ON THE PROPERTY (LB^{∞}) OF SPACES OF GERMS OF HOLOMORPHIC FUNCTIONS AND THE PROPERTIES $(\widetilde{\Omega}, \overline{\Omega})$ OF THE HARTOGS DOMAINS IN INFINITE DIMENSION

LE MAU HAI AND PHAM HIEN BANG

ABSTRACT. The aim of this paper is to establish the property (LB^{∞}) on $[H(K_{\varepsilon})]'$ under the assumption that E is a Frechet space with an absolute basis and K_{ε} is a balanced convex compact subset of E. At the same time, the properties $(\tilde{\Omega}, \overline{\Omega})$ for the Hartogs domains associated to an open polydisc in a nuclear Frechet space with a basis will be also proved.

1. INTRODUCTION

Let E be a Frechet space and K a compact subset of E. By H(K) we denote the space of germs of holomorphic functions on K equipped with the inductive limit topology

$$H(K) = \liminf_{U \supset K} H^{\infty}(U)$$

where $H^{\infty}(U)$ denotes the Banach space of bounded holomorphic functions on U.

In [8] N. D. Lan has proved that if E is nuclear and K a balanced convex compact subset in E then $[H(K)]' \in (LB^{\infty})$ if and only if $(\widetilde{\Omega}_K)$ holds on E. The aim of this paper is to consider this result for the case where E is a non-nuclear Frechet space.

Let E be a Frechet space with an absolute basis $\{e_j\}_{j\geq 1}$. For each balanced convex compact subset K and $\varepsilon > 0$, put

$$K_{\varepsilon} = \overline{\operatorname{conv}} \left(K + \varepsilon \left\| e_{j}^{*} \right\|_{K}^{*} e_{j} \right)$$

where $\{e_j^*\}_{j\geq 1}$ is the sequence of coefficient functionals associated to $\{e_j\}_{j\geq 1}$. Then K_{ε} is a balanced convex compact subset of E. The main

1991 Mathematics Subject Classification. Primary 46A13, 46A11, 46A32.

Key words and phrases. Holomorphic function, Hartogs domain.

Received June 2, 1998; in revised form September 15, 1998.

result of this paper is the following

Theorem 1.1. The following conditions are equivalent:

(i) $E \in (\widetilde{\Omega}_{K_{\varepsilon}})$ for some $\varepsilon > 0$, (ii) $E \in (\widetilde{\Omega}_{K_{\varepsilon}})$ for every $\varepsilon > 0$, (iii) $[H(K_{\varepsilon})]' \in (LB^{\infty})$ for some $\varepsilon > 0$, (iv) $[H(K_{\varepsilon})]' \in (LB^{\infty})$ for every $\varepsilon > 0$, (v) K_{ε} is not polar for some $\varepsilon > 0$, (vi) K_{ε} is not polar for all $\varepsilon > 0$.

Next we investigate the properties $(\overline{\Omega}, \overline{\Omega})$ for the Hartogs domains associated to an open polydisc in a nuclear Frechet space with a basis. In the finite dimensional case a similar result for the property $(\overline{\Omega})$ has been established by Aytuna [1].

2. Preliminaries

Let *E* be a Frechet space with the topology defined by an increasing system of semi-norms $\{ \| \cdot \|_k \}$. For each subset $B \subset E$ define

$$||u||_B^* = \sup \{ |u(x)| : x \in B \}.$$

Write $||u||_k^*$ in the case $B = U_k = \{x \in E : ||x||_k \le 1\}$, where $u \in E'$, the topological dual space of E.

We say that E has

(a) the property $(\widetilde{\Omega})$ if $\forall p \; \exists q, \; d > 0 \quad \forall k \; \exists C > 0 \; \forall u \in E'$,

$$||u||_q^{*1+d} \le C ||u||_k^* ||u||_p^{*d},$$

(b) the property $(\widetilde{\Omega}_K)$ if there exists a closed absolutely convex bounded subset $K \subset E$ such that $\forall p \exists q, C > 0, d > 0 \ \forall u \in E'$,

$$||u||_q^{*1+d} \le C ||u||_K^* ||u||_p^{*d},$$

(c) the property (LB^{∞}) if $\forall \{\rho_n\} \uparrow +\infty \forall p \exists q \forall n_0 \exists N_0 \geq n_0 \exists C > 0 \\ \forall u \in E' \exists n_0 \leq k \leq N_0,$

$$||u||_q^{*1+\rho_k} \le C ||u||_k^* ||u||_p^{*\rho_k}$$

In the case E has the property $(\widetilde{\Omega})$ (resp. $(\widetilde{\Omega}_K)$, (LB^{∞})) we write $E \in (\widetilde{\Omega})$ (resp. $E \in (\widetilde{\Omega}_K)$, $E \in (LB^{\infty})$). The properties $(\widetilde{\Omega})$, $(\widetilde{\Omega}_K)$ and (LB^{∞})

have been introduced and investigated by Vogt (see [10], [6]). In [10] Vogt has proved that E has the property (LB^{∞}) if and only if every continuous linear map from E to $\Lambda_{\infty}^{\infty}(\alpha)$ is bounded on some neighbourhood of $0 \in E$, where

$$\Lambda_{\infty}^{\infty}(\alpha) = \left\{ \xi = (\xi_j) \subset \omega : \|\xi\|_k = \sup_j |\xi_j| \rho_k^{\alpha_j} < +\infty, \ 0 < \rho_k < +\infty \ \forall k \right\}.$$

Let U be an open subset of a locally convex space E and F a locally convex space. A mapping $f: U \to F$ is called holomorphic if f is continuous and Gâteaux-holomorphic. By H(U, F) we denote the vector space of F-valued holomorphic functions on U, which is equipped with the opencompact topology. In the case $F = \mathbf{C}$ we write H(U) instead of $H(U, \mathbf{C})$.

For details concerning holomorphic functions with values in locally convex spaces and scalar holomorphic functions as well as germs of holomorphic functions on compact subsets in a locally convex space we refer to the books of Dineen [3] and Noverraz [9].

3. Proof of the theorem

For proving the Theorem 1.1 we need the following

Lemma 3.1. Let K be a compact set in a Frechet space E such that [H(K)]' has property (LB^{∞}) . Then K is an unique subset, i.e. if $f \in H(K)$ and $f|_{K} = 0$ then f = 0 on a neighbourhood of K in E.

Proof. Let $\{V_n\}$ be a decreasing neighbourhood basis of K in E. Given $f \in H(K)$ with $f|_K = 0$. Choose $p \ge 1$ such that $f \in H^{\infty}(V_p)$. For each $n \ge 1$, put

$$\varepsilon_n = \|f\|_n = \sup\left\{|f(z)| : z \in V_n\right\}$$

Then $\{\varepsilon_n\} \downarrow 0$. By the hypothesis $[H(K)]' \in (LB^{\infty})$ and applying (LB^{∞}) to $\{\rho_n\} = \left\{\sqrt{\log \frac{1}{\varepsilon_n}}\right\} \uparrow \infty$ we have

 $\exists q \ \forall n_0 \ \exists N_0 \ge n_0, \ C_{n_0} > 0 \ \forall m > 0 \ \exists k_m : n_0 \le k_m \le N_0 :$

$$\left\|f^{m}\right\|_{q}^{1+\rho_{k_{m}}} \leq C_{n_{0}}\left\|f^{m}\right\|_{k_{m}}\left\|f^{m}\right\|_{p}^{\rho_{k_{m}}}$$

which yields

$$\|f\|_{q}^{1+\rho_{k_{m}}} \leq C_{n_{0}}^{\frac{1}{m}} \|f\|_{k_{m}} \|f\|_{p}^{\rho_{k_{m}}}.$$

Choose $n_0 \leq k \leq N_0$ such that Card $\{m : k_m = k\} = \infty$. Then

$$\begin{split} \left\|f\right\|_{q} &\leq \left\|f\right\|_{k}^{\frac{1}{1+\rho_{k}}} \left\|f\right\|_{p}^{\frac{\rho_{k}}{1+\rho_{k}}} \\ &\leq \left(\varepsilon_{k}\right)^{\frac{1}{1+\rho_{k}}} \left(\varepsilon_{p}\right)^{\frac{\rho_{k}}{1+\rho_{k}}} \longrightarrow 0 \end{split}$$

as $k \to +\infty$. Hence $f|_{V_p} = 0$. Lemma 3.1 is proved. \Box

Proof of Theorem 1.1. We prove the theorem according to the following scheme

(i) \Rightarrow (iv). Given a > 0. Since $E \in (\widetilde{\Omega}_{K_{\varepsilon}})$ we have

(1)
$$\forall p \; \exists q, \; d > 0, \; C > 0 : \| \cdot \|_q^{*1+d} \le C \| \cdot \|_{K_{\varepsilon}}^* \| \cdot \|_p^{*d}.$$

Since $\{e_j\}_{j\geq 1}$ is an absolute basis of E, we have $||e_j^*||_q^* = \frac{1}{||e_j||_q}$ for all $j\geq 1, q\geq 1$. Using (1) to each e_j^* we get $\forall p \; \exists q, d>0, C>0$,

(2)
$$\frac{1}{\|e_{j}\|_{q}^{1+d}} \leq C \|e_{j}^{*}\|_{K_{\varepsilon}}^{*} \frac{1}{\|e_{j}\|_{p}^{d}}$$
$$= \frac{C(1+\varepsilon) \|e_{j}^{*}\|_{K}^{*}}{\|e_{j}\|_{p}^{d}}$$
$$\leq \frac{C(1+\varepsilon)}{a \|e_{j}\|_{K_{a}} \|e_{j}\|_{p}^{d}}$$
$$\leq \frac{C_{1}}{\|e_{j}\|_{K_{a}} \|e_{j}\|_{p}^{d}}$$

where $C_1 = \frac{C(1+\varepsilon)}{a}$.

In order to prove that $[H(K_a)]' \in (LB^{\infty})$, it suffices by Vogt [10] to show that every continuous linear map $T : [H(K_a)]' \to H(\mathbf{C})$ is bounded on a neighbourhood of $0 \in [H(K_a)]'$. Consider the function $f: K_a \to H(\mathbf{C})$ given by

$$f(x)(\lambda) = T(\delta_x)(\lambda)$$
 for $x \in K_a, \ \lambda \in \mathbf{C}$.

Then f is weakly holomorphic. Indeed, note firstly that since $E \in (\widetilde{\Omega}_{K_{\varepsilon}})$ and K_{ε} is compact, it is easy to see that E is Schwartz and hence $[H(K_a)]'$ is also a Frechet-Schwartz space. Let $\mu \in [H(\mathbf{C})]'$ be given. Then $\mu T \in [H(K_a)]'' = H(K_a)$ which is a holomorphic extension of μf to a neighbourhood of K_a . For each s > 0 consider the weakly holomorphic function $h^s : K_a \to H^{\infty}(s\Delta)$ given by $h^s = R^s \circ f$, where $R^s : H(\mathbf{C}) \to H^{\infty}(s\Delta)$ is the restriction map. Since $a ||e_j^*||_K^* e_j \subset K_a$ for every $j \ge 1$, it follows that K_a is an uniqueness subset. Then h^s is uniquely extended to a bounded holomorphic function $\widehat{h^s} : V^s \to H^{\infty}(s\Delta)$, where V^s is a neighbourhood of K_a in E. Moreover, we may assume that if 0 < r < s then $V^s \subset V^r$. The uniqueness yields that

$$\widehat{h^s}(x)\big|_{r\Delta} = \widehat{h^r}(x) \quad \text{for} \quad x \in V^s, \ \forall 0 < r < s.$$

Thus the family $\{\widehat{h^s}\}$ defines a holomorphic function g on a neighbourhood

$$W = \bigcup_{s>0} \left(V^s \times s\Delta \right) \text{ of } K_a \times \mathbf{C}.$$

Write the Taylor expansion of g at $0 \in E$ in $x \in E$

$$g(x)(\lambda) = \sum_{n \ge 0} P_n g(x)(\lambda),$$

where

$$P_n g(x)(\lambda) = \frac{1}{2\pi i} \int_{|t|=\rho} \frac{g(tx,\lambda)}{t^{n+1}} dt.$$

Choose $p \ge 1$ such that $K_a + U_p \subset V^1$. Take q, d, C > 0 according to (2). For each r > 0, choose s, D > 0 such that

(3)
$$\|\sigma\|_r^{1+d} \le D \|\sigma\|_s \|\sigma\|_1^d,$$

where $\sigma \in H(\mathbf{C})$ and

$$\|\sigma\|_r = \sup\left\{|\sigma(z)| : |z| \le r\right\}.$$

Using (2) and (3) we get

$$\begin{split} \sum_{n\geq 0} \left| P_n g(x)(\lambda) \right| &\leq \sum_{n\geq 0} \sum_{j_1,\dots,j_n\geq 1} \left| \widehat{P_n g}(e_{j_1},\dots,e_{j_n})(\lambda) \right| \left| e_{j_1}^*(x) \right| \dots \left| e_{j_n}^*(x) \right| \\ &\leq \sum_{n\geq 0} \sum_{j_1,\dots,j_n\geq 1} \frac{D^{\frac{1}{1+d}} C_1^{\frac{n}{1+d}} \left| e_{j_1}^*(x) \right| \left\| e_{j_1} \right\|_q \dots \left| e_{j_n}^*(x) \right| \left\| e_{j_n} \right\|_q}{\left\| e_{j_1} \right\|_{K_a}^{\frac{1}{1+d}} \dots \left\| e_{j_n} \right\|_{K_a}^{\frac{1}{1+d}} \left\| e_{j_1} \right\|_1^{\frac{d}{1+d}} \dots \left\| e_{j_n} \right\|_p^{\frac{d}{1+d}} \times \\ &\left\| \widehat{P_n g}(e_{j_1},\dots,e_{j_n}) \right\|_s^{\frac{1}{1+d}} \left\| \widehat{P_n g}(e_{j_1},\dots,e_{j_n}) \right\|_1^{\frac{d}{1+d}} \\ &\leq D^{\frac{1}{1+d}} \sum_{n\geq 0} C_1^{\frac{n}{1+d}} \frac{n^n}{n!} \| P_n g \|_{K_a,s}^{\frac{1}{1+d}} \| P_n g \|_{p,1}^{\frac{d}{1+d}} \left\| x \right\|_q^n \\ &\leq D^{\frac{1}{1+d}} \| g \|_{K_a \times s\Delta}^{\frac{1}{1+d}} \left\| g \|_{U_p \times \Delta}^{\frac{d}{1+d}} \sum_{n\geq 0} C_1^{\frac{n}{1+d}} \frac{n^n}{n!} \delta^n < +\infty \end{split}$$

for $x \in \delta U_q$ with $\delta > 0$ sufficiently small and $|\lambda| < r$. Hence g can be considered as a separately holomorphic function on $(\delta U_q \times \mathbf{C}) \cup (V^1 \times \Delta)$.

Let \mathcal{F} denote the family of all finite dimensional subspaces P of E. Using a result of Nguyen and Zeriahi [7] to $g_P = g|_{(\delta U_q \cap P \times \mathbf{C}) \cup (V^1 \cap P \times \Delta)}$, we get a holomorphic extension \overline{g}_P of g_P on $(V^1 \cap P) \times \mathbf{C}$. By the uniqueness, the family $\{\overline{g}_P : P \in \mathcal{F}\}$ defines a Gateaux holomorphic function g_1 on $(V^1 \times \mathbf{C})$ such that $g_1|_{K_a \times \mathbf{C}} = f$. On the other hand, g_1 is holomorphic on $V^1 \times \Delta$. By Zorn's theorem, g_1 is holomorphic on $V^1 \times \mathbf{C}$. Consider $\hat{g}_1 : V^1 \to H(\mathbf{C})$ associated to g_1 . As in the above argument, it follows that there exists a neighbourhood W of K_a in V^1 such that \hat{g}_1 is bounded on W.

Define the continuous linear map $S: [H^{\infty}(W)]' \to H(\mathbf{C})$ by

$$S(\mu)(\lambda) = \mu(\hat{g}_1(.,\lambda)).$$

Since K_a is an uniqueness subset of E, span $\delta(K_a)$ is weakly dense in $[H(K_a)]'$ and hence it is dense in $[H(K_a)]'$ by the reflexivity of $[H(K_a)]'$, where $\delta: K_a \to [H(K_a)]'$ is given by

$$\delta(x)(\varphi) = \varphi(x), \quad x \in K_a, \ \varphi \in H(K_a).$$

Now we have

$$T\left(\sum_{j=1}^{m} \lambda_j \delta_{z_j}\right)(\lambda) = \sum_{j=1}^{m} \lambda_j T(\delta_{z_j})(\lambda) = \sum_{j=1}^{m} \lambda_j f(z_j, \lambda)$$
$$= \sum_{j=1}^{m} \lambda_j \hat{g}_1(z_j, \lambda) = \sum_{j=1}^{m} \lambda_j S(\delta_{z_j})(\lambda)$$
$$= S\left(\sum_{j=1}^{m} \lambda_j \delta_{z_j}\right)(\lambda)$$

for $\lambda \in \mathbf{C}$, $z_j \in K_a$. Hence $S|_{[H(K_a)]'} = T$ and $[H(K_a)]' \in (LB^{\infty})$. (iv) \Rightarrow (iii) is obvious.

(iii) \Rightarrow (v). Let K_{ε} be polar. Choose a plurisubharmonic function φ on E such that $\varphi \neq -\infty$ and $\varphi|_{K_{\varepsilon}} = -\infty$. Consider the Hartogs domain Ω_{φ} given by

$$\Omega_{\varphi} = \Big\{ (z, \lambda) \in E \times \mathbf{C} : |\lambda| < e^{-\varphi(z)} \Big\}.$$

Since φ is plurisubharmonic on E, Ω_{φ} is pseudoconvex. Hence, Ω_{φ} is the domain of existence of a holomorphic function f because E has an absolute basis. Write the Hartogs expansion of f as

$$f(z,\lambda) = \sum_{n=0}^{\infty} h_n(z)\lambda^n,$$

where

$$h_n(z) = \frac{1}{2\pi i} \int_{|t| = \frac{1}{2}e^{-\varphi(z)}} \frac{f(z,t)}{t^{n+1}} dt.$$

By the upper-semi-continuity of φ , it implies that h_n are holomorphic on E for all $n \ge 0$.

Consider the function $g: K_{\varepsilon} \to H(\mathbf{C})$ given by

$$g(z)(\lambda) = f(z,\lambda).$$

We prove that g is weakly holomorphic. Indeed, let $\mu \in [H(\mathbf{C})]'$ be arbitrary. There exists r > 0 such that $\mu \in [H(r\overline{\Delta})]'$, where

$$\overline{\Delta} = \Big\{ \lambda \in \mathbf{C} : |\lambda| \le 1 \Big\}.$$

By the openess of Ω_{φ} , there exists a neighbourhood V of K_{ε} in E such that $V \times r\Delta \subset \Omega_{\varphi}$. By the absolute convergence of the series $\sum_{n=0}^{\infty} h_n(z)\lambda^n$ on $V \times r\Delta$, it follows that $\mu g \in H(V)$ and, hence, $g \in H_w(K_{\varepsilon}, H(\mathbf{C}))$. Since $H(\mathbf{C}) \in (DN)$ and $[H(K_{\varepsilon})]' \in (LB^{\infty})$, we can find by [5] a neighbourhood U of K_{ε} in E and a bounded holomorphic function $\hat{g} \in H(U, H(\mathbf{C}))$ which is a holomorphic extension of g. We can write

$$\hat{g}(z,\lambda) = \sum_{n=0}^{\infty} \hat{g}_n(z)\lambda^n, \quad \lambda \in \mathbf{C},$$

where $\hat{g}_n(z)$ are holomorphic on U for $n \ge 0$.

Choose a neighbourhood W of K_{ε} such that $W \subset U$ and $W \times 2\Delta \subset \Omega_{\varphi}$. Define two holomorphic functions

$$H: \quad W \longrightarrow H^{\infty}(\Delta)$$
$$z \longmapsto (h_0(z), h_1(z), \dots, h_n(z), \dots)$$

where

$$H(z)(\lambda) = \sum_{n=0}^{\infty} h_n(z)\lambda^n$$

and

$$G: \quad W \xrightarrow{} H^{\infty}(\Delta)$$
$$z \xrightarrow{} (\hat{g}_0(z), \hat{g}_1(z), \dots)$$

where

$$G(z)(\lambda) = \sum_{n=0}^{\infty} \hat{g}_n(z)\lambda^n.$$

By Lemma 3.1, from the condition $[H(K_{\varepsilon})]' \in (LB^{\infty})$ we infer that K_{ε} is an unique set. Moreover, we note that $H|_{K_{\varepsilon}} = G|_{K_{\varepsilon}}$ and $H^{\infty}(\Delta)$ is a Banach space. Thus there exists a neighbourhood W_1 of K_{ε} in W such that $\hat{g}|_{W_1 \times \Delta} = f|_{W_1 \times \Delta}$. Let X be a connected component of W_1 . Since $X \times \mathbb{C}$ is connected and $\hat{g}|_{X \times \Delta} = f|_{X \times \Delta}$ and $X \times \Delta \subset \Omega_{\varphi}$ and Ω_{φ} is the domain of existence of f, we have $W_1 \times \mathbb{C} \subset \Omega_{\varphi}$. Hence $\varphi|_{W_1} = -\infty$. This is impossible.

 $(v) \Rightarrow (i)$ follows from a result of Dineen-Meise-Vogt [4, Theorem 7].

(i) \Rightarrow (iii) is similar as (i) \Rightarrow (iv) by remarking that if $E \in (\widehat{\Omega}_{K_{\varepsilon}})$ then $[H(K_{\varepsilon})]' \in (LB^{\infty})$. (iv) \Rightarrow (vi) is similar as (iii) \Rightarrow (v). (vi) \Rightarrow (ii) is similar as (v) \Rightarrow (i). (ii) \Rightarrow (i) is obvious. (vi) \Rightarrow (v) is obvious. Theorem 1.1 is now proved. \square

4. The Hartogs domains and the properties $(\overline{\Omega}, \Omega)$

Let D be a pseudoconvex domain in \mathbb{C}^n and φ a plurisubharmonic function on D. Consider the Hartogs domain Ω_{φ} in \mathbb{C}^{n+1} given by

$$\Omega_{\varphi} = \Big\{ (z, \lambda) \in D \times \mathbf{C} : |\lambda| < e^{-\varphi(z)} \Big\}.$$

In [1, Corollary 7] Aytuna has proved that if φ is continuous then $H(\Omega_{\varphi})$ has the property $(\overline{\Omega})$ if and only if H(D) has the same property. Recall that a Frechet space E has property $(\overline{\Omega})$ if

$$\exists d > 0 \ \forall p \ \exists q \ \forall k \ \exists C > 0 : \left\| \cdot \right\|_q^{*1+d} \le C \left\| \cdot \right\|_k^* \left\| \cdot \right\|_p^{*d}$$

or, equivalently [11],

$$\exists d > 0 \ \forall U \ \exists W \ \forall V \ \exists C > 0 : W \subset Cr^d V + \frac{1}{r}U.$$

In this section we extend the above result to the infinite dimensional case.

Let *E* be a nuclear Frechet space with a basis $\{e_j\}_{j\geq 1}$. For each $a = (a_1, \ldots, a_n, \ldots), a_j > 0$ for $j \geq 1$, define

$$\mathbf{D}_a = \Big\{ x \in E : \sup_j |x_j| a_j < 1 \Big\}.$$

Then \mathbf{D}_a is called an open polydisc in E. Since \mathbf{D}_a is finitely pseudoconvex, \mathbf{D}_a is pseudo-convex in E. Let φ be a plurisubharmonic function on \mathbf{D}_a . Consider the Hartogs domain

$$\Omega_{\varphi}(\mathbf{D}_a) = \Big\{ (z, \lambda) \in D_a \times \mathbf{C} : |\lambda| < e^{-\varphi(z)} \Big\}.$$

Then $\Omega_{\varphi}(\mathbf{D}_a)$ is also pseudoconvex.

Now we prove the following

Theorem 4.1. Let *E* be a nuclear Frechet space with a basis $\{e_j\}_{j\geq 1}$ and a continuous norm. Assume that \mathbf{D}_a is an open polydisc in *E* and φ is a continuous plurisubharmonic function on \mathbf{D}_a , $\varphi(z) = \lim_{i \to \infty} c_i \log |h_i|$ uniformly on every compact subset in D_a , where $\{h_i\}_{i\geq 1}$ are holomorphic functions on D_a , $0 < c_i < 1$, for $i \geq 1$. Then $H(\Omega_{\varphi}(\mathbf{D}_a))$ has properties $(\widetilde{\Omega}, \overline{\Omega})$ if and only if $H(\mathbf{D}_a)$ has the same properties.

Proof. It suffices to prove the case $(\widetilde{\Omega})$ because the case $(\overline{\Omega})$ can be proved in a similar way. Assume that $H(\mathbf{D}_a)$ has property $(\widetilde{\Omega})$. By [3] we can choose an exhaustion of \mathbf{D}_a by compact polydiscs $\{D_q\}_{q>1}$ of the form

$$D_q = \left\{ y = (y_j) \in \mathbf{D}_a : \sup_j \left| \frac{y_j}{b_j^{(q)}} \right| \le 1 \right\}.$$

Since $\varphi(z) \neq -\infty$ for $z \in \mathbf{D}_a$, without loss of generality we may assume that for each $q \geq 1$,

$$h_q(z) \neq 0 \quad \text{for} \quad z \in \mathbf{D}_q$$

By the convexity of \mathbf{D}_q we can write

$$h_q^{c_q}(z) = e^{g_q(z)}$$
 for $z \in \mathbf{D}_q$,

where $g_q \in H(\mathbf{D}_q)$.

For each $q \ge 1$ choose $\hat{g}_q \in H(\mathbf{D}_a)$ such that

$$\left\|\hat{g}_q - g_q\right\|_{\mathbf{D}_q} < \frac{1}{q}$$

Since $\{|e^{g_q(z)}|\}_{q\geq 1}$ converges uniformly on all compact sets of \mathbf{D}_a to e^{φ} , it follows that $\{|e^{\hat{g}_q(z)}|\}_{q\geq 1}$ also converges uniformly on all compact subsets of \mathbf{D}_a to e^{φ} . Take a sequence of positive numbers $\{\delta_q\} \downarrow 0$ such that $2\delta_{q+1} < \delta_q$. Write each $f \in H(\Omega_{\varphi}(\mathbf{D}_a))$ in the form

$$f(z,\lambda) = \sum_{n\geq 0} h_n(z)\lambda^n,$$

where

$$h_n(z) = \frac{1}{2\pi i} \int_{|\lambda| = e^{-(\varphi(z) + \delta_q)}} \frac{f(z, \lambda)}{\lambda^{n+1}} d\lambda.$$

By Cauchy's theorem, $h_n(z)$ is not dependent on δ_q . We have

$$\sup\left\{ |h_n(z)\lambda^n| : (z,\lambda) \in K_q, \ n \ge 0 \right\}$$
$$\leq \sup\left\{ \left| h_n(z)e^{-n(\varphi(z)+\delta_q)} \right| : z \in \mathbf{D}_q, \ n \ge 0 \right\} \le \|f\|_q,$$

where

$$K_q = \left\{ (z,\lambda) : z \in \mathbf{D}_q, \ |\lambda| \le e^{-(\varphi(z) + \delta_q)} \right\},$$
$$\|f\|_q = \sup \left\{ |f(z,\lambda)| : z \in \mathbf{D}_q, \ |\lambda| \le e^{-(\varphi(z) + \delta_q)} \right\}.$$

On the other hand,

$$\begin{split} \|f\|_{p} &\leq \sum_{n \geq 0} \sup_{K_{p}} |h_{n}(z)\lambda^{n}| \\ &\leq \sum_{n \geq 0} \sup_{z \in D_{p}} |h_{n}(z)e^{-n(\varphi(z)+\delta_{p})}| \\ &\leq \left(\sum_{n \geq 0} e^{-n(\delta_{p}-\delta_{q})}\right) \sup_{\mathbf{D}_{q}} \left|h_{n}(z)e^{-n(\varphi(z)+\delta_{q})}\right|. \end{split}$$

Hence, the topology of $H(\Omega_{\varphi}(\mathbf{D}_a))$ can be defined by the system of semi-norms $\{|\|\cdot\||_q\}$, where

$$|||f|||_{q} = \sup \left\{ |||h_{n}|||_{q} : n \ge 0 \right\},$$
$$|||h_{n}|||_{q} = \sup \left\{ |h_{n}(z)e^{-n(\varphi(z)+\delta_{q})}| : z \in \mathbf{D}_{q} \right\}.$$

Since $H(\mathbf{D}_a) \in (\widetilde{\Omega})$, we have

(4)
$$\forall p \exists q, d > 0 \forall k \exists C > 0 \forall r > 0 : U_q \subset Cr^d U_k + \frac{1}{r} U_p,$$

where

$$U_p = \Big\{ h \in H(\mathbf{D}_a) : \|h\|_p = \sup_{z \in \mathbf{D}_p} |h(z)| \le 1 \Big\}.$$

We show that

(5)
$$\forall p \; \exists q, \; \varepsilon > 0 \; \forall k > 0 \; \exists D > 0 \; \forall r > 0 : W_q \subset Dr^{\varepsilon} W_k + \frac{1}{r} W_p ,$$

where

$$W_p = \Big\{ f \in H(\Omega_{\varphi}(\mathbf{D}_a)) : |||f|||_p \le 1 \Big\}.$$

First observe that (5) holds for all $q \ge p, \varepsilon > 0, D > 0, k > 0$ and $0 < r \leq 1$, because $W_q \subset W_p$. Now let $f \in W_q$, r < 1. Write

$$|||h_n|||_p = \sup_{\mathbf{D}_p} \left| h_n(z) e^{-n(\varphi(z) + \delta_p)} \right|$$

$$\leq \sup_{\mathbf{D}_q} \left| h_n(z) e^{-n(\varphi(z) + \delta_q)} \right| e^{-n(\delta_p - \delta_q)}$$

$$\leq e^{-n(\delta_p - \delta_q)} \leq \frac{1}{r}$$

if $n \ge \alpha = \frac{\log r}{\delta_p - \delta_q}$. For each $n \ge 1$ choose j_n such that

$$\left|\frac{e^{n\varphi(z)}}{\left|e^{n\hat{g}_{j_n}(z)}\right|} - 1\right| < 1$$

and

$$\left|\frac{\left|e^{n\hat{g}_{j_n}(z)}\right|}{e^{n\varphi(z)}} - 1\right| < 1 \quad \text{for} \quad z \in \mathbf{D}_k \,.$$

Since

for all $0 \le n \le \alpha$, and by (4), we have

$$h_n = 2Cr^{\left(d + \frac{\delta_q}{\delta_p - \delta_q}\right)} e^{n\hat{g}_{j_n}} u_n + 2r^{\frac{2\delta_q - \delta_p}{\delta_p - \delta_q}} e^{n\hat{g}_{j_n}} . v_n \, ,$$

 $u_n \in U_k, v_n \in U_p \text{ for } 0 \le n \le \alpha.$

44

For k > q and $0 \le n \le \alpha$ we have

$$\begin{split} \left| \left\| e^{n\hat{g}_{j_n}} u_n \right\| \right|_k &= \sup_{z \in \mathbf{D}_k} \left| e^{n\hat{g}_{j_n}(z)} u_n(z) \cdot e^{-n(\varphi(z) + \delta_k)} \right| \\ &\leq \sup_{z \in D_k} \left| e^{n\left[(\hat{g}_{j_n}(z) - \varphi(z)) - \delta_k \right]} \right| \\ &\leq \sup \left\{ \left| \frac{e^{n(\hat{g}_{j_n}(z))}}{e^{n\varphi(z)}} \right| : z \in D_k \right\} \\ &= \sup \left\{ \left| \frac{\left| e^{n\hat{g}_{j_n}(z)} \right|}{e^{n\varphi(z)}} \right| : z \in D_k \right\} \\ &\leq 2. \end{split}$$

This shows that $\frac{e^{n\hat{g}_{j_n}}u_n}{2} \in W_k$ for $0 \le n \le \alpha$. On the other hand,

$$\begin{split} |\|e^{n\hat{g}_{j_n}}v_n\||_p &= \sup_{\overline{D}_p} \left| e^{n\hat{g}_{j_n}(z)}v_n(z)e^{-n(\varphi(z)+\delta_p)} \right| \\ &\leq 2 \quad \text{for} \quad 0 \leq n \leq \alpha. \end{split}$$

Hence, we can write

$$f(z,\lambda) = \sum_{n=0}^{\infty} h_n(z)\lambda^n = \sum_{n=0}^{\alpha} h_n(z)\lambda^n + g(z,\lambda),$$

where

$$g(z,\lambda) = \sum_{n=\alpha+1}^{\infty} h_n(z)\lambda^n.$$

We have

$$||g|||_p = \sup\left\{|||h_n|||_p : n \ge \alpha + 1\right\} \le \frac{1}{r}$$

and

$$h_n = 4Cr^{\left(d + \frac{\delta_q}{\delta_p - \delta_q}\right)} \frac{e^{n\hat{g}_{j_n}} u_n}{2} + 2r^{\frac{2\delta_q - \delta_p}{\delta_p - \delta_q}} e^{n\hat{g}_{j_n}} v_n$$

for $0 \le n \le \alpha$, where $\frac{e^{n\hat{g}_{j_n}}u_n}{2} \in W_k$ and

$$\left| \left\| 2r^{\frac{2\delta_q - \delta_p}{\delta_p - \delta_q}} e^{n\hat{g}_{j_n}} v_n \right\| \right|_p \le \frac{4}{r^{\frac{\delta_p - 2\delta_q}{\delta_p - \delta_q}}}$$

with $\frac{\delta_p - 2\delta_q}{\delta_p - \delta_q} > 0$. Thus

$$f \in Dr^{\varepsilon}W_k + \frac{1}{r}W_p \quad \text{for} \quad r > 0,$$

where

$$\varepsilon = \frac{1}{\eta} \left(d + \frac{\delta_q}{\delta_p - \delta_q} \right), \quad \eta = \min\left(\frac{\delta_p - 2\delta_q}{\delta_p - \delta_q} \right), \quad 1.$$

This shows that $H(\Omega_{\varphi}(\mathbf{D}_a)) \in (\widetilde{\Omega}).$

Conversely, we note that $H(\mathbf{D}_a)$ is the quotient space of $H(\Omega_{\varphi}(\mathbf{D}_a))$ under the continuous linear surjection $T: H(\Omega_{\varphi}(\mathbf{D}_a)) \longrightarrow H(\mathbf{D}_a)$ given by

$$T(f) = g,$$

where

$$g(z) = f(z, 0)$$
 for $z \in \mathbf{D}_a$, $f \in H(\Omega_{\varphi}(\mathbf{D}_a))$.

Hence, if $H(\Omega_{\varphi}(\mathbf{D}_a))$ has property $(\widetilde{\Omega})$ then $H(\mathbf{D}_a) \in (\widetilde{\Omega})$. \Box

Acknowledgements

We would like to thank Prof. Nguyen Van Khue for his guidance.

References

- 1. A. Aytuna, On Stein manifolds M for which O(M) is isomorphic to $O(\Delta^n)$ as Frechet spaces, Manuscripta Math. **62** (1988), 297-315.
- Bui Dac Tac and Nguyen Thu Nga, Oka-Weil theorem and plurisubharmonic functions of uniform type, Acta Math. Vietnam. 16 (2) (1991), 133-145.
- S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Math. Stud. 57, 1981.
- S. Dineen, R. Meise and D. Vogt, Characterization of nuclear Frechet spaces in which every bounded set is polar, Bull. Soc. Math. France 112 (1984), 41-68.
- 5. Le Mau Hai and Nguyen Van Khue, Some characterizations of the properties (DN)and $(\widetilde{\Omega})$, to appear in Math. Scand.
- R. Meise and D. Vogt, Holomorphic functions of uniformly bounded type on nuclear Frechet spaces, Studia Math. 83 (1986), 147-166.
- Nguyen Thanh Van and A. Zeriahi, Une extension du théorème de Hartogs sur les fonctions séparément analytiques, Analyse Complex Multivariable: Recents Developments, 183-194, Alex Meril 1988.
- 8. Nguyen Dinh Lan, Structure of spaces of germs of holomorphic functions and its applications, Preprint.
- P. Noverraz, Pseudo-convexité, Convexité-polynomiale et Domains d'Holomorphic en Dimension Infinie, North-Holland Math. Stud. 3, 1973.

46

- D. Vogt, Frechetraume zwischen denen jede stetige linear Abbildung beschrankt ist, J. Reine Angew Math. 345 (1983), 182-200.
- 11. D. Vogt and M. J. Wagner, *Charakterisierung der Quotientenraume von s und eine Vermutung von Martineau*, Studia Math. **67** (1980), 225-240.

Department of Mathematics Pedagogical Institute 1 Tuliem, Hanoi, Vietnam