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EXTENDING HOLOMORPHIC MAPS THROUGH
PLURI-POLAR SETS IN HIGH DIMENSION

DO DUC THAI

Abstract. In this paper we prove that if a complex space X has the strictly
holomorphic 1-extension property through polar sets, then X also has the strictly
holomeorphic n-extension property through pluri-polar sets for all n > 2. Mo-
reover, some results of Suzuki and Jarvi are deduced from the above-mentioned
theorem.

Introduction

Let S be a pluri-polar set in a complex manifold Z and X be a complex
space. If f: Z\ S — X is a holomorphic map, the question as to whether one
can find a holomorphic extension f : Z — X of the map f has been studied by
~ various authors (see [2], [7], [8], [9]). For example, if X is a Siegel domain of type
2in C™, then every map f has a holomorphic extension to Z (see Sibony [7]) or
if X is a convex domain in C”, a holomorphic extension through hypersurfaces
of every map f exists iff X is hyperbolic (see P. K. Ban [1]).

In the case X is a Riemann surface and Z\§ is the punctured disc 0 < |z| < 1.
in C, the problem was investigated by Royden [4]. Recently, Jarvi [2] generalized
Royden’s results for the case of compact subsets of capacity zero in a domain
Z C C. The above-mentioned extension problem for high dimension, i.e. Z 1s
an arbitrary complex manifold, was also investigated by Suzuki [8]. However
his proof is not correct. ,

The aim of the present note is to study the ai:).ove-mentioned, problem for
high dimension. In particular, we will give a correct proof of Suzuki’s result .
At the same time, a generalization of Jirvi's results to the case of an arbitrary
complex manifold will be obtained. - '
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1. Some definitions and main results

DEFINITION. Let X be a complex space. We say that X has the holomorp'hi'c
n-extension property through pluri-polar sets if for every complex manifold Z
of dimension n, the restriction map R : H(Z,X) — H(Z \ §,X) is surjective
for every pluri-polar closed set S in Z.

Here H(Z,X) denotes the space of holomorphic maps from Z into X
equipped with the compact-open topology. If the restriction map R is a homeo-
morphism, then we say that X has the strictly holomorphic n-extension pro-

perty. _ .
Shortly, the homeomorphism R is denoted by R : H ( Z,X)y=2H (Z \ S5, X ) .

In this section we prove the following two theorems.

THEOREM 1.1. Let X be a complex space having the strictly holomorphic 1-
extension property through polar set. Then X also has the strictly holomorphic
" n-extension property through pluri-polar sets for n > 2.

THEOREM 1.2. Every Siegel domain D of type 2in a Banach space B has the
strictly holomorphic n-extension property through pluri-polar sets for all n > 1.

Here, by a Siegel domain of type 2 in B we mean a domain D in B of the
form

D.= {(u,v) EB=(A®iA)xW: Imu— Flw,w) ¢ V},

where A is a real Banach space, FF: W x W — A®id is a continuous v
Hermitian map and V' is an open convex cone in A

2. Proof of Theorem 1.1

First observe that X satisfies the weak disc condition. This means that
if { fa} € H(A,X), where A is the open unit disc in C, converges to f in
H (A* X}, &% = A\ {0}, then F can be extended holomorphmally to A and
fa—= fin HAX ) By [6], X has the Hartogs holomorphic extension property.

Given n > 1. Since the problem is local, without loss of generality we nia.y
assume that Z = U x W where U is an open polydisc in C*~! and W is an
open set in C.
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For every pluri-polar set § in Z, we put
S’:{zEU:szCS},

and

S"={weW:UxwcCS}.

We claim that S’ and $" are pluri-polar in U and W, respectively. It suffices to
check this for S’ because the check for §” is similar.

Given zq € S'. Take wg € W such that (2o, wp) ¢ S. Since S is pluri-polar we
can find a neighbourhood Uy x Wy of (2, wy) in U x W and a plurisubharmonic
function ¢ on Uy x Wy such that ¢|sn,xw,) = —o© and w(zg,wo) # —oo. If
we put a(z) = p(z,w,) for z € Us, then o is plurisubharmonic on Uy such that
a(z) = p(z,ws) = —oo for every z € Uy NS’ and a(zp) = (zq,wp) # —oo0.

We put
S¥={z€eU:(z,w) €S} for eachwe W

and

S.={weW:(z,w) €S} for each z € U.

Then S is pluri-polar for w ¢ S”, and, similarly, S, is pluni-polar for z ¢ S’.
Indeed, reasoning as above, it suffices to check this for S*, where w ¢ S”. From
the relation w ¢ S” there exists ¢ € U such that (a,w) ¢ S. By a theorem of
Josefson 3] we can find a plurisubharmonic function ¢ on U x W such that
@|s = —oo and p(a,w) # —oo. Define a plurisubharmonic function « on U by
a(z) = p(z,w) for z € U. It is obvious that a # —oco and a|s«» = —o0.

Now consider a sequence {f;} of holomorphic maps from U x W \ S into
X which converges to f in H(U x W\ 5,X). For each w ¢ S" and each k¥ > 1
consider the holomorphic map

fEU\8*-=X
given by
2 fi'(2) = filz,w).

By the inductive hypothesis, f ~ f* in H(U, X). Similarly, for each z ¢ 5,
the sequence of holomorphic maps {f,.} C H(W \ $",X), given by fr (w) =
fi(z,w), converges to f, in H{W, X). Thus, we can define the maps

fi:UNS' xW = X by fi(z,w) = f(w)
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and

f2:UxW\S" =X by falz,w) = f(2).
We shall show that f; and f, are holomorphic. By Shiffman [5] and by the
holomorphic extendability of X, it suffices to prove that f; ( reps.fz) is holo-
morphic in z € U \ §' (resp. in w € W\ S§"). We will prove this statement
only for f; because the proof for f; is analogous. Fix w € W. Let {z,} C
U\ S, {z} = 2€U\S" Since § is closed, it follows that

P= (pb:lsz,,) us.,
is a pluri-polar closed set in W. On the other hand, inductive hypothesis yields
H(W,X) = H(W \ P, X). ' -
Since f,, — f: in H(W\ P,X), we see that f,, — f, in H(W,X).- Hence

Fi(zp,wp) = fzp(wp) — f(w) = fi(z,w)

for every {w,} — win W. Thus fi is continuous on U\ 5’ x W. Similarly, fa is
continuous on U x W\ §". Since U x W\ S C (U\S")x (W\5") and U x W\S
is dense in U x W, we have

Filinsyxmns = Falwysnxwys)-”

Moreover f,(w) = fi(z,w) = fa(z,w) = f¥(2) for z € U\ §' and w € W\ 5".

This means f; is separately holomorphic on (U \ §') x (W \ §”). By Shiffman

[5] f1 is holomorphic on (U \ §*) x (W \ §"). Similarly, f2 is also holomorphic

on (U\ §) x (W\S"). ~

By the continuity of f; and f, on U\ S' x W and U x W\S”, respectively, it

follows that f; and f, are separately holomorphic on U\ S’ X W and U x W\ 5"

" respectively. Thus from (*) we can define a function f on (U \ §' x W)U (U x

W\S") by |

Flons'xw = fi and fluxwyse = fo

which is separately holomorphlc Again by Shiffman [5] f is holomorph_tc Since
by [6].
MO\ S x W)U (U x W\S”] =T x W,

we see that f is extended to a holomorphic -ma.p' f from U x W into X.
It remains to show that fk — fin H (U x W, X). First we shall see that
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fk|U\S’ — fline in HW,X). Let {z:} c U\ &, {wk} C W with z; — z €
U\S' {ur} »weW.

As before put :
P={US,}US..

Since fi z, — fz in HW\P,X), we have fi ,, = fi in H(W,X). Hence fr — f
in HU\ S x W, X) and fi — f in H(U x W, X).

The proof of theorem 1.1 is complete.

3. Proof of Theorem 1.2

First we will show that D is convexin B. Indeed for every (u1,w1), (u2,we) €
D and for every 6 € [0, 1] we have

Im [91.61 + (1 - 9)’&2] - F(9w1 + (1 - 9)w2,9w1 <+ (1 ad g)tUg) .
= 0[Im uy — F(wy,w1)] + (1 = 8)[Im uz — F(wsz,wa)]+
8(1 — 0)F(w;y — wy,wy —wy) € V. |

Hence (9111 + (1 - 9)u§,9w1 +(1 - 9)?.02) € D, ie. D is convex in B,
Write
V={seA:zl(z)>0,acI}

Since V is a cone, we have

ﬂKcr =% = {0}.

acl

Let (uy,w;),(us,w2) be two points of D such that u; # up. Without loss of
generality, we may assume that Re u; # Re ug. Choose a € I such that

zh(Re uq) # 2 (Re uz) Let 2% € (Ao zA)* be gwen by zX(z + iy) = zh(z) +
iz (y). Then .

) — a(u) w. w
flwyw) = T (ww) €D,

is a bounded holomorphic function on D with f(u1, wy) # flus, wa).
Assume that there exists a non-constant complex line L in D. By We may
assume that L has the form (ug, wo),A € C. Since QQIK erzl, = {0} and

(#(Im uwg — K2 F(wg,wp)),0) € D for each, k > 1 we can find 2% such that
|22, (yz)| — oo, where yx = i(Im ug — k?F(wo,we)). For each k > 1, consider
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the bounded holomorphic function fx on D defined by

futww) = 2

Put

Ti(u,w) =(u — Re ug — 20F(w, kwp) + ik? F(wg,wp ), w — kwo)
. tlo [17)] kwg
zk—(zl'm2 —Re2 5 )

Since Tk is a biholomorphism from D onto D, we can define gx = fr. o T}, for
k > 1. By the inequality
| 2, (2k)

z;‘;k(zk) +1

there exists a sequence {oy} of automorphisms of A such that

sup | | <1

k( fas Zk_l_z)—ﬂ, for k>1

and

—1 as k — oo.

25, (yx)
oL — Gk
| (ZZ,,(yk) + 1“
Fix ¢ € D. Since Ti{ % k—'z"-"-) = z; for k > 1 and by the tautness of A, it follows
that

sup|ox o fr 0 Te(g)] < 1.
k>1

Again there exists a sequence {f;} of automorphisms of A such that
Brokgr(g) =0for k21

and
|Brokgr(ug, kwo)| — 1 as k — oo.

This is impossible. Thus, D is a convex domain containing no complex lines.

Now we show that D has the strictly 1-extension property. Given {fx} C
H(A\ S,D) with fx — f in H(A\ $,D). Let 2z, € S. Since 5 is polar, dim
S = 0 and hence there exists a neighbourhood Uy of z in § such that U, = 0.
Let U be a neighbourhood of 2, in Z such that U NS = Uy. Take a C*°-function
¢ in a neighbourhood of U such that 0 < ¢ < 1,plsny =0and p =1ina
neighbourhood of 8U.
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By Sard theoreni, there exists 0 < r < 1 such that ©=1(r) is a C*™-curve.
Put . ,
W={z€eU:p(z)<r}

For each & > 1 consider the holomorphic function gx on W given by

1 fk(t)
= m—— SN, 3
gk(Z) 27” aw t—z

Since zj, gy is holomorphic on W for all « € I, we have z% gy = z* fi|w for

« € I and k > 1, where {z},} C B* are choosen such that D = N{Re z¥ < ¢, }.
We may assume that 0 € D, and hence €, > 0 for all & € I. We have

ﬂker zs = {0},

and hence
gelw\s = felwns forall k> 1.

Thus fj, is extended holomorphically to zq € S. Since 2 is arbitrary, fi can be
extended to a holomorphic function f on Z. Moreover fi — f in H(Z, B). We
will see that f(A) C D. Indeed, for the above z, and W we have f(8W) C D,
and hence Re z%, f(0W) < ¢, for & € I. By the maximum principle for harmonic
functions, it follows that

Re z7,f(20) < €q for a € I.

Hence f(z9) € D. Thus, f(W) C D.

4. Some applications

In this section we will combine Theorem 1.1 with the result of Jarvi [2] and
Suzuki [8] in order to extend their result for high dimension.

THEOREM 4.1. (cf. Jarvi [2]) Let X be a compact hyperbolic Riemann surface.
Then X has the strictly holomorphic n-extension property through pluri-polar
sets for every n > 1. ' o

ProoF. By Jarvi [2] the restriction map R : H(Z,X) — H(Z \ 5,X) is
surjective for every complex curve Z and every polar set Sin Z. By the complete
hyperbolicity of X, it follows that H(Z \ S,X) = H(Z, X). Theorem 1.1 yields
H(Z \S,X) £ H(Z, X) for every complex manifold Z and every pluri-polar set
SinZ.
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THEOREM 4.2. (cf. Suzuki [8]) Let M be a compact complex manifold such

that
(i} M has a umversal cover () which is blholomorphxc to a bounded domain

in C™.

(ii) Every b1h010m0rph1sm of the universal cover Q@ — M can be extended
holomorphically to a neighbourhood of Q.

Then M has the strictly holomorphic n-extension property through pluri-
polar sets for all n > 1. '

PROOF. First note that M is hyperbolic. By the result of Suzuki [8] the theorem
holds for n = 1. Theorem 1.1 implies that Theorem 4.2 holds for all n > 1.
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