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ON STEINBERG ALGEBRAS OF HAUSDORFF AMPLE

GROUPOIDS OVER COMMUTATIVE SEMIRINGS

TRAN GIANG NAM AND JENS ZUMBRÄGEL

Abstract. We investigate the algebra of a Hausdorff ample groupoid, in-

troduced by Steinberg, over a commutative semiring S. In particular, we

obtain a complete characterization of congruence-simpleness for such Stein-

berg algebras, extending the well-known characterizations when S is a field

or a commutative ring. We also provide a criterion for the Steinberg algebra

AS(GE) of the graph groupoid GE associated to an arbitrary graph E to be

congruence-simple. Motivated by a result of Clark and Sims, we show that the

natural homomorphism from the Leavitt path algebra LB(E) to the Steinberg

algebra AB(GE), where B is the Boolean semifield, is an isomorphism if and

only if E is row-finite. Moreover, we establish the Reduction Theorem and

Uniqueness Theorems for Leavitt path algebras of row-finite graphs over the

Boolean semifield B.

Keywords: Étale groupoids; Ample groupoids; Congruence-simple semirings;

Steinberg algebras; Leavitt path algebras.

1. Introduction

Steinberg algebras have been devised in [43] in the context of discrete inverse

semigroup algebras and independently in [13] as a model for Leavitt path alge-

bras. They can be seen as discrete analogs of groupoid C∗-algebras, which were

introduced earlier (see, e.g., [39, 37, 20]). The concept of a Steinberg algebra en-

compasses group algebras, inverse semigroup algebras and Leavitt path algebras.

In recent years, there has been considerable interest around Steinberg algebras

and in particular regarding their simpleness (see, e.g., [8, 10, 44, 12, 36]).

Semirings have found their place in various branches of Mathematics, Com-

puter Science, Physics, and other areas (see, for instance, [22]). There has been a

substantial amount of interest in additively idempotent semirings — among which

the Boolean semifield, tropical semifields, and coordinate semirings of tropical va-

rieties represent prominent examples — originated in several emerging areas such

as Tropical Geometry [41, 21], Tropical Algebra [24], F1-Geometry [17, 15, 16],

the Geometry of Blueprints [31], Cryptography [32], Weighted automata [19],

Cluster algebras [27], Mathematical Physics [30] and MV-algebras [18].
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In the development of structure theories for varieties of algebras, so-called

congruence-simple algebras, i.e., algebras possessing only two trivial congruences

– the diagonal and universal ones – play a pivotal role as “building blocks”. In ad-

dition, some important applications of congruence-simple semirings include con-

structions of novel semigroup actions for a potential use in public-key cryptosys-

tems (see, e.g., [32]). In this regard, a fundamental problem is therefore to clas-

sify congruence-simple semirings, in particular additively idempotent congruence-

simple semirings.

Recently, there has been a number of works addressing this problem for certain

special classes of semirings (see, e.g., [34, 6, 35, 7, 47, 28, 25, 26]). In particular,

commutative congruence-simple semirings were completely classified – they are

exactly either fields or the Boolean semifield B (see [34, 6, 7]); finite congruence-

simple semirings were classified in [35, 47, 28]; Katsov and the authors [25] de-

scribed congruence-simple complete semirings, providing a method to construct

additively idempotent congruence-simple infinite semirings by using the endo-

morphism semiring of semilattices; moreover, Katsov and the authors [26] gave

a criterion for the Leavitt path algebra of a row-finite graph over a commutative

semiring to be congruence-simple, which forms a method to construct additively

idempotent congruence-simple infinite semirings based on directed graphs. How-

ever, the classification of congruence-simple infinite semirings in general remains

to be an important unresolved problem, on which the present paper aims to

contribute.

Motivated by the constructions of [43] and [13], we introduce and study the

concept of Steinberg algebras of Hausdorff ample groupoids in a “non-additive”

semiring setting, and investigate congruence-simpleness for these algebras. This

semiring setup showcases interesting novel attributes of the Steinberg algebras.

For example, contrary to the ring case, it turns out that an algebra of a finite

inverse semigroup over a semiring is in fact not necessarily isomorphic to its asso-

ciated Steinberg algebra. Also note that in our semiring setting, as opposed to the

“additive” ring case, congruence-simpleness is not the same as ideal-simpleness,

i.e., having only trivial ideals (see below or [25, Ex. 3.8]).

A main goal of this paper is to characterize congruence-simple Steinberg al-

gebras of Hausdorff ample groupoids over a commutative ground semiring S,

extending the well-known characterizations when S is a field or a commutative

unital ring (see [8, Th. 4.1], [10, Th. 4.1, Cor. 4.6] and [44, Th 3.5]). Furthermore,

we describe congruence-simple Steinberg algebras AS(GE) of graph groupoids GE

associated to graphs E over a commutative semiring S, and investigate the iso-

morphism problem between the Steinberg algebras AS(GE) and the Leavitt path

algebras LS(E) when S is an additively idempotent commutative semiring. The

new constructions of additively idempotent congruence-simple infinite semirings

based on Hausdorff ample groupoids complement well the recent constructions of

congruence-simple semirings that use the endomorphism semiring of semilattices

2



and Leavitt path algebras of row-finite graphs with coefficients in the Boolean

semifield B mentioned above.

It should be emphasized that in the semiring setting we have to work on con-

gruences which are different from ideals, and hence some different, novel tech-

niques have to be applied in places. Namely, a key technique is first to reduce

the problems to additively idempotent semirings and then use the natural order

on additively idempotent semirings to address them. For example, Clark and

Sims [14, Ex. 3.2] constructed an isomorphism (called the natural isomorphism)

from the Leavitt path algebra LS(E) onto the Steinberg algebra AS(GE) when S

is a commutative unital ring, by using Tomforde’s Graded Uniqueness Theorem

[45, Th. 5.3] which is based on the theory of graded algebras and homogeneous

ideals. In our semiring setting, however, concepts like homogeneous ideal and

graded quotient algebra are not well-established, and so Clark and Sims’s result

is, in general, not true in the semiring setting — in fact, it is only true when E

is a row-finite graph if S is the Boolean semifield. We establish analogs of the

Reduction Theorem [1, Th. 2.2.11] and Tomforde’s Uniqueness Theorem for the

Leavitt path algebras LB(E) of row-finite graphs E over the Boolean semifield B,

using new proof techniques on congruences via the natural order.

The article is organized as follows. For the reader’s convenience, all subse-

quently necessary basic concepts and facts on semirings and Steinberg algebras

over a commutative semiring are collected in Section 2. In Section 3, we pro-

vide a complete description of congruence-simple Steinberg algebras of Hausdorff

ample groupoids over a commutative semiring (Theorem 3.5). In Section 4, we

give a complete characterization of congruence-simple Steinberg algebras AS(GE)

of graph groupoids GE associated to arbitrary graphs E over a commutative

semiring S (Theorem 4.3). Motivated by Clark and Sims’s result [14, Ex. 3.2],

we show that the natural homomorphism from the Leavitt path algebra LB(E)

to the Steinberg algebra AB(GE) is an isomorphism if and only if E is row-

finite (Theorem 4.9). In order to do so, we establish the Reduction Theorem

(Lemma 4.6) and Uniqueness Theorems (Corollaries 4.7 and 4.8) for Leavitt path

algebras of row-finite graphs over B. Also, we show by example that the Leav-

itt path algebras LB(E) is, in general, not isomorphic to the Steinberg algebra

AB(GE) (Example 4.10). This provides us with examples of additively idempotent

congruence-simple semirings by using graph groupoids, which are not isomorphic

to the corresponding Leavitt path algebras (Remark 4.12).

2. Basic concepts

2.1. Preliminaries on semirings. Recall [22] that a hemiring is an algebra

(S,+, ·, 0) such that the following conditions are satisfied:

(1) (S,+, 0) is a commutative monoid with identity element 0;

(2) (S, ·) is a semigroup;

(3) Multiplication distributes over addition from either side;
3



(4) 0s = 0 = s0 for all s ∈ S.

A hemiring S is commutative if (S, ·) is a commutative semigroup; and a hemir-

ing S is additively idempotent if a+a = a for all a ∈ S. Moreover, a hemiring S is

a semiring if its multiplicative semigroup (S, ·) actually is a monoid (S, ·, 1) with

identity element 1 6= 0. A commutative semiring S is a semifield if (S\{0}, ·, 1)

is a group. Two well-known examples of semifields are the additively idempotent

two element semiring B := ({0, 1},∨,∧, 0, 1), the so-called Boolean semifield, as

well as the tropical semifield T := (R ∪ {−∞},∨,+,−∞, 0).

As usual, given two hemirings S and S′, a map ϕ : S −→ S′ is a homomorphism

if ϕ(0) = 0, ϕ(x + y) = ϕ(x) + ϕ(y) and ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ S; and

a submonoid I of (S,+, 0) is an ideal of a hemiring S if sa and as ∈ I for all

a ∈ I and s ∈ S; an equivalence relation ρ on a hemiring S is a congruence

if (s+a, s+ b) ∈ ρ, (sa, sb) ∈ ρ and (as, bs) ∈ ρ for all pairs (a, b) ∈ ρ and

s ∈ S. On every hemiring S there are always the two trivial congruences —

the diagonal congruence, △
S
:= {(s, s) | s ∈ S}, and the universal congruence,

S2 := {(a, b) | a, b ∈ S}. Following [6], a nonzero hemiring S is congruence-simple

if △
S
and S2 are the only congruences on S.

Remark 2.1. A nonzero hemiring S is congruence-simple if and only if every

nonzero hemiring homomorphism ϕ : S −→ S′ is injective.

Proof. (=⇒). Assume that S is a congruence-simple hemiring and ϕ : S −→ S′

is a nonzero homomorphism. We then have that the set

ker(ϕ) := {(x, y) ∈ S2 | ϕ(x) = ϕ(y)}

is a congruence on S. Also, since ϕ is nonzero, ϕ(x) 6= 0 = ϕ(0) for some x ∈ S,

and so (x, 0) /∈ ker(ϕ). From these observations, and since S is congruence-simple,

we immediately obtain that ker(ϕ) =△
S
. This implies that ϕ is injective.

(⇐=). Let ρ be a congruence on S which is different from the universal con-

gruence. We then have the quotient semiring S/ρ is nonzero, and the natural

projection mapping π : S −→ S/ρ, defined by π(s) = [s] for all s ∈ S, is a nonzero

hemiring homomorphism. By our hypothesis, π is injective, and so ρ =△
S
. This

implies that S is congruence-simple, finishing the proof. �

We note that a ring R is congruence-simple if and only if {0} and R are the

only ideals of R (i.e., it is a simple ring). However, this is in general not true in a

semiring setting. For example, the tropical semifield T has only the trivial ideals,

but it has a proper congruence ρ defined by (x, y) ∈ ρ iff x = y or x+ y 6= −∞,

for x, y ∈ T; that means, T is not congruence-simple.

An S-semimodule over a given commutative semiring S is a commutative

monoid (M,+, 0M ) together with a scalar multiplication (s,m) 7→ sm from S×M

to M which satisfies the identities (ss′)m = s(s′m), s(m + m′) = sm + sm′,

(s+s′)m = sm+s′m, 1m = m, s0M = 0M = 0m for all s, s′ ∈ S and m,m′ ∈M .
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Homomorphisms between semimodules and free semimodules are defined in the

standard manner.

By an S-algebra A over a given commutative semiring S we mean an S-

semimodule A with an associative bilinear S-semimodule multiplication “ · ” on A.

An S-algebra A is unital if (A, ·) is actually a monoid with a neutral element

1A ∈ A, i.e., a1A = a = 1Aa for all a ∈ A. For example, every hemiring is

an N-algebra, where N is the semiring of non-negative integers; and, of course,

every additively idempotent hemiring is a B-algebra. Homomorphisms between

algebras over commutative semirings are defined in the standard manner.

Let S be a commutative semiring and {xi | i ∈ I} a set of independent,

noncommuting indeterminates. Then S〈xi | i ∈ I〉 will denote the free S-algebra

generated by the indeterminates {xi | i ∈ I}, whose elements are polynomials

in the noncommuting variables xi, i ∈ I, with coefficients from S that commute

with each variable.

Finally, let S be a commutative semiring and (G, ·, 1) a group. Then we can

form the group semiring S[G], whose elements are formal sums
∑

g∈G agg with

coefficients ag ∈ S and finite support, i.e., almost all ag = 0. As usual, the

operations of addition and multiplication on S[G] are defined as follows

∑

g∈G

agg +
∑

g∈G

bgg =
∑

g∈G

(ag + bg)g and (
∑

g∈G

agg)(
∑

h∈G

bhh) =
∑

t∈G

ctt,

where ct =
∑

agbh, with summation over all (g, h) ∈ G×G such that gh = t.

Clearly, the elements of S := S ·1 commute with the elements of G := 1 ·G under

the multiplication in S[G]. In particular, one may easily see that S[Z] ∼= S[x, x−1],

where S[x, x−1] is the algebra of the Laurent polynomials over S.

2.2. Steinberg algebras over commutative semirings. In this subsection,

we introduce the Steinberg algebra of a Hausdorff ample groupoid over an arbi-

trary commutative semiring. The construction of such an algebra is a natural

generalization of the constructions of Steinberg algebras over commutative rings

as introduced in [43] in the context of discrete inverse semigroup algebras, and in-

dependently in [13] as a model for Leavitt path algebras. All these constructions

are crucially based on some general notions of groupoids that for the reader’s

convenience we reproduce here.

A groupoid is a small category in which every morphism is invertible. It can

also be viewed as a generalization of a group which has a partial binary operation.

Let G be a groupoid. If α ∈ G, s(α) = α−1α is the source of α and r(α) = αα−1

is its range. The pair (α, β) is composable if and only if r(β) = s(α). The set

G(0) := s(G) = r(G) is called the unit space of G. Elements of G(0) are units in

the sense that αs(α) = α and r(α)α = α for all α ∈ G. For U, V ⊆ G, we define

UV := {αβ | α ∈ U, β ∈ V, r(β) = s(α)} and U−1 := {α−1 | α ∈ U} .
5



A topological groupoid is a groupoid endowed with a topology under which

the inverse map is continuous, and such that the composition is continuous with

respect to the relative topology on G(2) := {(α, β) ∈ G2 | r(β) = s(α)} inherited

from G2. An étale groupoid is a topological groupoid G, whose unit space G(0)

is locally compact Hausdorff, and such that the domain map s is a local home-

omorphism. In this case, the range map r and the multiplication map are local

homeomorphisms and G(0) is open in G [40].

An open bisection of G is an open subset U ⊆ G such that s|U and r|U are

homeomorphisms onto an open subset of G(0).

Lemma 2.2 ([37, Prop. 2.2.4] and [42, Lem. 2.1]). Let G be an étale groupoid,

and let U and V be compact open bisections of G. Then the following holds:

(1) U−1 and UV are compact open bisections,

(2) If G is Hausdorff, then U ∩ V is a compact open bisection.

An étale groupoid G is called ample if G has a base of compact open bisections

for its topology.

Let G be a Hausdorff ample groupoid, and S a commutative semiring with

discrete topology. We denote by SG the set of all continuous functions from G

to S. Canonically, SG has the structure of an S-semimodule with operations

defined pointwise. Notice that for any compact open bisection U of G, the function

1U : G −→ S, which denotes the characteristic function of U , is continuous with

compact support, i.e, 1U ∈ SG .

Definition 2.3. Let G be a Hausdorff ample groupoid, and S a commutative

semiring. Let AS(G) be the S-subsemimodule of SG generated by the set

{1U | U is a compact open bisection of G}.

Lemma 2.4. Let G be a Hausdorff ample groupoid with a base B of compact open

bisections, and S a commutative semiring.

(1) Every f ∈ AS(G) can be expressed as f =
∑n

i=1 si1Ui
, where si ∈ S\{0},

and U1, . . . , Un are mutually disjoint compact open bisections of G.

(2) If S is an additively idempotent commutative semiring, then there holds

AS(G) = {f ∈ SG | f has compact support} = SpanS{1B | B ∈ B}.

Proof. (1) We first note that U \ V is a compact open bisection for all compact

open bisections U and V of G. Indeed, by Lemma 2.2, U ∩ V is a compact open

bisection of G, and so U ∩ V is clopen in G. It implies that U ∩ V is clopen in U .

Then U \ V = U \ (U ∩ V ) is a clopen subset of U , and hence U \ V is a compact

open bisection of G. We also note that

s1U + r1V = s1U\V + (s + r)1U∩V + r1V \U

for all s, r ∈ S, and for all compact open bisections U, V of G. From these notes

and by induction, we immediately obtain statement (1) of the lemma.
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(2) It is obvious that

SpanS{1B | B ∈ B} ⊆ AS(G) ⊆ {f ∈ SG | f has compact support}.

Let f : G −→ S be a continuous function with compact support. We then have

that f(G) \ {0} is contained in a compact subset of the discrete space S, and so

it is finite. Assume that f(G) \ {0} = {s1, . . . , sn}. Then, each Ui = f−1(si) is

compact open in G and f = s11U1 + . . . + sn1Un . Since B is a base of compact

open bisections for the topology on G, for each 1 ≤ i ≤ n, there exist elements

Bi
1, . . . , B

i
k ∈ B such that Ui = Bi

1 ∪ · · · ∪Bi
k. Since the semiring S is additively

idempotent, we immediately obtain that

1Ui
= 1⋃k

j=1 B
i
j
= 1Bi

1
+ . . .+ 1Bi

k
∈ SpanS{1B | B ∈ B},

so f ∈ SpanS{1B | B ∈ B}. It implies that AS(G) = {f ∈ SG | f has compact

support} = SpanS{1B | B ∈ B}, thus finishing the proof. �

We now define the convolution product on the S-semimodule AS(G) in order

to make it an S-algebra.

Definition 2.5 (cf. [43, Def. 4.4]). Let G be a Hausdorff ample groupoid, and S

a commutative semiring. The multiplication of f, g ∈ AS(G) is given, for γ ∈ G,

by the convolution

(f ∗ g)(γ) :=
∑

r(β)=s(α)
γ=αβ

f(α)g(β) .

One must show that this sum is really finite and f ∗ g belongs to AS(G), which

is the content of the following proposition.

Proposition 2.6 (cf. [43, Prop. 4.5, 4.6]). Let G be a Hausdorff ample groupoid,

and S a commutative semiring. Then the following is true:

(1) f ∗ g ∈ AS(G) for all f, g ∈ AS(G);

(2) 1U ∗ 1V = 1UV for all compact open bisections U, V of G. In particular, if

U and V are compact open subsets of G(0), then 1U ∗ 1V = 1U∩V ;

(3) For any compact open bisection U of G, 1U−1(γ) = 1U (γ
−1) for all γ ∈ G;

(4) AS(G), equipped with the convolution, is an S-algebra.

Proof. Items (1) to (3) are proved similarly as in the proof of [43, Prop. 4.5]. For

item (4), it is sufficient to show the associativity of convolution. However, this is

a straightforward by using item (2) (or the reader can refer to the proof of [42,

Prop. 2.4]), finishing the proof. �

Definition 2.7. Let G be a Hausdorff ample groupoid, and S a commutative

semiring. We call the S-algebra AS(G) the Steinberg algebra of G over S.

The following examples illustrate that some well-known algebras can be viewed

as Steinberg algebras as well.
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Examples 2.8. (1) Let S be a commutative semiring, and G a group. Define

a small category G with one object e (the identity of G) and HomG(e, e) = G,

where the composition of morphisms is simply the group multiplication. Then G

is obviously a Hausdorff ample groupoid with respect to the discrete topology,

and it has a base of compact open bisections which are the singletons {g}. The

algebra AS(G) is isomorphic to the group semiring S[G] by the map 1{g} 7−→ g.

(2) Let S be a commutative semiring and X = {x1, . . . , xn} a finite set. Then,

G := X×X is a groupoid with the composition and inverse defined, respectively,

by (x, y)(y, z) = (x, z) and (x, y)−1 = (y, x). Furthermore, G is a Hausdorff ample

groupoid with respect to the discrete topology, and it has a base of compact

open bisections which are the singletons {(xi, xj)}. In this example, AS(G) is

isomorphic to the n × n matrix semiring Mn(S) by the map 1{(xi,xj)} 7−→ Eij ,

where {Eij | 1 ≤ i, j ≤ n} are the matrix units in Mn(S).

(3) Let S be a commutative semiring and G a discrete groupoid. It is not hard

to see that

1{g} ∗ 1{h} =

{

1{gh} if r(h) = s(g),

0 otherwise,

for all g, h ∈ G. Then AS(G) is exactly the S-algebra having basis G and whose

product extends that of G where we interpret undefined products as 0.

Remark 2.9. Let G be a Hausdorff ample groupoid and let S be an additively

idempotent commutative semiring.

(1) For all compact open subsets U , V of G there holds

1U ∗ 1V = 1UV ,

extending Proposition 2.6 (2). Indeed, by additive idempotency, for γ ∈ G the

value (1U ∗1V )(γ) =
∑

γ=αβ 1U (α)1V (β) equals 1 iff there exists α ∈ U and β ∈ V

with r(β) = s(α) and αβ = γ, i.e., iff γ ∈ UV .

(2) If moreover the semiring S is the Boolean semifield B, there is a natural

bijective correspondence between the Steinberg algebra AB(G) and the collection

of all compact open subsets of G, given by 1U 7→ U where U ⊆ G is a compact open

subset, cf. Lemma 2.4 (2). Under this bijection the Steinberg algebra operations

correspond to the set operations

U + V := U ∪ V , U ∗ V := UV

for any compact open subsets U , V of G.

As usual, for a hemiring S a set of local units is a set F ⊆ S of idempotents

in S such that, for every finite subset {s1, . . . , sn} ⊆ S, there exists an element

f ∈ F with fsi = si = sif for all i = 1, . . . , n. Using Proposition 2.6 and

repeating verbatim the proofs of [43, Prop. 4.11] and [11, Lem. 2.6], one obtains

the following useful fact.
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Proposition 2.10. Let G be a Hausdorff ample groupoid, and S a commutative

semiring. Then the following holds:

(1) (cf. [43, Prop. 4.11]) The algebra AS(G) is unital if and only if G(0) is

compact; in this case, the identity element is 1 = 1G(0) .

(2) (cf. [11, Lem. 2.6]) A set of local units of AS(G) is given by {1U | U is a

compact open subset of G(0)}.

We next present the universal property of Steinberg algebras over commutative

semirings, whose proof is completely analogous to the one in [13, Th. 3.10] and

which, for the reader’s convenience, we provide here.

Theorem 2.11 (cf. [13, Th. 3.10]). Let G be a Hausdorff ample groupoid, and S

a commutative semiring. Let B be an S-algebra containing a family of elements

{tU | U is a compact open bisection of G} satisfying:

(1) t∅ = 0;

(2) tU tV = tUV for all compact open bisections U and V ; and

(3) tU + tV = tU∪V whenever U and V are disjoint compact open bisections

such that U ∪ V is a bisection.

Then, there is a unique S-algebra homomorphism π : AS(G) −→ B such that

π(1U ) = tU for all compact open bisections U .

Proof. First we observe that, by condition (3) and induction on n, there holds

t⋃n
i=1 Ui

=
∑n

i=1 tUi
whenever U1, . . . , Un are mutually disjoint compact open bi-

sections such that
⋃n

i=1 Ui is a (compact open) bisection.

Next we show that the formula
∑

U∈F aU1U 7−→
∑

U∈F aU tU is well-defined

on linear combinations of indicator functions, where F is a finite set of mutually

disjoint compact open bisections. Assume that

∑

U∈F

aU1U =
∑

V ∈H

bV 1V ,

where each of F andH is a finite set of mutually disjoint compact open bisections.

Let K = {U ∩ V | U ∈ F, V ∈ H, U ∩ V 6= ∅}. Then, since G is Hausdorff, and

by Lemma 2.2, every element of K is a compact open bisection of G. Also, for

each U ∈ F and each V ∈ H, we have that U =
⊔

{W ∈ K | W ⊆ U} and

V =
⊔

{W ∈ K | W ⊆ V }, so tU =
∑

W∈K,W⊆U tW and tV =
∑

W∈K,W⊆V tW .

Hence we find that

∑

U∈F

aU tU =
∑

U∈F

∑

W∈K,W⊆U

aU tW =
∑

W∈K

(

∑

U∈F,W⊆U

aU
)

tW ,

and similarly
∑

V ∈H

bV tV =
∑

W∈K

(

∑

V ∈H,W⊆V

bV
)

tW .

9



Fix W ∈ K and let α ∈ W . By definition of K, for all U ∈ F , we obtain that

α ∈ U if and only if W ⊆ U . Therefore,
∑

U∈F

aU1U (α) =
∑

U∈F,α∈U

aU =
∑

U∈F,W⊆U

aU .

Similarly,
∑

V ∈H bV 1V (α) =
∑

V ∈H,W⊆V bV , and hence
∑

U∈F,W⊆U

aU =
∑

V ∈H,W⊆V

bV .

It follows that
∑

U∈F aU tU =
∑

V ∈H bV tV . So there exists an S-homomorphism

π : AS(G) −→ B such that π(1U ) = tU for all compact open bisections U . It is

sufficient to show that π is multiplicative. However, this is straightforward by

using Proposition 2.6 (2), finishing the proof. �

A major motivation for introducing Steinberg algebras has been the study of

discrete inverse semigroup algebras [43]. An inverse semigroup is a semigroup G

such that for each a ∈ G there is a unique b ∈ G (denoted a∗) satisfying aba = a

and bab = b. The idempotent elements EG in an inverse semigroup G form a

commutative idempotent semigroup, i.e., a semilattice. Moreover, any inverse

semigroup G defines a groupoid GG by letting the unit space be EG and inter-

preting each a ∈ G as an invertible morphism from s(a) := a∗a to r(a) := aa∗,

hence a−1 = a∗ and a composition ab is defined in GG iff bb∗ = a∗a.

It is shown that, in particular, for any commutative unital ring R and any

finite inverse semigroup G there is an R-algebra homomorphism

(†) R[G] ∼= AR(GG)

between the semigroup algebra of G over R and the Steinberg algebra of the

groupoid GG; this isomorphism is established using the Möbius function on the

semilattice EG. Notice that in the special case that the inverse semigroup is itself

a semilattice G = E, the groupoid GE consists just of units and we easily see that

AR(GE) ∼= RE . As our last result in this section shows, the isomorphism (†) fails

in the general semiring setup, the reason for which may be attributed to a “lack

of zero sums” in general, thus illustrating an interesting new feature.

Proposition 2.12. Let E be a finite semilattice with |E| > 1, and let S be an ad-

ditively idempotent semifield. Then the semigroup algebra S[E] is not isomorphic

to the Steinberg algebra AS(GE) ∼= SE.

Proof. First, notice that an additively idempotent semiring S is zero-sum free,

i.e., s+ t = 0 implies s = t = 0, for any s, t ∈ S.

Now suppose that an isomorphism S[E] ∼= SE exists. Then the semigroup

algebra S[E] has an identity 1 =
∑

w∈E sww ∈ S[E], where sw ∈ S for w ∈ E.

Consider the semigroup E as a finite meet-semilattice and let u ∈ E be any

maximal element. Then 1u =
∑

w∈E swwu = u. But for all w ∈ E with w 6= u

we have wu = w∧u < u, since otherwise w > u whereas u is maximal. Therefore,
10



∑

w 6=u swwu = 0 and hence sw = 0 for all w 6= u, as the semiring S is zero-sum

free. It follows that there cannot be distinct maximal elements in E, whence by

finiteness the meet-semilattice E has a greatest element.

We may therefore assume that the semigroup E has a neutral element e, and

hence the semigroup algebra S[E] has an identity 1 = e. As |E| > 1 the isomor-

phism S[E] ∼= SE implies that there are idempotents f, g ∈ S[E] \ {1} such that

f + g = 1. Writing f =
∑

w∈E sww and g =
∑

w∈E tww, for all w 6= e it follows

that sw + tw = 0 and hence sw = tw = 0, since the semiring S is zero-sum free.

We infer that f = see and g = tee with se, te ∈ S multiplicatively idempotent.

But then, because S is a semifield, we have se, te ∈ {0, 1S} so that f, g ∈ {0, 1}.

This contradiction concludes the proof. �

3. Congruence-simpleness of Steinberg algebras

The main goal of this section is to present a description of the congruence-

simple Steinberg algebras AS(G) of Hausdorff ample groupoids G over a commu-

tative semiring S, which extends the well-known description when the ground

commutative semiring S is either a field or a commutative unital ring (see [8,

Th. 4.1], [10, Th. 4.1, Cor. 4.6] and [44, Th. 3.5]).

We begin by recalling some important notations of groupoids. Let G be a

groupoid and let D, E be subsets of G(0). Define

GD := {γ ∈ G | s(γ) ∈ D} , GE := {γ ∈ G | r(γ) ∈ E} and GE
D := GD ∩ GE .

In a slight abuse of notation, for u, v ∈ G(0) we denote Gu := G{u}, G
v := G{v}

and Gv
u := Gu∩Gv. For a unit u of G the group Gu

u = {γ ∈ G | s(γ) = u = r(γ)} is

called its isotropy group. The isotropy subgroupoid of G is Iso(G) :=
⋃

u∈G(0) Gu
u .

A subset D of G(0) is called invariant if s(γ) ∈ D implies r(γ) ∈ D for all γ ∈ G;

equivalently, D = {r(γ) | s(γ) ∈ D} = {s(γ) | r(γ) ∈ D}. Also, D is invariant if

and only if its complement is invariant.

Definition 3.1 ([8, Def. 2.1]). Let G be a Hausdorff ample groupoid. We say

that G is minimal if G(0) has no nontrivial open invariant subsets, and we call G

effective if the interior of Iso(G) \ G(0) is empty.

Note that effective groupoids are related to so-called “topologically principal”

groupoids, i.e., in which the units with trivial isotropy are dense in the unit space.

Any Hausdorff ample groupoid being topologically principal is in fact effective,

while the converse holds if the groupoid is second-countable (see [8, Lem. 3.1]).

We now describe necessary conditions for Steinberg algebras of Hausdorff ample

groupoids over commutative semirings to be congruence-simple.

Proposition 3.2. If the Steinberg algebra AS(G) of a Hausdorff ample groupoid G

over a commutative semiring S is congruence-simple, then there holds:

(1) S is either a field or the Boolean semifield B;

(2) G is both minimal and effective.
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Proof. (1) First, let us show that there are only the two trivial congruences on S.

Indeed, if ∼ is a proper congruence on S, the natural surjection π : S −→ S :=

S/∼, defined by π(λ) = λ, is neither zero nor an injective homomorphism. For

any compact open bisection U of G, we denote by tU the characteristic function

G −→ S of U . It is clear that the collection {tU | U is a compact open bisection}

of elements of AS(G) satisfies conditions (1), (2) and (3) of Theorem 2.11. Ac-

cordingly, there is a unique S-algebra homomorphism ϕ : AS(G) −→ AS(G) such

that ϕ(λ1U ) = λtU for any compact open bisection U and λ ∈ S. Since π

is not injective, there exist two distinct elements a, b ∈ S such that a = b.

Fix a nonempty compact open bisection U . We then have a1U 6= b1U and

ϕ(a1U ) = atU = btU = ϕ(b1U ), and so ϕ is not injective. Therefore, AS(G)

is not congruence-simple by Remark 2.1. Thus, the commutative semiring S is

congruence-simple, and it follows by [34, Th. 3.2] that S is either a field or the

Boolean semifield B.

(2) Assume that G(0) contains a nontrivial open invariant subset V . Let D :=

G(0) \ V . We then have that GD coincides with the restriction

G|D := {γ ∈ G | s(γ), r(γ) ∈ D}

of G to D. Thus GD is a topological subgroupoid of G with the relative topology,

and its unit space is D. Since D is closed in G(0), and the map s : G −→ G(0)

is continuous, GD = s−1(D) is closed in G, and so U ∩ GD is a compact open

bisection of GD for any compact open bisection U of G. This implies that GD is

a Hausdorff ample groupoid.

For any compact open bisection U of G, we denote by tU the characteristic

function GD −→ S of U ∩ GD. It is obvious that the collection {tU | U is

a compact open bisection} of elements of AS(GD) satisfies conditions (1), (2)

and (3) of Theorem 2.11, by which there is a unique S-algebra homomorphism

ϕ : AS(G) −→ AS(GD) such that ϕ(λ1U ) = λtU for all compact open bisections U

and λ ∈ S. Since V is a nontrivial open subset of G(0), there exist nonempty

compact open subsets U1 and U2 of G(0) such that U1 ⊆ V and U2∩D 6= ∅. This

implies that ϕ(1U1) = 1U1∩GD
= 0 (since U1∩GD = ∅) and ϕ(1U2) = 1U2∩GD

6= 0,

so ϕ is a nonzero homomorphism, but not injective. Therefore, AS(G) is not

congruence-simple by Remark 2.1, whence G is minimal.

We next show that G is effective, following essentially the proof of [8, Prop. 4.4].

Denote by F (G(0)) the free S-semimodule with basis G(0). Let U be a compact

open bisection of G. Observe that s(α) 7−→ r(α) determines a homeomorphism

from s(U) to r(U). We define a map fU : G(0) −→ F (G(0)) by

fU (x) =

{

r(α) if x = s(α) and α ∈ U,

0 otherwise,
12



for all x ∈ G(0). By the universal property of the free S-semimodule F (G(0)),

there exists an element tU ∈ EndS(F (G
(0))) extending fU . Now we check that

(1) t∅ = 0;

(2) tU tV = tUV for all compact open bisections U and V ; and

(3) tU + tV = tU∪V whenever U and V are disjoint compact open bisections

such that U ∪ V is a bisection.

It is easy to see that each of these conditions holds for the functions fU , and so

for the endomorphisms tU as well. Then, by Theorem 2.11, there is a unique

S-algebra homomorphism ϕ : AS(G) −→ EndS(F (G
(0))) such that ϕ(1U ) = tU

for all compact open bisection U . The homomorphism ϕ is nonzero because tU
is nonzero for any nonempty compact open bisection U of G.

Now suppose that G is not effective. By [8, Lem. 3.1], there exists a nonempty

compact open bisection U ⊆ G \ G(0) such that s(α) = r(α) for all α ∈ U . It

implies that U 6= s(U) and tU = ts(U), and hence 1U 6= 1s(U) and

ϕ(1U ) = tU = ts(U) = ϕ(1s(U)),

showing that ϕ is not injective. Therefore, AS(G) is not congruence-simple by

Remark 2.1. Thus, G is effective, finishing the proof. �

The following result, being a “congruence” analog of [8, Lem. 4.2] and [44,

Prop. 3.3], plays an important role in the proof of our main result below.

Lemma 3.3. Let G be an effective Hausdorff ample groupoid and S an additively

idempotent semiring. Then for every congruence ρ on AS(G) different from the

diagonal congruence, there exists s ∈ S\{0} and a nonempty compact open sub-

set W of G(0) such that (s1W , 0) ∈ ρ.

Proof. Since ρ is different from the diagonal congruence, there are elements f, g ∈

AS(G) such that f 6= g and (f, g) ∈ ρ. It is clear that AS(G) is an additively

idempotent hemiring, hence AS(G) is partially ordered by defining a ≤ b iff

a + b = b, for a, b ∈ AS(G). Now (f, f+g) = (f+f, f+g) ∈ ρ and (g, f+g) =

(g+g, f +g) ∈ ρ, and since f 6= g, either f < f + g or g < f + g. Therefore,

without loss of generality, one may assume that f < g. Then, there exists an

element α ∈ G such that f(α) < g(α). Let U be a compact open bisection of G

containing α−1, and let x := r(α) = αα−1 ∈ G(0). We have that

f ∗ 1U (x) =
∑

x=γβ

f(γ)1U (β) = f(αα−1α)1U (α
−1) = f(α) ,

since the unique β ∈ U such that s(β) = s(x) = x is given by β = α−1. Similarly,

g ∗ 1U (x) = g(α), and so f ∗ 1U (x) < g ∗ 1U (x).

Thus, there exist two elements ϑ, ψ ∈ AS(G) such that (ϑ, ψ) ∈ ρ with ϑ ≤ ψ

and ϑ|G(0) < ψ|G(0) (we may take ϑ = f ∗ 1U and ψ = g ∗ 1U as above). Write

ϑ =

n
∑

i=1

si1Ui
and ψ =

m
∑

j=1

tj1Vj
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where si, tj ∈ S \{0} and each of {Ui | i = 1, . . . , n} and {Vj | j = 1, . . . ,m}

is a set of mutually disjoint compact open bisections of G. Since G(0) is clopen

in G by the Hausdorff property, Ui ∩G(0) and Vj ∩G(0) are compact open subsets

of G(0); that means, they are compact open bisections of G, and so, by Lemma 2.2,

Ui \ (Ui ∩ G(0)) and Vj \ (Vj ∩ G(0)) are also compact open bisections of G. We

then have that

ϑ =
n
∑

i=1

si1Ui\(Ui∩G(0)) +
n
∑

i=1

si1Ui∩G(0) and ψ =
m
∑

j=1

tj1Vj\(Vj∩G(0)) +
m
∑

j=1

tj1Vj∩G(0)

and since ϑ ≤ ψ and ϑ|G(0) < ψ|G(0) , it follows that

n
⋃

i=1

Ui \ (Ui ∩ G(0)) ⊆

m
⋃

j=1

Vj \ (Vj ∩ G(0)) and

n
⋃

i=1

Ui ∩ G(0) ⊂

m
⋃

j=1

Vj ∩ G(0).

The set
⋃n

i=1 Ui ∩G(0) is closed in G(0) as a compact subset in a Hausdorff space,

and moreover the Vj ∩G(0) are open in G(0). Thus (Vj ∩G(0)) \ (
⋃n

i=1 Ui ∩G(0)) is

open in G(0), and non-empty for some j0. Let K :=
⋃m

j=1 Vj \(Vj ∩G(0)) ⊆ G\G(0)

which is compact open. Then, because G is effective, and by [8, Lem. 3.1], there is

a nonempty open subsetW ⊆ (Vj0∩G(0))\(
⋃n

i=1 Ui∩G(0)) such thatWKW = ∅.

Since G(0) has a base of compact open sets, we may assume that W is compact.

We have

1W ∗ ϑ ∗ 1W =
n
∑

i=1

si1W (Ui\(Ui∩G(0)))W + si1W∩(
⋃n

i=1 Ui∩G(0))∩W = 0,

1W ∗ ψ ∗ 1W =

m
∑

j=1

tj1W (Vj\(Vj∩G(0)))W + tj1W∩(
⋃m

j=1 Vj∩G(0))∩W = tj01W .

Since (ψ, ϑ) ∈ ρ, and ρ is a congruence on AS(G), we obtain that

(tj01W , 0) = (1W ∗ ψ ∗ 1W , 1W ∗ ϑ ∗ 1W ) ∈ ρ

with tj0 ∈ S\{0}, thus finishing the proof. �

The following result, being an B-algebra analog of [8, Prop. 4.5] and [44,

Prop. 3.4], provides a criterion for minimal Hausdorff ample groupoids. It plays

an important role in the proof of the subsequent main results (Theorems 3.5

and 4.3).

Lemma 3.4. A Hausdorff ample groupoid G is minimal if and only if 1V gener-

ates AB(G) as an ideal for all nonempty compact open subsets V of G(0).

Proof. (=⇒). Assume that G is a minimal Hausdorff ample groupoid. Let V

be a nonempty compact open subset of G(0), and I an ideal of AB(G) generated

by 1V . If U is any compact open bisection of G, we must prove that 1U ∈ I.

Let K := r(U) ⊆ G(0). We then have that K is a compact open subset of G(0).

Since s(GV ) is a nonempty open invariant set, and G is minimal, s(GV ) = G(0),

and hence K ⊆ s(GV ). Thus, for any u ∈ K, there exists an element αu ∈ G
14



such that s(αu) = u and r(αu) ∈ V . For each u ∈ K, let Bu be a compact open

bisection of G containing αu such that r(Bu) ⊆ V and s(Bu) ⊆ K. We then have

1s(Bu) = 1
B−1

u
∗ 1V ∗ 1Bu ∈ I. Since K is compact, there exists a finite subset

{u1, . . . , un} of K such that {s(Bui
) | i = 1, . . . , n} covers K. By Lemma 2.4 (2),

1K =
∑n

i=1 1s(Bui
) ∈ I, and so 1U = 1K ∗ 1U ∈ I. It follows that I = AB(G).

(⇐=). Suppose that G is not minimal. Let U be a nontrivial open invariant

subset of G(0). Let D := G(0) \ V . We then have that GD coincides with the

restriction G|D := {γ ∈ G | s(γ), r(γ) ∈ D} of G to D. As was shown in the

proof of Proposition 3.2, G|D is a Hausdorff ample groupoid with unit space D,

and there is a nonzero B-algebra homomorphism ϕ : AB(G) −→ AB(GD) such

that ϕ(1B) = 1B∩GD
for any compact open bisection B of G. This implies that

Ker(ϕ) := ϕ−1(0) is a proper ideal of AB(G). Since U is a nontrivial open subset

of G(0), there exists a nonempty compact open subset V of G(0) such that V ⊆ U .

We then have ϕ(1V ) = 1V ∩GD
= 0 (since V ∩GD = ∅), and so 1V ∈ Ker(ϕ)\{0},

and hence, by our hypothesis, Ker(ϕ) = AB(G), a contradiction, thus finishing

the proof. �

We are now in position to provide the main result of this section, being a

“semiring” analog of [8, Th. 4.1], [10, Th. 4.1, Cor. 4.6] and [44, Th. 3.5], charac-

terizing the congruence-simple Steinberg algebras of Hausdorff ample groupoids

over commutative semirings.

Theorem 3.5. The Steinberg algebra AS(G) of a Hausdorff ample groupoid G

over a commutative semiring S is congruence-simple if and only if the following

conditions are satisfied:

(1) S is either a field or the Boolean semifield B;

(2) G is both minimal and effective.

Proof. (=⇒). It follows from Proposition 3.2.

(⇐=). If S is a field, then the statement follows from [44, Th. 3.5]. Consider

the case when S = B, and let ρ be a congruence on AB(G) which is different

from the diagonal congruence. Since G is effective, by Lemma 3.3, there exists a

nonempty compact open subset U of G(0) such that (1U , 0) ∈ ρ. Let us consider

the ideal of AB(G) defined as follows:

I := {f ∈ AB(G) | (f, 0) ∈ ρ}.

From the observation above, I contains a nonzero element 1U with supp(1U ) =

U ⊆ G(0). By Lemma 3.4, I = AB(G). It immediately follows that ρ = AB(G)
2,

whence AB(G) is congruence-simple, thus finishing the proof. �
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4. Steinberg algebras of graph groupoids

In this section we investigate Steinberg algebras AS(GE) of graph groupoids GE

associated to arbitrary directed graphs E, over a commutative semiring S. We

provide a complete characterization of the congruence-simple Steinberg algebras

AS(GE) (Theorem 4.3). Motivated by Clark and Sims’s result [14, Ex. 3.2], we

present a criterion for the natural homomorphism from the Leavitt path algebra

LB(E) to the Steinberg algebra AB(GE) to be an isomorphism, where B is the

Boolean semifield (Theorem 4.9). In order to do so, we establish Uniqueness

Theorems for Leavitt path algebras of row-finite graphs over B (Corollaries 4.7

and 4.8). Furthermore, we argue that the Leavitt path algebra LB(E) is in

general not isomorphic to the Steinberg algebra AB(GE) (Example 4.10). All

these constructions are crucially based on some general notions of graph theory,

which for the reader’s convenience we reproduce here.

A (directed) graph E = (E0, E1, s, r) consists of two disjoint sets E0 and E1,

called vertices and edges respectively, together with two maps s, r : E1 −→ E0.

The vertices s(e) and r(e) are referred to as the source and the range of the

edge e, respectively. A graph E is called row-finite if |s−1(v)| <∞ for all v ∈ E0.

A vertex v for which s−1(v) is empty is called a sink ; a vertex v is regular if

0 < |s−1(v)| <∞; and a vertex v is an infinite emitter if |s−1(v)| = ∞.

A path in a graph E is a sequence p = e1 . . . en of edges e1, . . . , en with r(ei) =

s(ei+1) for all 1 ≤ i ≤ n−1. We then say that the path p starts at the vertex

s(p) := s(e1), ends at the vertex r(p) := r(en), and write |p| := n for its length.

The vertices in E0 are considered to be paths of length 0. We denote by E∗ the

set of all paths in E. A path p of positive length is a closed path based at the

vertex v if s(p) = r(p) = v. A cycle based at v is a closed path p = e1 . . . en based

at v for which the vertices s(e1), . . . , s(en) are distinct. An infinite path in E

is an infinite sequence p = e1 . . . en . . . of edges in E such that r(ei) = s(ei+1)

for all i ≥ 1. In this case, we say that the infinite path p starts at the vertex

s(p) := s(e1). We denote by E∞ the set of all infinite paths in E.

The following construction of a groupoid GE from an arbitrary graph E can

be found in [14, Ex. 2.1]. Let E = (E0, E1, r, s) be a graph. First let

XE := {p ∈ E∗ | r(p) is a sink or an infinite emitter} ∪ E∞.

Then the graph groupoid associated to E is defined as

GE := {(αx, |α|−|β|, βx) | α, β ∈ E∗, x ∈ XE , r(α) = s(x) = r(β)}.

The formulas (x, k, y)(y, l, z) = (x, k+ l, z) and (x, k, y)−1 = (y,−k, x) define

composition and inverse maps on GE, making it a groupoid with unit space G
(0)
E =

{(x, 0, x) | x ∈ XE}, which we may identify with the set XE . Note that the range

and source maps rGE
, sGE

: GE −→ G
(0)
E are defined by rGE

(x, k, y) = (x, 0, x) and

sGE
(x, k, y) = (y, 0, y), so that we may view each (x, k, y) ∈ GE as a morphism

with range x and source y.
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We next describe the topology on GE . For α, β ∈ E∗ with r(α) = r(β), and a

finite subset F ⊆ s−1(r(α)), we let

Z(α, β) := {(αx, |α|−|β|, βx) | x ∈ XE , r(α) = s(x) = r(β)} ⊆ GE ,

Z(α, β, F ) := Z(α, β) \
⋃

e∈F

Z(αe, βe).

The sets Z(α,α, F ) constitute a base of compact open sets for a locally compact

Hausdorff topology on G
(0)
E (refer to [46, Th. 2.1], [42, Th. 2.1] or [4, Cor. 2.8]).

And the sets Z(α, β, F ) constitute a base of compact open bisections for a topol-

ogy under which GE is a Hausdorff ample groupoid (refer to [9, Sec. 2.3] or [42,

Th. 2.4]). Thus we may form the Steinberg algebra AS(GE). We should note the

following properties.

Remark 4.1. Let E be an arbitrary graph and S a commutative semiring.

(1) The multiplication on AS(GE) satisfies the following:

(i) 1Z(v,v) ∗ 1Z(w,w) = δv,w1Z(v,v) for all v,w ∈ E0;

(ii) 1Z(s(e),s(e)) ∗ 1Z(e,r(e)) = 1Z(e,r(e)) = 1Z(e,r(e)) ∗ 1Z(r(e),r(e)) for e ∈ E1;

(iii) 1Z(r(e),r(e)) ∗ 1Z(r(e),e) = 1Z(r(e),e) = 1Z(r(e),e) ∗ 1Z(s(e),s(e)) for e ∈ E1;

(iv) 1Z(r(e),e) ∗ 1Z(f,r(f)) = δe,f1Z(r(e),r(e)) for all e, f ∈ E1;

(v) 1Z(v,v) =
∑

e∈s−1(v) 1Z(e,r(e))∗1Z(r(e),e) for all regular vertices v ∈ E0;

where δ is the Kronecker delta.

(2) If in addition S is additively idempotent, then AS(GE) is generated by

functions 1Z(α,β,F ), where α, β ∈ E∗ with r(α) = r(β), and F ⊆ s−1(r(α))

is finite. The finite sums of distinct elements of {1Z(v,v) | v ∈ E0} form a

set of local units of the S-algebra AS(GE).

Proof. (1) It is straightforward by using Proposition 2.6 (2).

(2) Lemma 2.4 (2) immediately implies the first part, from which we easily

deduce the remaining part using Proposition 2.6 (2). �

Our subsequent aim is to characterize the congruence-simpleness of the Stein-

berg algebra AS(GE) over a commutative semiring S. Before doing so, we need

some notations and facts. Let E be an arbitrary graph. An edge f is an exit for

a path p = e1 . . . en if s(f) = s(ei) but f 6= ei for some 1 ≤ i ≤ n. A subset H

of E0 is called hereditary if s(e) ∈ H implies r(e) ∈ H for all e ∈ E1. And H is

called saturated if whenever v is a regular vertex in E0 with the property that

r(s−1(v)) ⊆ H, then v ∈ H.

The following fact provides us with a criterion for the groupoid GE to be

effective and minimal.

Proposition 4.2. Let E be an arbitrary graph.

(1) GE is effective if and only if every cycle in E has an exit;

(2) GE is minimal if and only if the only hereditary and saturated subsets of E0

are ∅ and E0.
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Proof. (1) It may be found in [42, Prop. 2.21]; and just for the reader’s conve-

nience, we reproduce it here.

(=⇒). Suppose that E has a cycle c without an exit. We then have that

Z(cc, c) = {(ccc . . . , |c|, cc . . . )} ⊆ Iso(GE) \ G
(0)
E , and thus GE is not effective.

(⇐=). Assume that every cycle in E has an exit, and let α, β ∈ E∗ be distinct

paths with r(α) = r(β). We claim that αx 6= βx for some x ∈ XE . Indeed,

suppose that αx = βx for some x ∈ XE . Then x ∈ E∞ and one of α and β is

a prefix of the other. We thus may assume that β = αγ for some closed path

γ = e1 . . . ek based at r(α) = r(β). By our hypothesis and [2, Lem. 2.5], the path γ

has an exit f , i.e., there is 1 ≤ i ≤ k such that f 6= ei and s(f) = s(ei). Let y be an

arbitrary element in XE with s(y) = r(f), then putting z := e1 . . . ei−1fy ∈ XE

we find that αz 6= βz. In the other case, we let x be an arbitrary element in XE

with r(α) = s(x) = r(β) and have that αx 6= βx, thus proving the claim. Hence,

there is an element (αx, |α|−|β|, βx) ∈ Z(α, β) such that αx 6= βx. This implies

that every compact open bisection B ⊆ GE \G
(0)
E contains an element µ such that

s(µ) 6= r(µ), and so GE is effective by [8, Lem. 3.1].

(2) (=⇒). Assume that GE is minimal, and let H be a nonempty hereditary

and saturated subset of E0. We prove that H = E0. To this end, let Z :=
⋃

v∈H Z(v, v) ⊆ G
(0)
E . Then U := sGE

(GZ
E) = sGE

(r−1
GE

(Z)) is a nonempty open

invariant subset of G
(0)
E (note that ∅ 6= Z ⊆ U). Since G is minimal, U = G

(0)
E .

Suppose that H 6= E0, and let v ∈ E0 \H. Consider the following cases.

Case 1: The vertex v is a sink or an infinite emitter. Then (v, 0, v) ∈ G
(0)
E = U ,

so there is an element (y, k, x) ∈ GE such that (x, 0, x) = sGE
(y, k, x) = (v, 0, v)

and (y, 0, y) = rGE
(y, k, x) ∈ Z. This implies that x = v and y ∈ E∗ with r(y) = v

and s(y) ∈ H. Since H is hereditary and s(y) ∈ H, we have v = r(y) ∈ H, a

contradiction.

Case 2: The vertex v is regular. Since H is saturated, there exists an edge e1 ∈

s−1(v) such that r(e1) /∈ H. If r(e1) is either a sink or an infinite emitter, then

we make a contradiction by repeating the argument described in Case 1, starting

with r(e1), and so we may assume that r(e1) is a regular vertex. Continuing this

process, we obtain the following possible cases. Either, we arrive after n steps at

a path p = e1 . . . en with s(p) = v and r(p) /∈ H is either a sink or an infinite

emitter. Then, we produce a contradiction by repeating the argument described

in Case 1, starting with r(p). In the other case, we obtain an infinite path x =

e1 . . . en . . . such that s(x) = v and r(en) /∈ H for all n ≥ 1. We then have that

(x, 0, x) ∈ G
(0)
E , i.e., (x, 0, x) ∈ U , and so there exists an element (z, k, y) ∈ GE

such that (y, 0, y) = sGE
(z, k, y) = (x, 0, x) and (z, 0, z) = rGE

(z, k, y) ∈ Z. This

implies that y = x and s(z) ∈ H. Since (z, k, x) = (z, k, y) ∈ GE , there exist an

integer n ≥ 2 and a path α ∈ E∗ such that z = αenen+1 . . . ∈ E∞. Because H

is hereditary, and s(α) = s(z) ∈ H, we find that r(en−1) = s(en) = r(α) ∈ H,

which is a contradiction.
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In any case, we arrive at a contradiction, and so we infer that H = E0.

(⇐=). Suppose that E0 has only the trivial hereditary and saturated subsets.

Let V be a nonempty compact open subset of G
(0)
E , and let I be the ideal of

AB(GE) generated by 1V . We claim that I = AB(GE). Indeed, since V is open

in G
(0)
E , there exist a path α ∈ E∗ and a finite subset F ⊆ s−1(r(α)) such that

∅ 6= Z(α,α, F ) ⊆ V . As Z(α,α, F ) is non-empty, there is a path β ∈ E∗ that

has α as a prefix path and such that Z(β, β) ⊆ Z(α,α, F ) ⊆ V . Since I is an

ideal of AB(GE) and by Proposition 2.6 (2), we then have 1Z(β,β) = 1Z(β,β)∩V =

1Z(β,β) ∗ 1V ∈ I. It follows that

1Z(r(β),r(β)) = 1Z(r(β),β)Z(β,β)Z(β,r(β)) = 1Z(r(β),β) ∗ 1Z(β,β) ∗ 1Z(β,r(β)) ∈ I.

Let H := {v ∈ E0 | 1Z(v,v) ∈ I}. We have that r(β) ∈ H, and hence H 6= ∅.

Let e ∈ E1 with s(e) ∈ H. Using Remark 4.1 (1), we obtain that

1Z(r(e),r(e)) = 1Z(r(e),e) ∗ 1Z(s(e),s(e)) ∗ 1Z(e,r(e)) ∈ I,

hence r(e) ∈ H, showing that H is hereditary.

Let v be a regular vertex such that r(e) ∈ H for all e ∈ s−1(v). We then

have 1Z(r(e),r(e)) ∈ I for all e ∈ s−1(v), and thus, by Remark 4.1 (1), 1Z(e,r(e)) =

1Z(e,r(e)) ∗ 1Z(r(e),r(e)) ∈ I for all e ∈ s−1(v), and

1Z(v,v) =
∑

e∈s−1(v)

1Z(e,r(e)) ∗ 1Z(r(e),e) ∈ I.

This implies that v ∈ H, and hence H is saturated. By our hypothesis, H = E0,

and hence 1Z(v,v) ∈ H for all v ∈ E0, whence I = AB(GE) by Remark 4.1 (2),

proving the claim. By Lemma 3.4, GE is minimal, thus finishing the proof. �

Combining Theorem 3.5 and Proposition 4.2, we readily obtain a complete

characterization of the congruence-simple Steinberg algebras AS(GE) over com-

mutative semirings.

Theorem 4.3. Let E be an arbitrary graph and S a commutative semiring.

Then, AS(GE) is congruence-simple if and only if the following conditions hold:

(1) S is either a field, or the Boolean semifield B;

(2) The only hereditary and saturated subset of E0 are ∅ and E0;

(3) Every cycle in E has an exit.

The remainder of this section is devoted to the study of the connection between

Leavitt path algebras and Steinberg algebras. Let us first recall a brief history and

the notion of Leavitt path algebras with coefficients in a commutative semiring.

Given a row-finite graph E and any field K, Abrams and Aranda Pino in [2],

and independently Ara, Moreno, and Pardo in [5], introduced the Leavitt path

algebra LK(E). The definition was later generalized to all countable graphs

by Abrams and Aranda Pino [3], and to all (possibly uncountable) graphs by

Goodearl [23]. Then Tomforde in [45] constructed Leavitt path algebras of graphs
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over a commutative ring, and Katsov and the present authors in [26] introduced

Leavitt path algebras with coefficients in a commutative semiring. The notion of a

Leavitt path algebra generalizes the algebras LK(1, n) constructed by Leavitt [29]

and also encompasses many other interesting classes of algebras. In addition,

Leavitt path algebras are intimately related to graph C∗-algebras (see [38]).

Definition 4.4 ([26, Def. 2.1]). Let E = (E0, E1, r, s) be an arbitrary graph and

let S be a commutative semiring. The Leavitt path algebra LS(E) of the graph E

with coefficients in S is the S-algebra generated by the union of the set E0 and

two disjoint copies of E1, say E1 and {e∗ | e ∈ E1}, satisfying the relations:

(1) vw = δv,wv for all v,w ∈ E0;

(2) s(e)e = e = er(e) and r(e)e∗ = e∗ = e∗s(e) for all e ∈ E1;

(3) e∗f = δe,fr(e) for all e, f ∈ E1;

(4) v =
∑

e∈s−1(v) ee
∗ whenever v ∈ E0 is a regular vertex;

where δ is the Kronecker delta.

It is easy to see that the mappings given by v 7→ v, for v ∈ E0, and e 7→ e∗,

e∗ 7→ e for e ∈ E1, produce an involution on the algebra LS(E), and for any path

p = e1 . . . en there exists p∗ := e∗n . . . e
∗
1. For notational convenience we extend

the source and range maps by s(e∗) := r(e), r(e∗) := s(e) for all e ∈ E1, and

accordingly s(p∗) := r(p) = r(en), r(p
∗) := s(p) = s(e1) for a path p = e1 . . . en.

Observe that the Leavitt path algebra LS(E) can also be defined as the quotient

of the free S-algebra S〈v, e, e∗ | v ∈ E0, e ∈ E1〉 by the congruence ∼ generated

by the following ordered pairs:

(1) (vw, δv,wv) for all v,w ∈ E0,

(2) (s(e)e, e), (e, er(e)) and (r(e)e∗, e∗), (e∗, e∗s(e)) for all e ∈ E1,

(3) (e∗f, δe,fr(e)) for all e, f ∈ E1,

(4) (v,
∑

e∈s−1(v) ee
∗) for all regular vertices v ∈ E0.

If A is an S-algebra generated by a family {av , be, ce∗ | v ∈ E0, e ∈ E1} of

elements satisfying relations analogous to (1) – (4) in Definition 4.4, then there is

a unique S-algebra homomorphism ϕ : LS(E) → A given by ϕ(v) = av, ϕ(e) = be
and ϕ(e∗) = ce∗ . We refer to this property as the universal homomorphism prop-

erty of LS(E). Moreover, by [26, Prop. 2.4], every monomial in LS(E) is of the

form spq∗, where s ∈ S and p, q are paths in E such that r(p) = r(q).

Using the universal homomorphism property of LS(E) and Remark 4.1 (1), we

immediately obtain that for each graph E and commutative semiring S, there

exists a unique S-algebra homomorphism

πE : LS(E) −→ AS(GE)

such that πE(v) = 1Z(v,v), πE(e) = 1Z(e,r(e)), and πE(e
∗) = 1Z(r(e),e) for all

v ∈ E0 and e ∈ E1. In particular, πE(pq
∗) = 1Z(p,q) for all paths p, q ∈ E∗ with

r(p) = r(q). We refer to this homomorphism as the natural homomorphism from

LS(E) to AS(GE). Clark and Sims in [14, Ex. 3.2] showed that πE is always an
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isomorphism when S is a commutative unital ring. However, as the next result

shows, this is in general not true for our semiring setting which might be, similarly

as for Prop. 2.12, explained by a lack of zero sums.

Proposition 4.5. Let E be a graph and S an additively idempotent commutative

semiring. Then, the natural homomorphism πE : LS(E) −→ AS(GE) is surjective

if and only if E is row-finite.

Proof. (=⇒). Suppose that πE is surjective, and let v ∈ E0. Our claim is that

s−1(v) is finite. We may assume that v is not a sink and choose some nonempty

finite subset F of s−1(v). Since πE is surjective, there exists an element α ∈ LS(E)

such that πE(α) = 1Z(v,v,F ). By [26, Prop. 2.4], this element can be written in

the form α =
∑n

i=1 sipiq
∗
i , where si ∈ S\{0} and pi, qi are paths in E such that

r(pi) = r(qi). Then we have

1Z(v,v,F ) = πE(α) =

n
∑

i=1

siπE
(

piq
∗
i

)

=

n
∑

i=1

si1Z(pi,qi).

Since the semiring is zero-sum free, for all x ∈ GE we have
∑

i si1Z(pi,qi)(x) 6= 0

if and only if x ∈
⋃

i Z(pi, qi), and therefore

Z(v, v, F ) =

n
⋃

i=1

Z(pi, qi).

In particular, Z(pi, qi) ⊆ Z(v, v) ⊆ G
(0)
E for all i, from which we infer that pi = qi

and s(pi) = s(qi) = v. Furthermore, since F 6= ∅ there holds pi = qi 6= v for all i.

Hence, for every 1 ≤ i ≤ n, we may write pi = qi = eiri for some edge ei ∈ s−1(v)

and path ri in E, and thus Z(pi, qi) = Z(eiri, eiri) ⊆ Z(ei, ei). Now since

⋃

e∈s−1(v)\F

Z(e, e) = Z(v, v, F ) =
n
⋃

i=1

Z(pi, qi) ⊆
n
⋃

i=1

Z(ei, ei),

we deduce that s−1(v)\F ⊆ {e1, . . . , en}, whence s
−1(v) ⊆ F ∪ {e1, . . . , en} is a

finite set as claimed. Therefore, E is a row-finite graph.

(⇐=). Assume that E is a row-finite graph. Let α, β ∈ E∗ with r(α) = r(β)

and let F be a finite subset of s−1(r(α)). We claim that π−1
E (1Z(α,β,F )) 6= ∅. If

r(α) is a sink, then necessarily F = ∅ and Z(α, β, F ) = Z(α, β), so we have that

αβ∗ ∈ π−1
E (1Z(α,β)). Thus we may assume that r(α) is not a sink, and hence

Z(α, β, F ) = Z(α, β) \
⋃

e∈F

Z(αe, βe) =
⋃

e∈F c

Z(αe, βe),

where F c := s−1(r(α)) \ F . Since E is row-finite, F c is a finite set, and so

1Z(α,β,F ) =
∑

e∈F c

1Z(αe,βe) =
∑

e∈F c

πE((αe)(βe)
∗) = πE

(

∑

e∈F c

(αe)(βe)∗
)

,

hence
∑

f∈F c(αe)(βe)∗ ∈ π−1
E (1Z(α,β,F )), showing the claim. By Remark 4.1 (2)

this claim implies that πE is surjective, thus finishing the proof. �
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Next we investigate the injectivity of the natural homomorphism πE. We note

([14, Ex. 3.2]) that if S is a commutative unital ring, then injectivity follows from

the Graded Uniqueness Theorem of Tomforde [45, Th. 5.3], which is based on

using graded ring and homogeneous ideal considerations. In our semiring setting,

however, concepts like homogeneous ideal and graded quotient algebra are not

well-established, thus we present a novel argument. But first we recall some

notations and establish a few useful facts.

Let E be an arbitrary graph and S a commutative semiring. Following [2], a

monomial in LS(E) is a real path if it contains no term of the form e∗ ∈ E∗, and

a polynomial α ∈ LS(E) is in only real edges if it is an S-linear combination of

real paths; let LS(E)real denote the subhemiring of all polynomials in only real

edges in LS(E). For a cycle c based at the vertex v, we use the notation

c0 := v and c−n = (c∗)n, for all n ∈ N.

Moreover, for such a cycle c and any polynomial p(x) =
∑n

i=m six
i ∈ S[x, x−1]

(where m,n ∈ Z with m ≤ n), we denote by p(c) the element

p(c) :=

n
∑

i=m

sic
i ∈ LS(E).

The following important fact, being an B-algebra analog of the Reduction

Theorem [1, Th. 2.2.11], provides a method to prove the injectivity of B-algebra

homomorphisms from Leavitt path algebras LB(E) of row-finite graphs E.

Lemma 4.6. Let E be a row-finite graph and ρ a congruence on LB(E) different

from the diagonal congruence. Then, at least one of the following is true:

(1) (v, 0) ∈ ρ for some v ∈ E0;

(2) (p(c), q(c)) ∈ ρ, where c is a cycle in E without exits and p(x), q(x) are

distinct polynomials in B[x, x−1].

Proof. The proof is essentially based on the ideas in the proof of the direction

(⇐=) in [26, Th. 4.4].

By [26, Prop. 4.3], the congruence ρ is generated by ρreal := ρ ∩ (LB(E)real)
2

and ρreal 6= ∆LB(E)real . Hence, there exist two elements a, b ∈ LB(E)real such

that a 6= b and (a, b) ∈ ρ. Since LB(E) is an additively idempotent hemiring,

we can consider the natural order defined by s ≤ s′ ⇐⇒ s+ s′ = s′. We have

(a, a + b) = (a + a, a + b) ∈ ρ, (b, a + b) = (b + b, a + b) ∈ ρ, and since a 6= b,

either a < a + b or b < a + b. Thus, keeping in mind that (a + x, b + x) ∈ ρ for

all x ∈ LB(E) and without loss of generality, we may assume that a < a+ b and

that a, a+ b are written in the form

a = p1 + . . . + pn, a+ b = p1 + . . . + pn + p

where p1, . . . , pn, p are distinct paths in E. We also may choose a having the

minimal number n of such {p1, . . . , pn}.
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Let v := s(p), w := r(p) ∈ E0. Then (vaw, v(a + b)w) ∈ ρ, where vaw =

vp1w + · · ·+ vpnw and v(a+ b)w = vp1w + . . .+ vpnw + p, hence by minimality

we may assume that s(pi) = v and r(pi) = w for all 1 ≤ i ≤ n.

Suppose that v 6= w. Write p = qp′, where q is a path from v to w of shortest

length and p′ is a closed path based at w. For every pj such that q∗pj 6= 0 we

have pj = qp′j for some closed path p′j based at w. Then we have

(q∗a, q∗(a+ b)) = (q∗p1+ . . .+ q
∗pn, q

∗p1+ . . .+ q
∗pn+ q

∗p) = (
∑

j∈J

p′j,
∑

j∈J

p′j+p
′),

and thus (
∑

j∈J p
′
j,
∑

j∈J p
′
j + p′) ∈ ρ with p′j (for j ∈ J) and p′ distinct closed

paths based at w, where J is a subset of {1, . . . , n}. Therefore, without loss of

generality, we may assume that v = w, i.e., that p, p1, . . . , pn are distinct closed

paths based at v, and consider the following two possible cases.

Case 1: There is exactly one closed simple path based at v, say c := e1 . . . em.

It follows that c is a cycle. Then, there are distinct positive integers k and ki for

1 ≤ i ≤ n such that p = ck and pi = cki for all i. Write

(c∗)ka = (c∗)h1 + . . .+ (c∗)hr + chr+1 + . . .+ chn

(c∗)k(a+ b) = (c∗)h1 + . . .+ (c∗)hr + chr+1 + . . . + chn + v.

If c has no exit, we may consider distinct polynomials p and q in B[x, x−1],

defined by p(x) = (x−1)h1 + . . .+(x−1)hr +xhr+1+ . . .+xhn and q(x) = (x−1)h1 +

. . . + (x−1)hr + xhr+1 + . . . + xhn + 1, and deduce that p(c) = (c∗)ka and q(c) =

(c∗)k(a + b), whence (p(c), q(c)) ∈ ρ, as desired. On the other hand, if c has an

exit f , i.e., there exists 1 ≤ j ≤ m such that ej 6= f and s(f) = s(ej), we obtain

(0, r(f)) = (z∗p(c)z, z∗q(c)z) ∈ ρ for z := e1 . . . ej−1f , as desired.

Case 2: There are at least two distinct closed simple paths based at v, say c

and d, and we have c∗d = 0 = d∗c. Note that (p∗a, p∗(a+ b)) ∈ ρ and let

α := p∗a = q∗1 + . . . + q∗s + qs+1 + . . . + qn

β := p∗(a+ b) = q∗1 + . . .+ q∗s + qs+1 + . . .+ qn + v,

where q1, . . . , qn are closed paths in E based at v. Then for some k ∈ N, where

|ck| > max{|q1|, . . . , |qn|}, we get α′ := (c∗)kxck = (c∗)kq∗1c
k + . . . + (c∗)kq∗sc

k +

(c∗)kqs+1c
k + . . . + (c∗)kqnc

k and β′ := (c∗)kyck = (c∗)kq∗1c
k + . . . + (c∗)kq∗sc

k +

(c∗)kqs+1c
k + . . . + (c∗)kqnc

k + v, and (α′, β′) ∈ ρ. If (c∗)kq∗i c
k = 0 = (c∗)kqjc

k

for all 1 ≤ i ≤ s and s+1 ≤ j ≤ n, then (0, v) = (α′, β′) ∈ ρ. Note that if

(c∗)kqjc
k 6= 0, then (c∗)kqj 6= 0, and as |ck| > |qj |, we have ck = qjq

′
j for some

closed path q′j, whence qj = cℓ for some positive integer ℓ ≤ k. Similarly, in

the case (c∗)kq∗i c
k 6= 0, we get that q∗i = (c∗)ℓ for some positive integer ℓ ≤ k.

Since c∗d = 0 = d∗c, for every i, j, one gets d∗(c∗)kq∗i c
kd = 0 = d∗(c∗)kqjc

kd, and

hence, (0, v) = (d∗α′d, d∗β′d) ∈ ρ, as desired, thus finishing the proof. �
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Two results of importance, which are direct consequences of Lemma 4.6, are

the following Uniqueness Theorems. These results can be considered as the B-

algebra analogs of [45, Th. 5.3, Th. 6.5]. Namely, the following corollary is an

B-algebra analog of the Graded Uniqueness Theorem [45, Th. 5.3].

Corollary 4.7. Let E be a row-finite graph and A an arbitrary B-algebra. Then,

a hemiring homomorphism ϕ : LB(E) −→ A is injective if and only if the following

two conditions are satisfied:

(1) ϕ(v) 6= 0 for all v ∈ E0;

(2) ϕ(p(c)) 6= ϕ(q(c)) for all cycles c in E without exits, and for all distinct

polynomials p(x), q(x) ∈ B[x, x−1].

Proof. (=⇒). Assume that ϕ is injective. Considering the natural homomorphism

πE : LB(E) −→ AB(GE), we have πE(v) = 1Z(v,v) 6= 0 and so v 6= 0, for all v ∈ E0.

Then, since ϕ is injective, ϕ(v) 6= 0 for all v ∈ E0, proving condition (1).

Let c be a cycle in E without exits, and let p(x), q(x) be two distinct poly-

nomials in B[x, x−1]. It is clear that p(c), q(c) ∈ vLB(E)v, where v := s(c) =

r(c). As shown in the proof of [26, Prop. 3.1 (2)], the natural homomorphism

ϑ : B[x, x−1] → vLB(E)v, defined by ϑ(f) = f(c), is an isomorphism of B-

algebras. This implies that p(c) = ϑ(p) 6= ϑ(q) = q(c), and hence ϕ(p(c)) 6=

ϕ(q(c)), showing condition (2).

(⇐=). Suppose that ϕ is not injective. This implies that its congruence on

LB(E), namely ker(ϕ) := {(x, y) ∈ LB(E) | ϕ(x) = ϕ(y)}, is different from

the diagonal congruence. By Lemma 4.6, we either have (v, 0) ∈ ker(ϕ) for

some v ∈ E0, or (p(c), q(c)) ∈ ker(ϕ), where c is a cycle in E without exits,

and p(x), q(x) are distinct polynomials in B[x, x−1]. In the first case, we have

ϕ(v) = ϕ(0) = 0, and in the second case, this implies that ϕ(p(c)) = ϕ(q(c)).

Thus either condition (1) or condition (2) is violated, finishing the proof. �

The following corollary is an B-algebra analog of the Cuntz-Krieger Uniqueness

Theorem [45, Th. 6.5].

Corollary 4.8. Let E be a row-finite graph in which every cycle has an exit, and

let A be an arbitrary B-algebra. If ϕ : LB(E) −→ A is a hemiring homomorphism

with ϕ(v) 6= 0 for all v ∈ E0, then ϕ is injective.

Proof. This follows directly from Corollary 4.7, since in the given situation the

condition (2) is automatically satisfied. �

Now we are able to prove the following theorem, providing a criterion for the

natural homomorphism from the Leavitt path algebra LB(E) into the Steinberg

algebra AB(GE) to be an isomorphism. The result establishes that the Leavitt

path algebra LB(E) of a row-finite graph E is a Steinberg algebra, which can be

considered as an B-algebra analog of Clark and Sims’s result [14, Ex. 3.2].
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Theorem 4.9. For any graph E, the natural homomorphism πE : LB(E) −→

AB(GE) is an isomorphism if and only if E is row-finite.

Proof. (=⇒). It follows from Proposition 4.5.

(⇐=). Assume that E is row-finite. By Proposition 4.5, πE is surjective.

We claim that πE is injective by using Corollary 4.7. Indeed, we first have

πE(v) = 1Z(v,v) 6= 0 for all v ∈ E0.

Let c be a cycle in E without exits based at the vertex v, and p(x), q(x)

two distinct polynomials in B[x, x−1], therefore xkp(x) 6= xkq(x) for all k ∈ Z.

We choose an integer k such that xkp(x) =
∑

i∈F x
i and xkq(x) =

∑

i∈G x
i for

some distinct finite subsets F and G of N. Then we have ckp(c) =
∑

i∈F c
i and

ckq(c) =
∑

i∈G c
i, and hence πE(c

kp(c)) =
∑

i∈F 1Z(ci,v) = 1⊔
i∈F Z(ci,v) as well as

πE(c
kq(c)) =

∑

i∈G 1Z(ci,v) = 1⊔
i∈G Z(ci,v). Since F 6= G, we have

πE(c
kp(c)) = 1⊔

i∈F Z(ci,v) 6= 1⊔
i∈G Z(ci,v) = πE(c

kq(c)),

whence πE(p(c)) 6= πE(q(c)). From these observations and Corollary 4.7, we

obtain that πE is injective, proving the claim and finishing the proof. �

In light of Theorem 4.9, the natural question arises whether there exists any

isomorphism between the Leavitt path algebra LB(E) and the Steinberg algebra

AB(GE), where E is an arbitrary graph. The following example gives a negative

answer to this question. Before presenting it, we recall the notion of graph inverse

semigroups introduced by Mesyan and Mitchell in [33].

Given a graph E = (E0, E1, r, s), the graph inverse semigroup G(E) of E is

the semigroup with zero generated by the sets E0 and E1, together with a set of

variables {e−1 | e ∈ E1}, satisfying the following relations:

(1) vw = δv,wv for all v,w ∈ E0;

(2) s(e)e = e = er(e) and r(e)e−1 = e−1 = e−1s(e) for all e ∈ E1;

(3) e−1f = δe,fr(e) for all e, f ∈ E1;

where δ is the Kronecker delta. We define v−1 = v for each v ∈ E0, and for

any path p = e1 . . . en in E we let p−1 := e−1
n . . . e−1

1 . With this notation, every

nonzero element of G(E) can be written uniquely as pq−1 for some paths p, q ∈

E∗. It is not hard to verify that G(E) is indeed an inverse semigroup, with

(pq−1)−1 = qp−1 for all p, q ∈ E∗. For further reference we refer to [33].

Example 4.10. Let E = (E0, E1, r, s) be the graph with a single node E0 = {v}

and countably infinite set of edges E1 = {en | n ∈ N}, where r(en) = v = s(en)

for all n ∈ N. Then, LB(E) is not isomorphic to AB(GE).

Proof. Consider the semigroup algebra B[G(E)]. By the universal homomorphism

property of LB(E), there exists a unique B-algebra homomorphism ϑ : LB(E) −→

B[G(E)] such that ϑ(pq∗) = pq−1 for all p, q ∈ E∗. Since B[G(E)] is the free B-

semimodule with basis {pq−1 | p, q ∈ E∗}, the map is an isomorphism. This

implies that LB(E) is the free B-semimodule with basis {pq∗ | p, q ∈ E∗}.
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Suppose that LB(E) is isomorphic to AB(GE), and let ϕ : LB(E) −→ AB(GE)

be an isomorphism. Since v is the identity of LB(E) and 1Z(v,v) is the identity of

AB(GE) (note that Z(v, v) = G
(0)
E ), it follows that ϕ(v) = 1Z(v,v).

Let F be a nonempty finite subset of E1. We then have ϕ(x) = 1Z(v,v,F ) for

some nonzero element x ∈ LB(E). Since Z(v, v, F ) is a proper subset of Z(v, v),

we get that ϕ(x) = 1Z(v,v,F ) 6= 1Z(v,v) = ϕ(v) and ϕ(v + x) = ϕ(v) + ϕ(x) =

1Z(v,v) + 1Z(v,v,F ) = 1Z(v,v) = ϕ(v), hence x 6= v and v + x = v.

From [26, Prop. 2.4] it follows that x can be written in the form x =
∑n

i=1 piq
∗
i ,

where n ≥ 1, pi, qi ∈ E∗ and pkq
∗
k 6= v for some 1 ≤ k ≤ n. We then have

v = v + x = v+
∑n

i=1 piq
∗
i . But since LB(E) is the free B-semimodule with basis

{pq∗ | p, q ∈ E∗}, an equation of the type v = v+
∑n

i=1 piq
∗
i cannot hold in LB(E).

This shows that LB(E) is not isomorphic to AB(GE), finishing the proof. �

Combining Theorems 4.3 and 4.9 with [14, Ex. 3.2], we readily obtain a

complete characterization of the congruence-simple Leavitt path algebras LS(E)

of row-finite graphs over commutative semirings, which was established in [26,

Th. 4.5] by another approach.

Corollary 4.11 (cf. [26, Th. 4.5]). Let E be a row-finite graph and S a commu-

tative semiring. Then, LS(E) is congruence-simple if and only if the following

three conditions are satisfied:

(1) S is either a field, or the Boolean semifield B;

(2) The only hereditary and saturated subset of E0 are ∅ and E0;

(3) Every cycle in E has an exit.

We close this article with the following remark.

Remark 4.12. Theorem 4.3 provides us with nice examples of additively idem-

potent congruence-simple semirings by using graph groupoids, which may not

isomorphic to the corresponding Leavitt path algebras. For example, let E be

the graph as in Example 4.10. It is obvious that E0 has the trivial hereditary

and saturated subsets, and every cycle in E has an exit. Therefore, by Theo-

rem 4.3, AB(GE) is an additively idempotent congruence-simple infinite semiring.

We have not yet known whether LB(E) is congruence-simple. However, in any

case we obtain a congruence-simple semiring being non-isomorphic to LB(E).
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