said to be increasing with respect to Q (or briefly
Q-increasing) on K if q(x) < q(x′) whenever x, x′ ∈ K, Q(x) ≤ Q(x′) and
Q(x) 6= Q(x′).

Following [2, 8] we define

G(X) :=
{

x ∈ Rn : Cy ≥ Cx for some y ∈ X
}

and
r(x) := max

{

eT (Cy − Cx) : Cy ≥ Cx, y ∈ X
}

.

It is well known [8] that if the efficient set E(C, X) is not empty then
r is finite on G(X). As usual we take r(x) = −∞ if x 6∈ G(X). So the
effective domain of r is G(X). Clearly, G(X) is a polyhedral convex set if
so is X .

The function r has the following properties [1, 2, 7, 8, 11] which will
be useful in the sequel.

Lemma 2.1. Assume that E(C, X) 6= ∅, then

(i) r(x) ≥ 0 for every x ∈ X,

(ii) r(x) = 0, x ∈ X if and only if x ∈ E(C, X),
(iii) −r is C-increasing on its effective domain,

70 LE DUNG MUU

(iv) If X is polyhedral, then −r is piecewise linear convex and subdif-

ferentiable at every point in G(X).

Since −r is increasing on G(X), it follows that if f is C-nondecreasing
on G(x) then the function f − Nr is C-increasing on G(X) for every
positive number N . In this case Problem (1.1) is equivalent to the linearly
constrained program

(2.1) max
{

f(x)−Nr(x) : x ∈ X
}

by the following lemma.

Lemma 2.2. If f is C-nondecreasing on G(X) then for any N > 0
Problem (2.1) is equivalent to (1.1).

Proof. Let xN be a global optimal solution of (2.1). Then xN ∈ E(C, X).
Indeed, otherwise there would exist x′ ∈ X such that Cx′ ≥ CxN , CxN 6=
Cx′. Since f − Nr is C-increasing we would have f(xN) − Nr(xN) <
f(x′) − Nr(x′). This would contradict the optimality of xN . Hence
r(xN) = 0. Then

f(xN) = f(xN)−Nr(xN) ≥ f(x)−Nr(x) = f(x) ∀x ∈ E(C, X) ⊂ X

which means that xN solves Problem (1.1) globally.
Conversely, if x∗ is a global optimal solution of (1.1), then

f(x∗)−Nr(x∗) = f(x∗) ≥ f(xN) = f(xN)−Nr(xN).

Thus, x∗ is a global optimal solution of (2.1), because so xN is.

Let define, for each u = (u1, . . . , up) ∈ Rp, the number

|u|− :=

{

max{−uj , uj ≤ 0} if u 6> 0,

0 otherwise,

and denote by C(A) the image of a set A under C, i.e.,

C(A) :=
{

y : y = Cx, x ∈ A
}

.

Proposition 2.1. Let A ⊆ G(X) and f(x) = ϕ(Cx) for every x ∈ A with

ϕ being a differentiable function on A. Then for every

N > NA := sup
{

|ϕ′(ξ)|− : ξ ∈ C(A)
}

A CONVEX-CONCAVE PROGRAMMING METHOD 71

the function FN (x) := f(x)−Nr(x) is C-increasing on A.

Proof. Let x, x′ ∈ A such that Cx ≤ Cx′ and Cx 6= Cx′. Since Cx ≤ Cx′

we have
max{eT (Cy − Cx′) : Cy ≥ Cx′, y ∈ X}

≤ max{eT (Cy − Cx) : Cy ≥ Cx, y ∈ X}.

This implies

FN (x′) = f(x′)−Nr(x′)

= f(x′)−N max{eT (Cy − Cx′) : Cy ≥ Cx′, y ∈ X}

= f(x′)−N max{eT (Cy − Cx + Cx− Cx′) : Cy ≥ Cx′, y ∈ X}

≥ f(x′)−N max{eT (Cy − Cx) : Cy ≥ Cx′, y ∈ X}

−N max{eT (Cx− Cx′) : Cy ≥ Cx′, y ∈ X}

≥ f(x)−N max{eT (Cy − Cx) : Cy ≥ Cx, y ∈ X}

+ f(x′)− f(x)−N max{eT (Cx− Cx′) : Cy ≥ Cx′, y ∈ X}

= FN (x) + f(x′)− f(x) + NeT C(x′ − x).

Since f(x) = ϕ(Cx), it follows that

FN (x′) ≥ FN (x) + ϕ(Cx′)− ϕ(Cx) + NeT C(x′ − x).

By the well known mean value theorem we have

FN (x′) ≥ FN (x) + ϕ′(ξ)C(x′ − x) + NeT C(x′ − x)

= FN (x) + (ϕ′(ξ) + NeT)(Cx′ − Cx).

Remembering that Cx′ ≥ Cx, Cx′ 6= Cx we deduce FN (x′) > FN (x)
whenever ϕ(ξ) + NeT > 0. The latter is fulfilled for every N > |ϕ′(ξ)|−,
ξ ∈ C(A).

In an important special case [7, 10, 11] where f(x) = dT x with d being a
linear combination of the criteria, the number NA can be easily calculated.
Namely we have the following result.

Corollary. Let f(x) = dT x with d =
p
∑

j=1

wjc
j. Then for every N > |w|-

the function FN (x) := f(x)−Nr(x) is C-increasing on any set A ⊆ G(X).

72 LE DUNG MUU

Alternatively, another linearly constrained formulation to Problem (1.1)
can be determined as follows. Let

Λ :=
{

λ = (λ1, ..., λm) : λj ≥ 1,

p
∑

j=1

λj ≤M
}

.

From Philip [15] we know that for every M > 0 sufficiently large,t x ∈
E(C, X) if and only if there exists λ ∈ Λ such that x is an optimal solution
of the linear program

g(λ) := max
{

λT Cy : y ∈ X
}

.

Let
h(λ, x) := g(λ)− λT Cx.

Then h is a nonnegative convex-linear function on Λ×Rn and h(λ, x) = 0,
(λ, x) ∈ Λ×X if and only if x ∈ E(C, X) and g(λ) = λT Cx.

Proposition 2.2. For any N > 0, if (λ∗, x∗) is an optimal solution of

problem

(2.2) max
{

f(x)−Nh(λ, x) : (λ, x) ∈ Λ×X
}

with x∗ is efficient, then x∗ solves (1.1).

Proof. Let yx be a solution of the program defining r(x), i.e., r(x) =
〈e, Cyx − Cx〉. Since λ ≥ e, yx ∈ X , Cyx ≥ Cx we have r(x) ≤ h(λ, x).
Let x be any efficient point. Then r(x) = 0 and there exists λ ∈ Λ such
that h(λ, x) = 0. Since (λ∗, x∗) is a global optimal solution to (2.2), it
follows that

f(x)−Nr(x) = f(x)−Nh(λ, x) ≤ f(x∗)−Nh(λ∗, x∗) ≤ f(x∗)−Nr(x∗).

Since r(x) = r(x∗) = 0, this implies f(x) ≤ f(x∗) which means that x∗

solves (1.1).

3. Variable Reduction Form

From the above results it follows that optimizing a function over the
efficient set of a multiple objective linear program amounts to solving
linearly constrained problems of forms (2.1) or (2.2). Note that even with
f linear these problems are multiextremal.

A CONVEX-CONCAVE PROGRAMMING METHOD 73

It is well known that computational costs (time, memory) required
for convergence of an algorithm for solving a multiextremal optimization
problem increase very rapidly as the number of nonconvex variables gets
larger. Therefore from a computational viewpoint an important question
is that how to reduce the number of nonconvex variables. Fortunately, in
problems (2.1) and (2.2) the number of nonconvex variables can be reduced
to just the number of independent criteria which in many applications is
much less than that of total variables.

In fact, noting that rankC = k, by using linear transformations the

bilinear term λT Cx can be cast into the form
k
∑

j=1

ξjλjxj . Since the con-

vexity is preserved under linear transformations, Problem (2.2) takes the
form

(3.1) max
{

f1(x)−Ng1(λ) + N

k
∑

j=1

ξjλjxj : (λ, x) ∈ Λ1 ×X1

}

where Λ1, X1 are polyhedra, g1 is convex, while f1 is convex or concave if

so is f . In this form the bilinear term
k
∑

j=1

ξjλjxj , which makes the problem

difficult, depends only on xj and λj (j = 1, . . . , k).
To reduce nonconvex variables in Problem (2.1) we first recall [16 Sec-

tion 8] that for a convex set K the set of all y satisfying x + ty ∈ K for
every t ≥ 0, x ∈ K is called the recession cone of K and denoted by O+K.
The largest subspace contained in O+K is called the lineality space of K.
This subspace consists of the zero vector and all the non-zero vectors y
such that, for every x ∈ K, the line through x in the direction of y is
contained in K. The dimension of the lineality space of K is called the
lineality of K. If F is a closed proper convex function, then all non-empty
level sets of the form {x : F (x) ≤ α}, α ∈ R, have the same lineality space
[16 Theorem 8.7]. This lineality space is often called the constancy space

of F .
Let C0 be the polyhedral cone vertexed at the origin and generated by

the matrix C, i.e.,
C0 := {y ∈ Rn : Cy ≤ 0}.

Then we have the following result.

Lemma 3.1. (i) G(X) = C0 + X,

(ii) C0 ⊂ O+G(X),
(iii) The constancy space of −r is L(C) := {y : Cy = 0}.

74 LE DUNG MUU

Proof. (i) Let a ∈ G(X). By the definition of G(X) there is b ∈ X such
that C(a− b) ≤ 0). Then z := a− b ∈ C0. Hence a ∈ C0 +X . Conversely,
if a := d + b with d ∈ C0, b ∈ X . Then C(d + b) = Cd + Cb ≤ Cb which
means that d + b ∈ G(X).

(ii) Let x be any point of G(X). By definition of G(X) there exists
z ∈ X such that Cx ≤ Cz. Thus, for any positive number t and any y
satisfying Cy ≤ 0 we have

Cx + tCy ≤ Cx ≤ Cz

which means that x + ty ∈ G(X). Hence C0 ⊂ O+G(X).
(iii) It is easy to verify that −r is closed proper convex and that

dom (−r) = G(X). Since G(X) = {x : −r(x) ≤ 0}, by Theorem 8.7
in [16] the constancy space of −r is the lineality space of G(X) which is
equal to the set −O+G(X)∩O+G(X). From (i) we have L(C) ⊂ O+G(X).
Now we need to show L(C) ⊂ −O+G(X). Indeed, let x ∈ G(X). By the
definition of G(X), there exists z ∈ X such that Cz ≥ Cx. Then for every
t ≥ 0, y ∈ L(C) one has

C(x− ty) = Cx− tCy = Cx ≤ Cz,

which means that x− ty ∈ G(X). This is true for all t ≥ 0 and y ∈ L(C).
Hence L(C) ⊂ −O+G(X).

From this proposition it follows that r is constant on the subspace

L(C) :=
{

x : Cx = 0
}

.

Thus, if for some x ∈ L(C), x ∈ X we have

r(x) := max
{

eT C(y − x) : Cy ≥ Cx, y ∈ X
}

= 0,

then every point of X lying in L(C) belongs to E(C, X). Otherwise,
L(C) contains no efficient points. Note that dimL(C) = n − k because
rankC = k.

Without loss of generality we may assume that the first k-rows c1, . . . , ck

of the matrix C are independent. Let L denote the linear space generated
by these rows. Then the algebraic direct sum of L and L(C) is Rn. So
every x ∈ Rn can be uniquely written as x = x1 + x2 with x1 ∈ L,
x2 ∈ L(C).

A CONVEX-CONCAVE PROGRAMMING METHOD 75

Lemma 3.2. Let x = x1 + x2, x1 ∈ L, x2 ∈ L(C). Then

r(x) = max
{

eT C(y − x1) : Cy ≥ Cx1
}

:= r(x1).

Proof. Let
X(x) :=

{

y ∈ X : Cy ≥ Cx
}

,

X(x1) :=
{

y ∈ X : Cy ≥ Cx1
}

.

Since x = x1 +x2 and Cx2 = 0, we have X(x) = X(x1) and eT C(y−x) =
eT C(y− x1). Thus r(x) = r(x1) by the definitions of r(x) and r(x1).

Let
c1, . . . , ck, bk+1, . . . , bn

be a basis of Rn, where bk+1, . . . , bn is a basis of L(C). Since convexity is
preserved under linear transformations, we may assume that all data are
given in this basis. Let x = x1 +x2 with x1 ∈ L, x2 ∈ L(C). Then x1 and
x2 is uniquely written as

x1 =
k

∑

i=1

uic
i, x2 =

n
∑

i=k+1

uib
i.

Thus one can identify x with the vector (u, v) where u and v are defined
by

u := (u1, ..., uk), v := (vk+1, ..., vn).

As usual suppose that the polyhedron X is given by

(3.2) X =
{

x ∈ Rn : Ax + b ≤ 0
}

,

where A is an (m×n)-matrix, b ∈ Rm. Denote by A1 and A2 the matrices
obtained from A by taking the first k- and the last (n− k)-columns of A
respectively. Then X can be expressed as

X =
{

(u, v) : A1u + A2v + b ≤ 0
}

.

Let

s(u) := r
(

k
∑

j=1

ujc
j
)

.

Then Problem (2.1) takes the form

(3.3) max
{

FN (u, v) := f(u, v)−Ns(u) : A1u + A2v + b ≤ 0
}

.

76 LE DUNG MUU

4. A Solution Method by Branch-and-Bound

In this section we shall describe a branch-and-bound method for solving
problem (3.3) with f being a concave function on Rn (hence f is contin-
uous). Since s is concave, this is a multiextremal optimization problem.
Actually it is a linearly constrained d.c. optimization problem. Two spe-
cial features of this problem which differ from a general d.c. optimization
problem are the following:
• The concave function s that makes the problem difficult depends

upon only the variable u.
• The effective domain of s is not given explicitly.
The first point suggests that a branch-and-bound procedure for solving

this problem should take its branching operation in the u-space, since
it is well recognized that reducing the dimension of search space may
dramatically reduce computational cost required for convergence.

The second point requires special treatments for constructing a poly-
hedral convex set from which a branch-and-bound procedure can start.
This initial set must contain a global optimal solution (or its projection
on u-space) but it is not beyond the domain where the involved functions
are properly defined. Moreover the vertices and extreme directions of this
polyhedron can be computed with a reasonable effort. In the sequel we
shall refer to a polyhedron satisfying these conditions as a valid polyhedron.
In view of the first point such a valid polyhedron should be constructed
in the u-space.

We propose two algorithms using inner and outer approximations for
constructing a valid polyhedron. By V (S) and R(S) we will denote the
sets of extreme points and directions respectively.

Inner Approximation

The procedure starts with a (simple structured) polyhedral convex set
S contained in G(X). If X ⊂ S we are done. Otherwise we seek a point
x ∈ V (X) \ S and repeat the procedure with S replaced by the convex
hull of S and x.

As usual for a set A we shall denote by A∗ the polar of A, i.e.,

A∗ =
{

z : 〈z, x〉 ≤ 1 ∀x ∈ A
}

,

and by P (A) the projection of A on the u-space. Then the algorithm can
be described as follows.

IV ALGORITHM (Inner approximation for constructing an initial poly-
hedral set)

A CONVEX-CONCAVE PROGRAMMING METHOD 77

Initialization step. Set a polyheron S0 ⊂ G(X); compute V (S∗

0) and
R(S∗

0). Let j ← 0.

Iteration j (j = 0, 1, . . . , K). For each u ∈ V (S∗

j)∪R(S∗

j), u 6= 0 solve
the linear program

max
{

〈u, x〉 : x ∈ X
}

to obtain a basic optimal solution x(u) (hence x(u) ∈ V (X)).
Step 1.

a) If

〈u, x(u)〉 ≤ 1 ∀ u ∈ V (S∗

j)

and

〈u, x(u)〉 ≤ 0 ∀ u ∈ R(S∗

j),

then set S = Sj and terminate the algorithm.
b) Otherwise, choose uj+1 ∈ V (S∗

j) ∪R(S∗

j) and

xj+1 ∈ argmax
{

〈uj+1, x〉 : x ∈ X
}

such that

〈uj+1, xj+1〉 > 1 if uj+1 ∈ V (S∗

j)

or

〈uj+1, xj+1〉 > 0 if uj+1 ∈ R(S∗

j).

Step 2. Take

Sj+1 = conv (Sj, {x
j+1})

and

S∗

j+1 := S∗

j ∩
{

u = (u1, . . . , uk) :

k
∑

i=1

ui〈x
j+1, ci〉 ≤ 1

}

.

Compute V (S∗

j+1), R(S∗

j+1). Set j ← j + 1 and go to iteration j.

Noting that S0 ⊂ G(X), xj ∈ G(X) for every j > 1 we have Sj ⊂ G(X)
for all j because G(X) is convex and Sj+1 = conv (Sj , {x

j+1}). Since at
each iteration j ≥ 0, the polyhedron Sj+1 is obtained by taking the convex
hull of Sj and a new vertex xj+1 of X , this algorithm is finite yielding a
polyhedral convex set S satisfying X ⊂ S ⊂ G(X).

A valid polyhedron in the u-space can be obtained from S by taking,
for example, its projection on u-space.

78 LE DUNG MUU

Remark. Without loss of generality we may assume that 0 ∈ X . Then
the cone C0 ⊂ G(X). So at the start we can set S0 = C0. Since
C0 =

{

x : Cx ≤ 0
}

, its polar C∗

0 = cone (c1, . . . , ck). Note that, since

Sj+1 = conv (Sj , {x
j+1}), from convex analysis (see e.g. [16, Theorem

3.3] it follows that

S∗

j+1 = S∗

j ∩
{

u : 〈xj+1, u〉 ≤ 1
}

.

Thus the vertices and extreme directions of S∗

j+1 can be calculated from

those of S∗

j by available methods [9, 18]. These methods work well in
small dimensional space, but become computationally expensive in higher
space. Note that since

linealitySj = linealityS0 = n− k,

we have
dimS∗

j = n− linealtySj = k.

So the vertices and extreme directions are computed in a k-dimensional
linear space.

Outer Approximation

Alternatively one can use an outer approximation, which can be re-
garded as a dual version of the above inner approximation, for constructing
a valid polyhedron.

Namely, as usual we start the outer approximation procedure by setting
a bounded polyhedral convex set (polytope) S0 in the u-space such that
P (X) ⊂ S0 and its vertices are easy to calculate. If S0 ⊂ P (G(X)) we
are done. Otherwise we cut off parts of S0 \ P (G(X)) iteratively until we
obtain a polytope that is contained in P (G(X)). Since we do not know
explicitly constraints defining G(X), we cut off parts of S0 \ P (X) rather
than S0 \ P (G(X)).

Two questions raised in this outer approximation are of how to con-
struct a polyhedron S0 in the u-space such that P (X) ⊂ S0 and how to
cut off a part of S0 \ P (X) by a hyperplane.

Recall that the polytope X is given by

X =
{

(u, v) : A1u + A2v + b ≤ 0
}

.

The following well known lemma is useful in the sequel.

Lemma 3.3 [9, 18]. Let P (X) denote the projection of X in the u-space.

Then a point u0 belongs to P (X) if and only if h = 0 is the optimal

solution of the linear program defined by

(L(u0)) max
{

〈A1u
0 + b, h〉, AT

2 h = 0, h ≥ 0
}

.

A CONVEX-CONCAVE PROGRAMMING METHOD 79

Let h0 be an optimal solution of (L(u0)). If 〈A1u
0 + b, h0〉 > 0, then

u0 6∈ P (X). The constraint

〈A1u + b, h0〉 ≤ 0

is satisfied for every u ∈ P (X) but is violated by u0.
From this lemma it follows that

P (X) = {u : 〈A1u + b, h〉 ≤ 0, h ∈ V (W)}

where

(3.4) W :=
{

h = (h1, . . . , hm) :
m

∑

j=1

hj ≤ 1, AT
2 h = 0

}

.

This gives an explicit form to the polyhedron P (X). However if m is large
enough, the number of the vertices of P (X) may be large, and generating
all of them is very costly. In this case we choose a certain set V0 ⊂W and
take

S0 :=
{

u : 〈A1u + b, h〉 ≤ 0, h ∈ V0

}

.

Obviously, P (X) ⊂ S0.
We can also construct the polytope S0 by setting first a simplex X0 in

the x-space and then take S0 = P (X0).
To check whether S0 ⊂ P (G(X)) or not it is sufficient to verify

(3.5) V (S0) ⊂ P (G(X)).

Note that since X ⊂ G(X), if u0 6∈ P (G(X)) then u0 6∈ P (X) as well.
So we can apply Lemma 3.3 to construct a cutting plane that cuts off u0

from S0 but does not cut off any point from P (X).

OV ALGORITHM (outer approximation for computing an initial poly-
hedron)

Step 0. Find a polytope S0 such that S0 ⊂ P (X). Calculate V (S0).
Step 1. If v ∈ P (G(X)) for all v ∈ V (S0), then S0 ⊂ P (G(X)). The

algorithm terminates.
Otherwise, find u0 ∈ V (S0) such that u0 6∈ P (G(X)) (hence u0 6∈

P (X)).
Step 2. Solve the linear program

max
{

〈A1u
0 + b, h〉, AT

2 h = 0, h ≥ 0
}

.

80 LE DUNG MUU

to obtain a basic solution h0.
Set

S0 ←
{

u ∈ S0 : 〈A1u + b, h0〉 ≤ 0
}

.

Step 3. Compute V (S0) and go to step 1.

The valid polyhedron constructed by the above methods is not a simple
set (simplex, cone, rectangle...) in general. Therefore, branch-and-bound
methods using simplicial, conical or rectangular subdivisions starting from
this set can not be applied in general. For this initial polyhedron suitable
subdivisions should be used. We propose to use the adaptive polyhedral
bisection operations developed in convex-concave programming [13, 14]
for solving Problem (3.3) with f(u, v) is concave. Note that since f is
concave, an optimal solution of (3.3) in general is not attained at a vertex
of its feasible domain.

Suppose that a polytope S0 in the u-space satisfying P (X) ⊂ S0 ⊂
P (G(X)) has been constructed. Let S be a subpolyhedron of S0. Consider
problem (3.3) with respect to S, i.e.,
(P (S))
β(S) := max

{

FN (u, v) := f(u, v)−Ns(u) : u ∈ S, A1u + A2v + b ≤ 0
}

.

We decouple the variables u and v in this problem to obtain a relaxed
problem
(R(S))
α(S) := max

{

FN (u, v) := f(u, v)−Ns(w) : u, w ∈ S, A1u+A2v+b ≤ 0
}

.

Then α(S) ≥ β(S). Let (uS, vS, wS) be an optimal solution of (R(S)).
Clearly, if s(uS) = s(wS), in particular if uS = wS, then α(S) = β(S).

Note that solving R(S) amounts to solving the linearly constrained
convex program (concave maximization)

max
{

f(u, v) : u ∈ S, A1u + A2v + b ≤ 0
}

and to minimizing the concave function s on S which, since s is finite on S,
can be solved by evaluating s at the vertices of S. Thus we may suppose
that 0 = s(wS) because otherwise if s(wS) > 0 then s(u) > 0 for every
u ∈ S, which means that S does not contain the projection of any efficient
point. In these cases S can be eliminated from further consideration.

Suppose that s(wS) < s(uS) which implies uS 6= wS. Then it suggests
subdividing S by a branching operation that makes the distance between
these two points tends to 0 as rapidly as possible.

A CONVEX-CONCAVE PROGRAMMING METHOD 81

We call uS and wS the subdivision (bisection) points and propose the
following two subdivision strategies:

Rule 1 (Euclidean rule). Take lS = (wS − uS)/(‖wS − uS‖). Then we
bisect S by setting

(3.6) S− := {v : 〈lS, v − (uS + wS)/2〉 ≤ 0},

(3.7) S+ := {v : 〈lS , v − (uS + wS)/2〉 ≥ 0}.

Clearly wS ∈ S− and uS ∈ S+.

Rule 2 (Subgradient rule). Take lS ∈ ∂(s(wS)) and divide S as

(3.8) S− := {v : 〈lS, v − wS〉 ≤ 0},

(3.9) S+ := {v : 〈lS, v − wS〉 ≥ 0}

Then wS ∈ S− and, since

〈lS, uS − wS〉 ≥ s(uS)− s(wS) = s(uS) > 0,

uS ∈ S+. For these subdivision we have the following result:

Lemma 3.4. Let {Sk} be any infinite nested sequence of partition sets

generated by subdivision Rule 1 or Rule 2, and let {wk}, {uk} be the

corresponding bisection points. Suppose that the sequences {wk}, {uk} are

bounded. Then they have a common cluster point.

Proof. Since {Sk} is nested and Sk ⊂ S0 for all k, by taking subsequences
if necessary, we may assume that

(3.10) Sk+1 ⊂ S−

k ∀ k

or

(3.11) Sk+1 ⊂ S+

k ∀ k,

and that the sequences {uk}, {wk} are convergent. Note that for both
Rule 1 and Rule 2 the sequence {lk} is bounded, since in Rule 1 ‖lk‖ = 1

82 LE DUNG MUU

for all k, whereas in Rule 2 lk ∈ ∂s(uk). Thus we may also assume that
the sequence {lk} is convergent.

Consider first the Rule 1. If (3.10) holds then uk+1 ∈ S−

k which means

〈lk, uk+1 − (uk + wk)/2〉 ≤ 0.

Since
〈lk, uk − (uk + wk)/2〉 ≥ 0,

it follows that

0 ≤ 〈lk, uk − (uk + wk)/2〉

≤ 〈lk, uk − (uk + wk)/2〉 − 〈lk, uk+1 − (uk + wk)/2〉

= 〈lk, uk − uk+1〉 ≤ ‖uk − uk+1‖ → 0.

Hence
〈lk, uk − (uk + wk)/2〉 → 0.

Since ‖lk‖ = 1 we obtain in the limit that

uk − (uk + wk)/2 = (uk − wk)/2→ 0 as k →∞.

If (3.11) holds, we use wk+1 ∈ S+

k to obtain, by a similar way, that

0 ≥ 〈lk, wk − (uk + wk)/2〉

≥ 〈lk, wk − (uk + wk)/2〉 − 〈lk, wk+1 − (uk + wk)/2〉

= 〈lk, wk − wk+1〉 ≤ ‖wk − wk+1‖ → 0.

Thus
〈lk, wk − (uk + wk)/2〉 → 0,

which as before implies that wk − uk → 0 as k →∞.
For the subdivision defined by Rule 2 the proof can be done by the

same argument.

Now we are in a position to describe an algorithm for solving problem
(3.3). The algorithm is a branch-and-bound procedure consisting of two
phases. In the first phase the algorithm constructs a valid polyhedron that
serves as an initial set to a branch-and-bound procedure using the above
decoupling technique for bounding, and Rule 1 or Rule 2 for branching.
For simplicity in what follows we shall use the notations uk, vk, wk ... for

A CONVEX-CONCAVE PROGRAMMING METHOD 83

usk , vSk , wSk As usual we agree that maximum over on the empty set
is −∞. Let ε ≥ 0 be a tolerance. A feasible point x is said to be ε-optimal
solution to Problem (3.3) if f∗ − f(x) ≤ ε(|f(x)|+ 1). The algorithm can
then be described as follows.

ALGORITHM

Phase 1. Use IV or OV algorithm to construct a valid polyhedron
S0.

Phase 2. At the beginning of this phase we have a polytope S0 satis-
fying P (X) ⊆ S0 ⊆ P (G(X)) whose vertices have been computed.

Step 0. Solve Program R(S0) to obtain α(S0), u0, w0, v0. Set ∆0 :=
{S0}, α0 := α(S0) (current best upper bound), β0 := β(S0) (current best
lower bound), x0 := (u0, v0) (currently best feasible point). Set k ← 0.

Iteration k (k = 0, 1, . . .)
Step 1 (stop criterion). If αk − βk ≤ ε(|βε| + 1) terminate: xk is an

ε-optimal solution. Otherwise do the following:
Step 2 (selecting). Find Sk ∈ ∆k such that

α(Sk) := max
{

α(S′) : S′ ∈ ∆k

}

.

Step 3 (branching). Use Rule 1 or 2 to divide Sk into S−

k and S+

k .

Step 4 (bounding). Solve R(S−

k) and R(S+

k).

Step 5 (updating). Update αk, βk and xk to obtain αk+1, βk+1 and
xk+1. Set

∆k+1 :=
{

S′ ∈ (∆k \ S) ∪ {S−, S+} : α(S′)− βk+1 > ε(|βε+1|+ 1)
}

,

k ← k + 1 and go back to Step 1.

Convergence Theorem (i) If the algorithm terminates at iteration k
then xk = (uk, vk) is an ε-optimal solution.

(ii) If the algorithm never terminates then βk ↗ f∗, αk ↘ f∗, and any

cluster point of xk = (uk, vk) is a global optimal solution.

Proof. (i) is straightforward from the stop criterion of algorithm and the
definition of ∆k.

(ii) If algorithm runs with infinitely many iterations, it generates an
infinite sequence {Sk} of nested partition sets for which the corresponding
sequences of bisection points {wk}, {uk}, by Lemma 3. 4, have a common
cluster point, say u∗. By taking subsequences if necessary we may assume
that uk → u∗, wk → u∗, vk → v∗.

84 LE DUNG MUU

Since the sequences {αk}, {βk} are monotone and

αk = f(uk, vk)−Ns(wk), βk = f(uk, vk)−Ns(uk),

we obtain in the limit that

α∗ = f(u∗, v∗)−Ns(u∗), β∗ = f(u∗, v∗)−Ns(u∗).

which implies α∗ = β∗ = f∗.
Let x = (u, v) be any cluster point of sequence {xk = (uk, vk)}. Then

(u, v) is feasible. Then there is a subsequence {xj = (uj, vj)} such that
uj → u, vj → v. Using again βj = f(uj, vj)−Ns(uj) and letting j → +∞
we have β∗ = f(u, v). Hence (u, v) is global optimal.

Corollary. If ε > 0 the algorithm is finite.

References

1. Le T. H. An, Le D. Muu and Pham D. Tao, D. C. Optimization approach for
optimizing over the efficient set, Oper. Res. Lett. 19 (1996), 117-128.

2. H. P. Benson, Optimization over the efficient set, J. of Math. Anal. and Appl. 98

(1984), 562-580.
3. H. P. Benson, An all-linear programming relaxation algorithm for optimizing over

the efficient set, J. of Global Optim. 1 (1991), 83-104.
4. H. P. Benson, A finite, nonadjacent extreme-point search algorithm for optimiza-

tion over the efficient set, J. of Optim. Theory and Appl. 73 (1993), 47-64.
5. S. Bolintineanu, Minimization of a quasi-concave function over an efficient set,

Math. Prog. 61 (1993), 89-110.
6. Ng. D. Dan and Le D. Muu, Parametric simplex method for optimizing a linear

function over the efficient set of a bicriteria linear problem, Acta Math. Vietnam.

21 (1996), 59-67.
7. J. Dauer and T. Fosnaugh, Optimization over the efficient set, J. of Global Optim.

7 (1995), 261-277.
8. J. Fülöp, A Cutting Plane Algorithm for Linear Optimization over the Efficient

Set, In: Generalized Convexity, Edited by S. Komlosi, T Rapcsaj and S. Schaible,

Springer, Berlin, 374-385.
9. R. Horst and H. Tuy, Global Optimization (Deterministic approaches), Springer-

Verlag, Berlin, 1993.
10. H. Isermann and R. E. Steuer, Computational experience concerning Payoff tables

and minimum criterion values over the efficient set, Euro. J. of Oper. Res. 33

(1987), 91-97.
11. Le T. Luc and Le D. Muu, Global optimization approach to optimizing over the

efficient set, In: Lect. Notes Eco. Math. Syst. 452 (1997), 183-196.
12. Le D. Muu, Computational aspects of optimization over the efficient set, Vietnam

J. of Math. 23 (1995), 85-106.
13. Le D. Muu and W. Oettli, A method for minimizing a convex-concave function

over a convex set, J. Optim. Theory and Appl. 70 (1990), 377-384.

A CONVEX-CONCAVE PROGRAMMING METHOD 85

14. Le D. Muu, An algorithm for solving convex programs with an additional convex-

concave constraint, Math. Prog. 61 (1993), 75-87.
15. J. Philip, Algorithms for the vector maximization problem, Math. Prog. 2 (1972),

207-229.
16. R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.

17. P. T. Thach, H. Konno and D. Yojota, Dual Approach to optimization on the set
of Pareto-optimal solutions, J. of Optim. Theo. and Appl. 88 (1996), 689-707.

18. T. V. Thieu, B. T. Tam and V. T. Ban, An outer approximation method for globally
minimizing a concave function over a compact set, Acta Math. Vietnam. 8 (1983),
21-40.

19. H. Tuy, Convex Analysis and Global Optimization, Kluwer Academic Publishers,
1998.

Institute of Mathematics

Box 631, Bo Ho, Hanoi, Vietnam

