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ON LOCAL REDUCTION NUMBERS AND a-INVARIANTS

OF REES ALGEBRAS OF GOOD FILTRATIONS

DUONG QUOC VIET

1. Introduction

Let (A,m, k) be a Noetherian local ring of dimA = d > 0 with an
infinite residue field k. Let I be an ideal of A with ht(I) > 0. The ideal J
is called a reduction of I if J ⊆ I and there exists an integer n such that
In+1 = JIn. The least non-negative integer n with this property is called
the reduction number of I with respect to J and we denote it by rJ(I).
The reduction number of I is defined by

r(I) := min{rJ (I) | J is a minimal reduction of I},

where J is said to be a minimal reduction of I if it is not properly contained
in any other reduction of I. Let

`(I) := dimG(I)/mG(I).

We call this number the analytic spread of I. The analytic spread `(I) is
equal to the minimum number of generators of every minimal reduction
of I (cf. [15]). It is well-known that

ht(I) ≤ `(I) ≤ dim A

and the difference
ad(I) := `(I) − ht(I)

is called the analytic deviation of I. In the case ad(I) = 0, the ideal I is
called equimultiple. The study on ideals with positive analytic deviation
as a separate class is initiated by Huckaba and Huneke in [8], [9], [10]. To
determine when the Rees algebra

R(I) := ⊕
n≥0

Intn

Received June 4, 1998; in revised form November 25, 1998.



50 DUONG QUOC VIET

is a Cohen-Macaulay ring in terms of the associated graded ring

G(I) := ⊕
n≥0

(In/In+1)

and the reduction number of I is an interesting problem. The case of equi-
multiple ideals was investigated by Goto-Shimoda [7], Grothe-Herrmann-
Orbanz [6], Trung-Ikeda [21], Viet [22], Hoa-Zarzuela [12]. But the most
general result was obtained by Hoa (see [11], Theorem 5.4). Next, one is
interested in the case of ideals having small analytic deviation in Cohen-
Macaulay rings. For example, Goto-Huckaba [4] and, independently, Viet
[23] have proved that if A is a Cohen-Macaulay ring, I is an ideal of A with
ad(I) = 1 and I is generically a complete intersection ideal then R(I) is
a Cohen-Macaulay ring if and only if G(I) is a Cohen-Macaulay ring and
r(I) ≤ ht(I). Trung has extended this result to ideals having analytic de-
viation one or two (see [20], Theorem 1.3). In [2] Aberbach-Huneke-Trung
have given the criterion for the Cohen-Macaulayness of Rees Algebras of
ideals having arbitrary analytic deviation in Cohen-Macaulay rings (see
also [13], [16], [17]). The theorem of Aberbach-Huneke-Trung states:

Theorem [A-H-T]. Let (A,m) be a Cohen-Macaulay ring of dimA > 0
and I an ideal of A with ht(I) > 0. Then R(I) is Cohen-Macaulay if and
only if the following conditions are satisfied:

(i) G(I) is Cohen-Macaulay.
(ii) r(Ip) ≤ ht(p) − 1 for every prime p ⊇ I with `(Ip) = ht(p).

In this paper, we will generalize the theorems of Goto-Shimoda [7],
Hoa [11], Aberbach-Huneke-Trung [2] to a similar criterion for the Cohen-
Macaulay property of Rees algebras of good filtrations in Noetherian local
rings, see Theorem 4.1.

A family F := {In}n≥0 of ideals of A is called a filtration if the following
conditions are satisfied:

(i) I0 = A, I1 6= A,

(ii) In ⊇ In+1 for all n ≥ 0,

(iii) InIm ⊆ In+m for all n, m ≥ 0.

Let F = {In}n≥0 be a filtration of A. We call the graded rings

R(F ) := ⊕
n≥0

Intn

and
G(F ) := ⊕

n≥0
(In/In+1)
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the Rees algebra and the associated ring of F , respectively.

Let I be an ideal of A. F is called an I-good filtration if IIn ⊆ In+1

for all n ≥ 0 and In+1 = IIn for all n � 0. F is called a good filtration
if it is an I-good filtration for some ideal I of A [12]. Note that F is a
good filtration if and only if it is an I1-good filtration. An ideal J ⊆ I1 is
a minimal reduction of a good filtration F if F is a J-good filtration and
it is not properly contained in any ideal I ⊆ I1 such that F is an I-good
filtration. A good filtration F = {In}n≥0 is called equimultiple if I1 is an
equimultiple ideal.

Let J ⊆ I1 be a minimal reduction of a good filtration F. The reduction
number of F with respect to J is the number

rJ(F ) := min{r | In+1 = JIn for all n ≥ r}.

The reduction number of F is the number

r(F ) := min {rJ(F )| J is a minimal reduction of F} [12].

For every p ∈ Spec A, we set Fp := {InAp}n≥0 and call it the local
filtration of F with respect to p and r(Fp) the local reduction number of
F with respect to p.

Throughout this paper we will assume that F is a good fitration of A
such that the Rees algebra R(F ) is Noetherian with dim R(F ) = d + 1.
It is well-known that if I1 6⊆ √

0A then R(F ) is a Noetherian ring with
dim R(F ) = dim A + 1.

We denote by R the Rees algebra R(F ), by M the maximal graded ideal
of R(F ), and by R+ the ideal generated by all homogeneous elements of
positive degree of R(F ).

Recall that the a∗-invariant of R is defined by

a∗(R) := min{a ∈ Z| [Hi
M (R)]n = 0 for all n > a and i ≤ d + 1}.

Set

Li(F ) := {p ∈ Spec A| `(I1p) = ht(p) ≤ i}; i ≤ `(I1).

The number

ri(F ) := max{−1, r(Fp) − ht(p)| p ∈ Li(F )} + i, i ≤ `(I1),
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is called the i-th local reduction number of F .

A ring A is said to have Serre condition (Sk) if

depthAp ≥ min{k, ht(p)}

for every p ∈ Spec A (see [14]). Inspired by this definition, we say that
the Rees algebra R(F ) satisfies Serre condition (S∗

k) if

depth R(F )P ≥ min{ht(P), k}

for all P = p + R+(F ), p ∈ Spec A.
The relations between the local reduction numbers of a good fitration

F and the a∗-invariant of the Rees algebra R(F ) satisfying Serre condition
(S∗

` ) can be described as follows.

Theorem 3.3. Assume that F = {In}n≥0 is a good filtration of A with
` = `(I1), R := R(F ) satisfies Serre condition (S∗

` ) and depth R+(F ) > 0.
Let J be a minimal reduction of I1. Then

(i) max{r`−1(F ) + 1, rJ(F )} = r`(F ).
(ii) max{r`−1(F ) + 1, a∗(R) + `} = r`(F ).

Using Theorem 3.3 we can prove the following result which general-
izes the case of Cohen-Macaulay rings in [2] and the case of equimultiple
filtrations in [11].

Theorem 4.1. Suppose that F = {In}n≥0 is a good filtration with
dim R(F ) = d + 1. Then R(F ) is a Cohen-Macaulay ring if and only
if the following conditions are satisfied:

(i) [Hi
M (G(F ))]n = 0 for all n 6= −1, i = 0, ..., d− 1.

(ii) r(Fp) ≤ ht(p) − 1 for every prime p ⊇ I1 with `((I1)p) = ht(p).

The paper is divided into three parts. In Section 2 we collect several
facts about minimal reductions of ideals generated by homogeneous el-
ements of positive degree and about generalized Cohen-Macaulay rings
with respect to an ideal. In Section 3 we introduce the notion of local re-
duction numbers of graded factor algebras of Rees algebras and we relate
the local reduction numbers to the a∗-invariant of a Rees algebra which
satifies Serre condition (S∗

` ) (Theorem 3.3). Section 4 gives the proof of
the main theorem and some applications.
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2. Preliminaries

In this section we give some results and notions which will be needed
in this paper.

Let S := ⊕
n≥0

Sn be a Noetherian graded algebra over a Noetherian local

ring S0 with an infinite residue field. We denote by S+ the ideal generated
by all homogeneous elements of positive degree of S. A sequence x1, . . . , xr

of homogeneous of elements of S is called [t1, ..., tr]-regular if

[(x1, ..., xi−1) : xi]n = (x1, ..., xi−1)n

for all n ≥ ti, i = 1, ..., r [2], [18]. If all t1, ..., tr are finite then x1, ..., xr

is called a filter-regular sequence [19]. A minimal reduction of S+ is an
ideal J generated by `(S+) homogeneous elements of S of degree 1 such
that Jn = Sn for some positive integer n. The reduction number rJ (S+)
of S+ with respect to J is the minimum number n for which Jn+1 = Sn+1

[20]. According to [19] every minimal reduction of S+ can be minimally
generated by a filter-regular sequence of S.

Let J be a minimal reduction of S+. We denote by S(J) the least
number t such that there exists a homogeneous minimal generating set
x1, ..., x` of J which is [t + 1, ..., t + `]-regular of S [2].

Set

a∗(S) := min{a ∈ Z| [Hi
M (S)]n = 0 for all n > a and i ≤ dimS}.

In the same way as in the proof of [20, Corollary 2.3] and [2, Corol-
lary 2.9] we get some relations between S(J), rJ(S+), `(S+) and a∗(S) as
follows.

Proposition 2.1. Let S be a Noetherian graded algebra and J ⊆ S1 be a
minimal reduction of S+. Then

(i) a∗(S) ≤ S(J) if and only if rJ (S+) ≤ `(S+) + S(J).
(ii) For any integer b > S(J), a∗(S) = b if and only if rJ (S+) = `(S+)+

b.
(iii) max{S(J), a∗(S)} = max{S(J), rJ(S+) − `(S+)}.
(iv) If Y is a minimal reduction of S+ such that r(S+) = rY (S+) then

rJ (S+) ≤ max{S(J) + `(S+), r(S+), S(Y ) + `(S+)}.
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Proof. Since J ⊆ S1 is a minimal reduction of S+, there exists a homo-
geneous minimal system of generators x1, ..., x` such that x1, ..., x` is a
filter-regular sequence [19]. We get

[(x1, ..., xi−1) : xi]n = (x1, ..., xi−1)n

for all n ≥ i + S(J), i = 1, ..., `. From [20, Theorem 2.2] we obtain (i) and
(ii). Next, we prove (iii). If a∗(S) ≤ S(J) then rJ(S+) ≤ `(S+) + S(J)
by (i) so both sides are equal to S(J). If a∗(S) > S(J) then by (ii),
rJ (S+) − `(S+) = a∗(S) and the equality holds. By (iii) we get

a∗(S) ≤ max{S(Y ), rY (S+) − `(S+)} = max {S(Y ), r(S+) − `(S+)}

and
rJ (S+) ≤ max{S(J) + `(S+), a∗(S) + `(S+)}.

From this it follows that

rJ (S+) ≤ max{S(J) + `(S+), S(Y ) + `(S+), r(S+)}.

Remark 2.2.

(i) rJ (S+) ≤ max {S(J), a∗(S)} + `(S+).

(ii) a∗(S) ≤ max {S(J), rJ(S+) − `(S+)}.
An important invariant which is closely related to the reduction number

is the so-called a-invariant. The notion of a-invariant is introduced by
Goto and Watanabe [5]. For a Noetherian graded ring S over a local ring,
the a-invariant of S is defined by

a(S) := max{n; [Hd
M(S)]n 6= 0},

where d = dimS and M is a maximal graded ideal of S and

ai(S) := max{n, [Hi
M(S)]n 6= 0},

i = 0, ..., dimS.

Remark 2.3.

(i) a∗(S) = max{ai(S)| i ≤ dim S}.
(ii) ad(S) = a(S).
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(A,m) is called a generalized Cohen-Macaulay ring with respect to an
ideal I if Hi

m(A) is annilated by some powers of I for i = 0, ..., dimA − 1
[21].

Proposition 2.4 ([21], Lemma 2.1). Suppose that A is a homomorphic
image of a regular local ring. Then A is a generalized Cohen-Macaulay
ring respect to I iff for every prime ideal p 6⊆ I, Ap is a Cohen-Macaulay
ring with dim Ap = d − dim (A/p).

From the proof of [22, Lemma 1.2] we easily get the following proposi-
tion.

Proposition 2.5. R(F ) is a generalized Cohen-Macaulay ring with re-
spect to R+(F ) iff G(F ) is a generalized Cohen-Macaulay ring with respect
to G+(F ). In this case, A is a generalized Cohen-Macaulay ring with re-
spect to I1.

3. On the properties of Rees algebras satisfying

Serre condition (S∗
` )

Throughout this section, let (A,m) be a Noetherian local ring of
dim A = d > 0 with an infinite residue field A/m and F = {In}n≥0 a
good filtration such that dim R(F ) = d + 1. Let S be a graded factor
algebra of R(F ) by a homogeneous ideal.

For every prime ideal p of A we denote by Sp the localization of S at
the multiplicative closed set A\p. It can be verified that if P = p+R+(F )
then dim SP = dim Sp and R(F )p = R(Fp), G(Fp) = G(F )p.

Set

h = ht (I1), R = R(F ), G = G(F ), ` = `(S+),

Li(S) := {p ∈ Spec A| `(S+
p ) = ht(p) ≤ i}; i ≤ `(S+),

Li(F ) := {p ∈ Spec A| `((I1)p) = ht(p) ≤ i}; i ≤ `(I1).

Definition 3.1. Let S be as above. The number

ri(S) = max {−1; r(S+
p ) − ht(p)|p ∈ Li(S)} + i, i ≤ `(S+)

is called the i-th local reduction number algebra of S with respect to R(F ).
We call the invariant

ri(F ) = max {−1, r(Fp) − ht(p)|p ∈ Li(F )} + i, i ≤ `(I1)
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the i-th locall reduction number of F .

Remark 3.2. (i) Since r(R+
p ) = r(Fp) = r(G+

p ) for every p ∈ Spec A,
we have

ri(R) = ri(G) = ri(F ) for all i ≤ `(I1).

(ii)

ri+1(S) = max{ri(S) + 1, r(S+
p )|p ∈ Li+1(S)\Li(S)}, i ≤ `(S+) − 1.

(iii)
ri(S

+
p ) ≤ ri(S), i ≤ `(S+

p ).

(iv)

ri(F ) =











i − 1, 0 ≤ i ≤ h

max{i − 1, r(Fp) − ht(p) + i|`(I1p) = ht(p) ≤ i,

I1 ⊆ p ∈ Spec (A)}, h ≤ i ≤ `(I1).

Our approach is based on an idea of Aberbach, Huneke, Trung [2] which
links the local reduction numbers of an ideal with the a-invariant of the
associated graded ring under the assumption that the rings A and G(I) are
Cohen-Macaulay. We see that the relations between the local reduction
numbers of a good filtration and the a∗-invariant of its Rees algebra can
be described as follows.

Theorem 3.3. Assume that F = {In}n≥0 is a good filtration of A with
`(I1) = `, R := R(F ) satisfies Serre condition (S∗

` ) and depth R+(F ) > 0.
Let J be a minimal reduction of I1. Then

(i) max {r`−1(F ) + 1, rJ(F )} = r`(F ).
(ii) max {r`−1(F ) + 1, a∗(R) + `} = r`(F ).

The proof of Theorem 3.3 is based on the following proposition.

Proposition 3.4. Suppose that R(F ) satisfies (S∗
` ) and J ⊆ [R(F )]1 is

a minimal reduction of R+(F ). Further, assume that depth R+(F ) > 0.
Then

(i) For any filter-regular sequence x1, ..., x` of R which genarates J ,
x1, ..., x` is [r0(R) + 1, ..., r`−1(R) + 1] -regular.

(ii) rJ (R+) ≤ r`(R).

Let us consider the follwing conditions
(Ci) : [(x1, ..., xi) : xi+1]n = (x1, ..., xi)n for all n ≥ ri(R)+1, 0 ≤ i < `.
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(C`) : rJ(R+) ≤ r`(R).

In the same way as in the proof of [2, Theorem 3.2], we need to prove
the following lemma.

Lemma 3.5. Let R, J, ` be as in Proposition 3.4 and J = (x1, ..., x`). Fix
i such that 0 ≤ i < `. Assume that the sequence x1, ..., x` satisfies (Cj) for
all 0 ≤ j < i. Let P = p + R+ for p ∈ Spec A with ht(P) > i. Then

[Hk
P(Rp/(x1, ..., xi)p)]n = 0

for all n ≥ ri−1(R) + 2, k < min {ht(P), `} − i.

Proof. Suppose that P = p+R+ for p ∈ Spec A. Since R(F ) satisfies the
condition (S∗

` ), it follows that

depthRp ≥ min{ht(P), `}.

This immediately induces

[Hk
P(Rp)] = 0 for k < min{ht(P), `}.

Hence the conclusion holds for i = 0. We do by induction on i. Now let
i > 0 and let ht(P) > i. Set

Ji = (x1, ..., xi), i = 1, ..., ` and J0 = 0.

The exact sequence

0 → (Ji−1 : xi)/Ji−1 → R/Ji−1 → R/(Ji−1 : xi) → 0

yields the following exact sequence

[Hk
P(Rp/(Ji−1)p)]n → [Hk

P(Rp/(Ji−1 : xi)p)]n

→ [Hk+1
P (Ji−1 : xi/(Ji−1)p)]n.

By the inductive hypothesis we have

[Hk
P(Rp/(Ji−1)p)]n = 0

for all n ≥ ri−2(R) + 2, k < min{ht(P), `}− (i− 1). Further, since (Ci−1)
is satisfied,

[Ht
P((Ji−1 : xi/(Ji−1)p)]n = 0
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for all t and n ≥ ri−1(R) + 1. Since ri−2(R) + 2 ≤ ri−1(R) + 1 and using
the above exact sequence we get

[Hk
P(Rp/(Ji−1 : xi)p)]n = 0

for all n ≥ ri−1(R) + 1, k < min{ht(P), `}− (i− 1). Now, we consider the
exact sequence

0 → [R/Ji−1 : xi](−1)
xi→ R/Ji−1 → R/Ji → 0.

By localizing at p it is easy to derive the following exact sequences.

[Hk
P(Rp/(Ji−1)p)]n → [Hk

P(Rp/(Ji)p)]n → [Hk+1
P (Rp : xi/(Ji−1)p)]n−1.

Hence we conclude that

[Hk
P(Rp/(Ji)p)]n = 0

for all n ≥ ri−1(R) + 2 and k < min{ht(P), `}− i. Thus, this result holds
for every i < `.

Lemma 3.6. Let R, J, ` be as in Proposition 3.4. Assume that (Cj) holds
for all 0 ≤ j < i < `. Then

[Ui ∩ Vi]n = (x1, ..., xi)n

for all n ≥ ri−1(R)+2, where Ui denotes the intersection of primary com-
ponents of (x1, ..., xi) whose associated primes contain R+(F ) and have
the height at most i and Vi = ∪n≥0[(x1, ..., xi) : R+n

].

Proof (cf. [2], Lemma 3.5). For every prime ideal P = p + R+ of R, let
U(P), resp. U0(P), the intersection of primary components of (x1, ..., xi)
whose associated primes are contained, res. properly contained, in P.
Then

U0(P)p/U(P)p = H0
P(Rp/(x1, ..., xi)p).

When ht(P) > i, we get min{htP, `} > i. Thus, by Lemma 3.5,

[U(P)p]n = [U0(P)p]n

for all n ≥ ri−1(R) + 2. Consequently, [U(P)q]n = [U0(P)q]n for any
prime ideal q ⊆ p and n ≥ ri−1(R)+2. By [2, Lemma 3.3] we deduce that

[U(P)]n = [U0(P)]n
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for all n ≥ ri−1(R)+2. For every integer j ≥ i, let Wj be the intersection
of primary components of (x1, ..., xi) whose associated primes contain R+

and have the height ≤ j. It is a plain fact that

Wj =
⋂

P⊇R+,ht(P)=j

U(P) ∩ Vi,

Wj−1 =
⋂

P⊇R+,ht(P)=j

U0(P) ∩ Vi.

Since U(P)n = U0(P)n for all n ≥ ri−1(R) + 2, we get

[Wj ∩ Vi]n = [Wj−1 ∩ Vi]n

for all n ≥ ri(R) + 2 and j > i. By the above results we have

[Wd+1 ∩ Vi]n = [Wd ∩ Vi]n = ... = [Wi ∩ Vi]n

for all n ≥ ri−1(R) + 2. Observe further, that

Wd+1 ∩ Vi = (x1, ..., xi) and Wi = Ui.

Hence

[Ui ∩ Vi]n = (x1, ..., xi)n for all n ≥ ri−1(R) + 2.

Proof of Proposition 3.4. Set Ji = (x1, ..., xi). Using Lemma 3.5 and
Lemma 3.6 we do by induction on the dimension of A. Let d = dim A = 1.
In this case we have ` = 1 and J = (x1). Since R(F ) satisfies (S∗

1) and
depth R+ > 0, (C0) holds. In this case F is a m-primary filtration, so
r1(R) = r(R+) = rJ (R+) [12, Proposition 3.2]. Thus, (C1) holds. Now
let d > 1. We will prove by induction on i that (Ci) holds whenever i < `.
The case i = 0, then by depth R+ > 0 it follows that (C0) holds. The
case i ≥ 1, by the inductive hypothesis then (Cj) holds for all 0 ≤ j < i.
Hence, using Lemma 3.6 we obtain

(x1, ..., xi)n = [Ui ∩ Vi]n for all n ≥ ri(R) + 1.

Let P ∈ Ass(R/Ui) and P ∩ A = p. Since P ⊇ R+ and ht(P) ≤ i < `,
it follows that Rp is a Cohen-Macaulay ring with dimAp < d. Hence, by
the inductive hypothesis we get

rJp
(R+

p ) ≤ rk(Rp) ≤ rk(R) < ri(R)



60 DUONG QUOC VIET

for k := `(R+
p ) ≤ dimAp < i. Note that JP = (Ji)p. Hence r(Ji)p < ri(R).

Thus,
(Ji)p[Rp]n = (Ji)p[Rp]n+1

for all n ≥ ri(R). From this it follows that

[(Ui)p]n = [Rp]n for all n ≥ ri(R) + 1 and P ∈ Ass(R/Ui).

By [2, Lemma 3.3], this yields

[Ui]n = [R)]n for all n ≥ ri(R) + 1.

Using this formula, it is easy to see that for every n ≥ ri(R) + 1,

[(x1, ..., xi) : xi+1]n = [(Ui ∩ Vi) : xi+1]n

= In ∩ [Vi : xi+1]n = In ∩ [Vi]n

= [Ui ∩ Vi]n = (x1, ...xi)n.

Hence (Ci) holds. This fact implies

S(J) ≤ r`−1(R) − ` + 1.

Let Y be a minimal reduction of R+ such that rY (R+) = r(R+). Thus,
by Proposition 2.1, (iv),

rJ (R+) ≤ max{S(J) + `(R+), S(Y ) + `(R+), r(R+)}.

Since S(J) ≤ r`−1(R)− ` + 1 and S(Y ) ≤ r`−1(R)− ` + 1, it follows that

max{S(J) + `(R+), S(Y ) + `(R+), rJ(R+)} ≤ max{r`−1(R) + 1, r(R+)}.

Using this fact and rJ(R+) ≥ r(R+), it follows that

rJ(R+) ≤ r`−1(R) + 1.

Since r`−1(R) + 1 ≤ r`(R) we get rJ(R+) ≤ r`(R) and (C`) holds.

Proof of Theorem 3.3. From Proposition 3.4 we get

S(J) ≤ r`−1(R) − (` − 1).
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Applying Remark 3.2 to R, it follows that

r`(R) = max{r`−1(R) + 1, r(R+
p )|p ∈ L`(R)\L`−1(R)}

≤ max{r`−1(R) + 1, r(R+)}.

Thus,
r`(R) = max{r`−1(R) + 1, r(R+)}.

By (i) and (ii) of Remark 3.2 we have

r`(R) = max{r`−1(F ) + 1, r(F )}.

Hence (i) of Theorem 3.3 holds. Thus, by Proposition 2.1, (iii),

max{S(J) + `, a∗(R) + `} = max{S(J) + `, rJ(R+)}.

From this equality we get

max{S(J)+`, r`−1(R)+1, a∗(R)+`} = max{S(J)+`, r`−1(R)+1, rJ(R+)}.

Since S(J) + ` ≤ r`−1(R) + 1, it follows that

max{r`−1(R) + 1, a∗(R) + `} = max{r`−1(R) + 1, rJ(R+)},

for every J . The above facts show that

max{r`−1(R) + 1, a∗(R) + `} = max{r`−1(R) + 1, r(R+)} = r`(R).

Replacing ri(R) and r(R+) by ri(F ) and r(F ), respectively we get (ii) of
Theorem 3.3. The proof of Theorem 3.3 is now completed.

4. Cohen-Macaulay property of Rees algebras

First, in this section we will derive criteria for the Cohen-Macaulay
property of Rees algebra R(F ) of a good filtration F = {In}n≥0 in terms
of local cohomology modules of the associated graded ring G(F ) and the
local reduction numbers of F .

Let M denote the maximal graded ideal of R(F ). We have the following
theorem.
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Theorem 4.1. Let (A,m) be a Noetherian local ring with dim A = d >
0 and F = {In}n≥0 a good filtration of A with ht (I1) > 0. Set ` :=
`(I1). Then R(F ) is a Cohen-Macaulay ring if and only if the following
conditions are satisfied:

(i) [Hi
M (G(F ))]n = 0 for all n 6= −1, i < d.

(ii) r(Fp) ≤ ht(p) − 1 for every prime p ⊇ I1 with `((I1)p) = ht(p).

Proof. (⇒) By [22, Theorem 1.1], [Hi
M(G)]n = 0 for n 6= −1, i < d. If

I1 ⊆ p ∈ SpecA and ht(p) = ht(I1) then Fp is pAp-primary and R(Fp)
is Cohen-Macaulay. By [22, Corollary 2.2] we get r(Fp) ≤ ht(P)− 1. Now
let `(R+

p ) = ht(p) > ht (I1). We assume by induction that (ii) holds for
I1 ⊆ q ∈ SpecA and `((I1)q) = ht(q) < ht(p). Set `(Fp) = `p. Applying
Theorem 3.3 we get

r`p(Fp) ≤ max{r`p−1(Fp) + 1, a∗(Rp) + `p}

and

r`p−1(Fp) ≤ max{r(Fq) − ht(q) + `p − 1|`(I1q) = ht(q)

≤ ` − 1, I1 ⊆ q ⊆ p; `p − 2}.

Thus, by the inductive hypothesis, r(Fq) ≤ ht(q) − 1 for every I1 ⊆ q ∈
Spec A and ht(q) < ht(p). Replacing the filtration F by the filtration Fp,
we get

r`p−1(Fp) ≤ `p − 2.

Combining this inequality, Theorem 3.3 (ii) and the inequality a∗(Rp) < 0
yields

r`p(Fp) ≤ `p − 1 = ht(p) − 1.

Thus, (ii) holds.

(⇐) Consider the exact sequences

(1) 0 → R+ → R → A → 0,

and

(2) 0 → R+(−1) → R → G → 0.

We have by (1), [Hi
M (R+)]n ' [Hi

M (R)]n for all n 6= 0 and for all i. By
(2) and the hypothesis on G we have an exact sequence

(3) 0 → [Hi
M (R+)]n+1 → [Hi

M (R)]n
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for all n < −1 and i ≤ d. Thus, for all n < −1 and i ≤ d, [Hi
M (R)]n+1

can be considered as a submodule of [Hi
M (R)]n. Since [Hi

M (G)]n = 0 for
all n 6= −1 and i < d, using [22, Lemma 1.2] we can conclude that R(F )
is a generalized Cohen-Macaulay ring with respect to R+. Thus, by [21,
Lemma 2.2],

[Hi
M (R)]n = 0 for all n << 0, i = 0, ..., d.

One can use the same argument as in the proof for [21], Lemma 3.1 to get

[Hi
M (R)]n = 0 for all n ≥ 0 and i < d, a(R) < 0.

From the above results we obtain

Hi
M (R) = 0, i = 0, ..., d− 1

and

[Hd
M (R)]n = 0 for all n < 0.

Since depth R ≥ d and (3), it follows that depth R+ > 0. Next, we prove
by induction on dimension d of A. If d = 1 then F is an m-primary.
From (ii) it follows that r(F ) ≤ 0. Thus, by [22, Corollary 2.2], a(G) < 0.
Combining this inequality with the condition (i) we deduce that R(F ) is
Cohen-Macaulay. Let P = p + R+,p ∈ SpecA. If p 6⊇ I1 then Rp =
Ap[t]. Since Ap is Cohen-Macaulay, by Proposition 2.5, Rp is also Cohen-
Macaulay. If p ⊇ I1 and ht(P) = ` then dim Rp = ` ≤ d. By the
inductive hypothesis, Rp is a Cohen-Macaulay ring. Thus, Rp is Cohen-
Macaulay for every P = p + R+,p ∈ SpecA and ht(P) ≤ `. From this
fact and depth R ≥ d ≥ `, it follows that R(F ) satisfies (S∗

` ). By (ii),
r`(F ) ≤ ` − 1. Using this inequality and Lemma 3.3 we get a∗(R) < 0
and then ad(R) < 0. Since [Hd

M(R)]n = 0 for all n < 0, it follows that
[Hd

M (R)] = 0. Thus, [Hi
M (R)] = 0, i ≤ d, it follows that R(F ) is a

Cohen-Macaulay ring.

The following immediate consequence of Theorem 4.1 is a generalization
of [2, Theorem 5.1] for Rees algebras of good filtrations.

Theorem 4.2. Let (A,m) be a Cohen-Macaulay ring and F = {In}n≥0

a good filtration of A with ht(I1) > 0. Then R(F ) is Cohen-Macaulay if
and only if the following conditions are satisfied:

(i) G(F ) is a Cohen-Macaulay ring.
(ii) r(Fp) ≤ ht(p) − 1 for every prime p ⊇ I1 with `((I1)p) = ht(p).
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Proof. (⇒) By [22, Corollary 2.1] we get G(F ) a Cohen-Macaulay ring.
The condition (ii) follows by Theorem 4.1 (ii).

(⇐) Since G(F ) is a Cohen-Macaulay ring, it follows that the conditions
(i) and (ii) of Theorem 4.1 are satisfied. Thus, R(F ) is a Cohen-Macaulay
ring by Theorem 4.1.

Applying Theorem 4.1 and using the same argument as in the proof of
[2, Theorem 5.6], we get the following result.

Proposition 4.3. Let (A,m) be a Noetherian local ring with dim A =
d > 0 and F = {In}n≥0 a good filtration of A with ht (I1) > 0. Set ` :=
`(I1). Then R(F ) is a Cohen-Macaulay ring if and only if the following
conditions are satisfied:

(i) [Hi
M (G)]n = 0 for all n 6= −1, i < d.

(ii) r(Fp) ≤ ht(p) − 1 for every prime p ⊇ I1 with `((I1)p) = ht(p) <
`(I1).

(iii) rJ(F ) ≤ `(I1) − 1 for some (or every) minimal reduction J of I1.

The following theorem is a generalization of [11, Theorem 5.4] for Rees
algebras of good filtrations.

Theorem 4.4. Let (A,m) be a Noetherian local ring with dim A = d > 0
and F = {In}n≥0 an equimultiple filtration of A with dim R(F ) = d + 1.
Then R(F ) is a Cohen-Macaulay ring if and only if the following condi-
tions are satisfied:

(i) [Hi
M (G(F ))]n = 0 for all n 6= −1, i < d,

(ii) r(F ) ≤ ht(I1) − 1.

Proof. (⇒) The conditions (i) and (ii) follow from Proposition 4.3.

(⇐) Since `(I1) = ht(I1),

ht(p) ≥ ht(I1) = `(I1)

for every prime p ⊇ I1. Thus,

{p ∈ Spec A|I1 ⊇ p and ht(p) < `(I1)} = ∅.

From this it follows that (ii) of Proposition 4.3 holds. Since r(F ) ≤
ht (I1) − 1, there exists a minimal reduction J of I1 such that rJ (F ) ≤
`(I1) − 1. This implies that the condition (iii) of Proposition 4.3 holds.
Hence R(F ) a Cohen-Macaulay ring.



ON LOCAL REDUCTION NUMBERS 65

Acknowledgement

The author is grateful to N. V. Trung, N. T. Cuong, L. T. Hoa for
many discussions on the results of this paper.

References

1. I. Aberbach and C. Huneke, An improved Briancon-Skoda theorem with applica-

tions to the Cohen-Macaulayness of Rees rings, Math. Ann. 297 (1993), 343-369
.

2. I. Aberbach, C. Huneke and N. V. Trung, Reduction numbers, Briancon-Skoda

theorems and the depth of Rees rings, Math. Ann. 97 (1995), 403-431.

3. N. T. Cuong, P. Schenzel and N. V. Trung, Verallgemeinerte Cohen-Macaulay-

Modun, Math. Nachr. 85 (1978), 57-73.

4. S. Goto and S. Huckaba, On graded rings associated with analytic deviation one

ideals, Amer. J. Math. 116 (1994), 905-919.

5. S. Goto and K. Watanabe, On graded rings I, J. Math. Soc. Japan 30 (1978),
179-213.

6. A. Grothe, M. Herrmann, and U. Orbanz, Graded rings associated to equimultiple

ideals, Math. Z. 186 (1984), 531-566.

7. S. Goto and Y. Shimoda, On the Rees algebras of Cohen-Macaulay local ring, Lect.
Notes Pure Appl. Math. 68, Marcel-Dekker, New York, (1979), 201-231.

8. S. Hukaba, Reduction numbers for ideals of higher analytic spread, Math. Proc.
Cambridge Phil. Soc. 102 (1987), 49-57.

9. S. Huckaba and C. Huneke, Rees algebras of ideals having small analytic deviation,
Amer. Math. 114 (1992), 367-403.

10. S. Huckaba and C. Huneke, Rees algebras of ideals having small analytic deviation,
Trans. Amer. Math. Soc. 339 (1993), 373-402.

11. L. T. Hoa, Reduction numbers of equimultiple ideals, J. Pure Appl. Algebra 109

(1996), 111-126.

12. L. T. Hoa and S. Zarzuela, Reduction number and a-invariant of good filtrations,
Comm. Algebra 22 (1994), 5635-5656.

13. B. Johnston and D. Katz, Castelnuovo regularity and graded rings associated to

an ideal, Proc. Amer. Math. Soc. 123 (1995), 723-734.

14. H. Matsumura, Commutative Algebra, Benjamin, 1970.

15. S. Northcott and D. Rees, Reduction of ideals in local rings, Math. Proc. Cam-

bridge. Soc. 50 (1954), 145-158.

16. A. Simis, B. Ulrich, and W. Vasconcelos, Cohen-Macaulay Rees algebras and de-

grees of polynomial relation, Math. Ann. 301 (1995), 421-444.

17. Z. Tang, Rees rings and associated graded rings of ideal having higher analytic

deviation, Comm. Algebra 22 (1994), 4855-4898.

18. N. V. Trung, Reduction exponents and degree bound for thr defining equation of

graded rings, Proc. Amer. Soc. 101 (1987), 229-234.

19. N. V. Trung, Filter-regular sequences and multiplicity of blow-up rings of ideals of

the principal class, J. Math. Kyoto. Univ. 33 (1993), 665-683.

20. N. V. Trung, Reduction number, a-invariant, and Rees algebras of ideals having

small analytic deviation, in: “Commutative Algebra”, World Scientific, Singapore,

1994, 245-262.

21. N. V. Trung and S. Ikeda, When is the Rees algebra Cohen-Macaulay? Comm.
Algebra 17 (12) (1989), 2893-2922.



66 DUONG QUOC VIET

22. D. Q. Viet, A note on the Cohen-Macaulayness of Rees algebras of filtrations,

Comm. Algebra 21 (1993), 221-229.
23. D. Q. Viet, Ph.D. Thesis, Institute of Mathematics, Hanoi, 1992

Department of Mathematics

Hanoi University of Technology

Dai Co Viet, Hanoi, Vietnam


