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'BIFURCATION AND HOPF BIFURCATION
AT MULTIPLE EIGENVALUES FOR EQUATIONS
WITH LIPSCHITZ MAPPINGS

NGUYEN XUAN TAN

Abstract. Some results on the existence of bifurcation and Hopf bifurcation
at multiple eigenvalues for abstract equations concerning Lipschitz continuous
.mappings in Banach spaces are proved. The obtained results improve some well-
known bifurcation results by Crandall and Rabinowitz, McLeod and Sattinger,
Hopf ete. in the case involving Lipschitz continuous mappings. Some illustrative
examples are given.

1. Introduction

Bifurcation problems and Hopf bifurcation problems play a very important
role in different areas of applied mathematics and have been intensively studied
in the literature. Several methods have been used, for instance, variational,
topological, analytical, and numerical methods etc. In general, the bifurcation
problem consists in determining bifurcation points of equations depending on a
parametef in Banach spaces of the form

F(Av)y=0, (Mv)eAxD, - (1.1)

where A is a subset of a normed space, D is a neighborhood of the origin in a
Banach space X with the closure D and F is a nonlinear mapping from A x D
into another Banach space ¥ with F(A,0) = 0 for all A € A. (),0) is called a
trivial solution. A point (X,0) € A x D is said to be a bifurcation point of the
equation (1.1) if and only if

(A, 0)€ cl{(Av) € Ax D| F()\v) =‘0 and v # 0},

where c[A = A, the closure of the set A.
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In the case the mapping F is differentiable, using the Implicit Function
Theorem one can easily verify that (},0) is a bifurcation point of (1.1) only
if A belongs to the spectral set of Ft()\,O), i.e. Fx(j\,O)uﬁ = () for some uqy €
X, ug #£0. : |

The Hopf bifurcation problems study the bifurcation of periodic solutions
of dynamic systems depending on a parameter

% = F(A,v), ()\_,'v) € A x D. (1.2)
We say that for A = X € A a small periodic solution of the system (1.2} with
periods close to T bifurcates from the origin if for every € > 0 there exists a
point A, in a neighborhood of A(|A — Ma < €) for which the system (1.2} has a
nonzero I, — periodic solution v,,(|T. — To| < €) lying in the & — neighborhood
of the origin in X: _
[lve(t)]| <€ (—o0 <t < 00).

' In the case the mapping F is differentiable, such a bifurcation occurs when
a complex conjugate pair of eigenvalues of F,(A,0) crosses the imaginary axis
for a critical A = X while all other eigenvalues have negative real parts. There
are several generalizations of the original result obtained by E. Hopf [4] which
shows that the bifurcation of periodic solutions of the system (1.2) in a finite
dimensional case occurs under the following assumptions:

~a) the eigenvalue a(}) of F,(A,0) crosses the imaginary axis for critical A = A
‘with Re ¢/(}) # 0, where ¢’ denotes the derivative of o with respect to A,

b) the purely ima.ginary eigenvalue o(X) = iy is simple,

¢) Fy(},0) has no eigenvalue of the form ikuo , k =0,2,3,..., (see [1], (21,
[7], [10], etc). '

In [8] Kielhéfer studied the Hopf bifurcation of the evolution equation

% + Au + B(\u = F(Au)

in a Hilbert space with mappings A, B,F depending analytically on X and
B(0) =.0, and F being a higher order term. The mapping A is assumed
to have a purely imaginary'eigenvalue ipo with multiplicity r > 1.. Then, he
investigated the Hopf bifufcation at A = 0, using the method of Lyapunov-
Schmidt fer evolution equations, follow:ng Tudovich [6). This reduces the above
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problem to the solution of 2 bifurcation equation in R?" of the form
Dv + B(Ayw + G(g, \v) = 0.

The parameter p corresponds to the unkwown period of the bifurcating
solution. The vector v belongs.to R2*~! and the linear operators D and B(X)
as well as the nonlinear operator G(y, A, .) map R2*~! into R%". He found some
necessary and sufficient conditions for the Hopf bifurcation of the above system,
sh'owing that the positive number of branches which bifurcate at A = 0 depends
only on the number of nontrivial solutions of four algebraic equations in R?".
The purpose of this paper is to study the existence of bifurcation points and
Hopf bifurcation points of the systems (1.1) and (1.2), respectively, with F of
the form

F(Au) = —T(u)+ L\ uv) + H\u) + K\, u), (\u)€AxD,

where A is an open subset of a normed space Z with the norm defined by
l-|a, D is a neighborhood of the origin in a Banach space X. For any fixed
A€ A, T, L(},.) are linear continuous mappings from X into another Banach
space Y, H(A,.), K(},.)are nonlinear Lipschitz continuous mappings of “higher
order term” from D into ¥ with H(),0) = K()\,0) = 0 and H (A,.) satisfles
‘an a-homogeneous condition to be described later with ¢ > 1. Let X € A be a
characteristic value of the pair (T,L) (i.e. T(v) + L(A,v) = 0 for some v €
X, v # 0) such that the mapping T + L(},.) is Fredholm with nullity p
and index zero the results of this paper are also valid for the case of positive
index s > 0, p > s > 0). For the sake of simplicity we only investigate the
case of index zero though. We shall prove, under some sufficient conditions,
that (X,0) is a bifurcaticn point of the system (1.1) with F as above, using
the Lyapunov-Schmidt procedure, the Banach Contraction Principle and the
topological degree theory. Furthermore, we also describe parameter families
of nontrivial solutions of the system (1.1) in a neighborhood of (A,0) in an
analytical form. Our results in Section 2 generalize some well-known results
obtained by Crandall and Rabinowitz [2], McLeod and Sattinger [9], Buchner,
Marsden and Schecter [1]. They always need the differentiability conditions on
those mappings. These also generalize the author’s results in [11] where we
assumed that the mappings H and K are Lipschitz continuous with respect to
both A and v. In Section 3, let X € A be such that the mapping T + L(},.)
is Fredholm of index zero and has +ipo as eigenvalues with multiplicity p.
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We assume that this mapping has no eigenvalue of the form +:i np, with
n=202. ... We shall give some sufficient conditions to show that (},0) is
a Hopf bifurcation point of the system (1.2) with F given as above, proving
that the existence of Hopf bifurcation points can be reduced to the study of the
nonvanishing of the topological degree of some ma,ppings in a finite dimensional
space (see Theorems 3.2, 3.6, 3.10, 3.14 below). In particular, this problem can
. be reduced to the existence of nontrivial regular solutions of algebra,ic equations
in R?” (see Corollaries 3.4, 3.8, 3.12, 3.16 below).

Section 4 is devoted to degenerate cases of Hopf bifurcation. We assume that
the reduced algebraic equations of the system (1.2) have nontrivial nonregular
solutions. .We shall show that the existence of Hopf bifurcation points can
also be reduced to the study of the nonvanishing of the topological degree
of mappings by considering the first nonzero derivatives of the bifurcation
equations at (},0).

2. The main results for bifurcation

Throughout this paper, X and Y are always supposed to be real or complex
Banach spaces with duals X* and Y*, respectively. A is an open subset of a
normed space. The norms and the pairings between elements of X, X* and
'Y,Y* are denoted by the same symbols ||l-|| and < .,. >, respectively. The
norm of the normed space containing A restricted to A is denoted by |.]a. The
symbol R®,n = 1,2,... stands for the n-dimensional Euclidean space whose
norm will be denoted by the same symbol |.| for all n. It is customary to
simplify the notation for R! by dropping the superscript, R! = R. In this
section we consider the existence of bifurcation points of the system (1.1) with -
F mentioned above. This means that we investigate the existence of bifurcation
points of the equation-

T(v)‘= L(;\, 'v)--{— H(A\v)+ K(Av), (Mv)eAxD,  (2.3)

where the mappings T, L, H and K are as in the introduction. Now let A€EA
be a characteristic value of the pair (T, L) with multiplicity p. It follows that
the null space Ker(T — L(}, ) of the mapping T'— L(},.) is p-dimensional. We
assume , ,

Ker(T — L(X: J) -:- [vla ey vP),

where the right side is the space spanned by v',...,v" .
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By (T — L(},.))* we denote the adjoint mapping of the mapping T — L(:, )
and assume

Ker (T — L(X,))* = [}, ..., ¢7].

By the Hahn - Banach Theorem one can find p functionals 41,...4” on X
and p elements z',...,27 in Y such that < v*,4% >= §; and < z™,p" >=
bm,ns kyJymym=1,2,...,p, with &;,8ms denoting the Kronecker §. We set

Xo = Ker (T - L(}, )= [v),...,07]

Xi={zeX| <z, >=0, j=1,...,p)
= [z',...,27]

Yi={yeY| <y,9 >=0,j=1,..,p}.

It can be seen that X = X, @ X, , Y =Y, & Y; and the restriction of the
mapping T — L(},.) on X is a one-to-one linear continuous mapping from X,
onto Y;. The projections Px : X — X0,0x : X = Xy, Py : Y — Yy and
Qy 1Y — Y] are defined by

Px(z) = Z <z,9 >v, Qx(z)=z— Px(z), z € X,

Py(y) = Z <y¥*>2F, Qv(y)=y-Pr(y), yeY.

k=1

Concermng the main results in this paper we impose the following hypothe-
ses on the mappings L, H a.nd K.

HYPOTHESIS 1. Thereis a reaI number b such that aL(X, v) = L{a®X,v) holds
for all o € [0,1] and v € D.

HYPOTHESIS 2. There exist a constant k; and a real number a > 1 and a real
increasing function ¢ : R — R with %irrtl} 0(8) = 0 such that
i) H(\ tv) = t*H (A, tv) holds for allt € [0, 1], (A, v) € Ax D.

i) ||Qy H (W’ ) —-QvH (m—l%g,v) || £ k1]|e—v|| holds for all u,v €
D, uniformly in o € [0,1], where b is from Hypothesis 2.

ii) 1@y X ((ademru) — Qv (e v) Il < ellu = vlDllu = vl] holds
for all u,v €D and uniformly in « € [0, 1].

In what follows, for the sake of 51mp11(:1ty, we set M = H + K. We can easily
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verify that the équation (1.1) is equivalent to the following p + 1 equations

Qv (T(v) — L(A,v) — M(A,v)) =0,

< T(v) = L w) — M\, 0),¢7 >=0, j=1,...,p. (2.4)
Since » € X can be written as v = z ;07 +w for some € = (g1,...,¢,) €
=1

R”,w € Xi, we then conclude that to solve the system of equations (2.4) we
need to find A € A,e =(e1,...,¢,) € R? and w € X satisfying

: 7 pr , P _
Y (T (Zejvj +w) -L (A,Ze,-vi +w) - M (A,Zsjvf +w)) =0
=1 i=1 =1

P P [
<T (Ze,-vj+w) ~-L (/\,ZEjUj+W) - M (A,Zsjvj+w) 97 > =0,

j=1 =1 7=1
J=L...,p

Next, let I; be a neighborhood of zero in R, I; C (—1,1), such that A/(1+
la|)® € A holds for all & € Iy, where b is from Hypothesis 1, and let U; = U(o0,r)
be an open ball with the center at the origin in R and the radius r > 0 such
that 3°%_, e;07 € Px(D) for all (e1,...€;) € Uy. Without loss of generality we

~may assume that |«|*' € Iy, |ale € U; hold for all « € I1,e € Uj. Setting
D, = Qx(D) and by choosing D] smaller if necessary, we may assume D; =
Dy(0,7,), the open ball with the center at the origin in X; and radius & > 0.
We define the mapping G4 : ) x Uy x Dy = Xy by

Gi(a,e, w) =

j — o —-—:\— vl 4w
—HQY (ilalT (JZ_;EJU +w) (1:|:| M ((1:1:10_,])553 T+ ))’

where (a,e,w) € I} x Uy x Dy, and II is the inverse of the mapping T L(A )
from Y; onto X;.

- The following lemma plays an important role in the proof of the ma,m results
of this paper.

LEMMA 2.1. Let Hypotheses 1.2 be satisfied and let I,,U;, Dy be as above.
Then there exist neighborhoods I of zero in R,I, C I, Dy of the origin in
X1,D; C Dy such that for any (Ja|*™!, |ajz) € I x U; one can find a point
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wx(|e]*™!, |a|z) € Dy satisfying
1) Gx(la|*~ ! lalz, wi(lal*, ale)) = willal* !, jalz)

2) there exists a constant ky > 0 such that for any |a|*~! € I, |ajz!, |a|2® €
U, we have

lfwx(lel* ™ lode’ — wi(la|®™, laje?)]] < kole! ~ 22|,

(consequently, for any fixed o € Ig,wi(|a|““1, ||} is a continuous mapping
with respect to z € Uy).

3) For any natural number n there exist constants E,,, F, such that

holds for all (|«|*™|alz) € I x Uy, a # 0,-(consequent1y, we conclude that
lwt(Ja]®~, Jefe)]] = o]a|) as @ — 0, uniformly in = € Uy).

wx(la|*, |afz)

ol < Ba(1+ A+ [a])laf* ™ 4 Folof(vHe(n42)

PRrOOF. For fixed ¢ € [0,1], we set I(t) = tIy, D(t) = ¢D,. Then, any « €
I(t),w € D(t) can be written as « = ta',w = tw' with o/ € I, w' € D;. Now
let (|a]*~1, |ale) € I(t) x Uy, «=ta' and w!,w? € D(t), w? = tw', j = 1,2.
We have

1G2(jal* ™, lefz, w') — Ga(lal® ™, lafe, w?)|] < y{lal* [T} ! —w?||

a—1y;a A . j ! .
+(1 + IO:‘I l)i‘ |H (W,Zla’]xjvj + w 1) —_

i=1

A P .
- (W’waww) +
1

< {t*NITN + 2k1) + 2k2(2) Hw! ~ w?]|

where v = ||[IQy ]|, k1, @, b from Hypothesis 1, 2 and k,(t) = o(2r1t) satisfies

P
(A +1al) || K (m,2|atmjpf +w1) -

=1

(1 £ [ofe—1)b" > ladzivd +w |}
i

=1
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}im ko(t) = 0 according to }ini o(6) = 0. Therefore, setting
—U . — .

C(t) = Y{ M T + 2k1) + 2k2()},
we can see 'lim Cy(t) =0.

Further, for (|a|*!, |a|z) € I(t) X Ul,a =td',a' € I, and w € D(t),w =
tw',w' € Dy, we have
IG£(lel* 7, ez, w)||<{lcf|‘l T (leez | + M1l )
+2t°ky (jo’a| + ') + 2o (Dllo]l}
< (e’ 1* I ez ] + [lw'|] + 2k (o' 2] + [['l])
+ 2ka ().t} |w'|
- ST + 281 )(r 4 1) + 2ka(2) .2 ]

Setting Ca(t) = y{t*(|T|| + 2k1)(r + r1) 4 2k2(¥)tr1} we can see llm _(._l =0.
‘Consequently, we conclude that there exists tq € (0,1) such that

Calto) < 1
and
Cg (tu) S t(;'l"]_ .

Putting I; = toly, Dz = toDy, we deduce that for any (la|*7!,|alz) €
I, x Uy, the mapping G4 (|a|*~ -1 |a|a: ) is a contraction mapping and it maps
D, into itself. Applying the Banach Contraction Principle, we conclude that
G+(|a]®*™1, |alz,.) possesses a fixed point wy(|a|*™!, |a|z) in Dy, ie.,

G(le]* ™, lale, wi(lal® ™, lal2)) = willel*™, lalz).

This implies the first assertion of the lemma.
Now, let (|a|2 ™1, |a|2?), (|| 7Y, |a]2?) € L x Uy, a=tya', wi(lal®?, la|z?)
1o wg:(lq|“_1, lee|z?), 7= 1,2. We have '
llox(lal* ™, lode?) — wa(le* ™, Jale?)]
= [1G(jal*™, lalz?, wi(la]*™, lae?)) = G(lo]* ™, |of2? swa(jal* ™ |ale®))|
<RI = 22 + lhws(lal®™, lale?) - wa(lal*™, lala?)])

+ 268 (|2 — 22| |l b lalz') — wa(fe]* ™, =)

+ 2ka(to)(|2" — 2| + [hwslel*™, lafe!) ~ wx(lel* ™, ale®)|D}-
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Hence

x|l Jals’) — wille|* ™, Jalz?)|
’Ttg_l(”T” + 2k + ka(tn)) |$1
T 1=yt THITN + 2k1 + 2k2(0))

-— 2I
and we have proved assertion 2). The proof of assertion 3) proceeds exactly as
the one of [11], Lemma 2.

This completes the proof of the lemma.

Further, let A, {v!,...,v?} and {¥!,...,%?} be as above. We define the
mapping A: RP - R, A=(4,,...,4,) by
P N
Ar(z) =< T(> z0") —H, Y zjvf),0* > 2= (21,...,2,) € R?,
j=1

=1

k=1,...,p,(2.5)

and make the following hypothesis

HypPOTHESIS 3. There is a point ¥ € R?P and an open neighborhood U* of
not containing the origin in RP such that the topological degree deg( A, U*, 0) of

the mapping A with respect to U* and the origin 1s defined and different from
zero, '

Then we have

THEOREM 2.2. Under Hypotheses 1-3, (), 0) is a bifurcation point of the equation
(2.3). More precisely, to any given é > 0 there exists a neighborhood I of zero in
R such that for eacha € I, # 0, we can find 2% (o) = (:L'::lt(d), e x;t(a)) eU*
and a nontrivial solution (A%(a), v¥(a)) of the equation (2.3) with

O, S
MO = Ty’
and )
o) = 3 lafai(a)e’ +wa(lal*™, ol (@)

satisfying I/\i(a)'; /_\)[A < 6 and 0 < ||[vE()|| < 8, where w4 is from Lemma
2.1

ProoF. Let I,U;, D, beas above and let § > 0 be given. Using Lemma 2.1,
we conclude that there is a neighborhood I; of zero in R, I C Iy, such that
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for a € L,a # 0,|alz € Uy we can find a fixed point wx(|e|*”?,|az) of the
mapping G+(|e|*™, |elz,.). Tt follows

wi(laft™ lafe) = Qv (Elal P T(Y_ lafe;v’ + wa(lal*™ ole)

e ————i——— "o i+ wi(le]® L ol 7
- (1 + ‘al I)M ((1 1+ l-aia_l)b a; ICKI.’I?J T+ :I::(l l 1l I ))) .
Hence | |

Qy {T(wi(la|“”1, lafe)) — (A, wx(lel* 7, lale))

£ laf*7'T (Z.lalw,-vf ws(jal*™, lalm))

=1

- (1 }al“_l)M (W,Zlalxm +wzlef* ™, la]:c))) } =0.

j=1

Together with T (E’;__:] -Ialmjvj‘) - L (X, Y |a|mjvj) = 0, we deduce

Qv {T (Z la|z 07 + w(le*, lalx))

=1

Y P )
—L ((—1?‘2?;?)3’2 |a|z ;07 + +wi(jel* lal‘”))
_ =1 |

5 p | |
a2 S el 4 wallal* T fede) | =0
((H:lal Ty ; T )} (2.6)

Further, by choosing I C I if necessary we may assume A/(1£]a]* )’ € Aand
]X—(rﬂ;j‘i?:ﬁg?l <éandalU* C U foralla€ I,y 5, la|zv? € PxU(0,6) for
- all je|z € Uy and we also assume Dy C QxU(0,8). We proceed the proof exactly
_as the one of Theorem 1 in. [11] to conclude that there exists a neighborhood
I of zeroin R,I C I, such that for any o € I,a # 0, one can find mi(d) €
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U*, 2¥(e) = (z(a),.. ., zE(e)) € U* and

< T(w*(a)) - L (W‘;)g v*(a)) -

where
P

vi(e) = Y laleE (@)’ + wallal* ™!, lal*().

A combination of (2.6) and (2.7) gives
T(w*(a)) = L(3*(a),v*(a)) + M(A*(a, v*(a))

with

A
(1 £ [afe=1)?
It is clear that |AT(a) — A|p < § and 0 < [JvE(a)|| < § for all @ € I, « # 0.
This completes the proof of the theorem.
REMARK 2.3. Such a family (A¥(a),v*(a)),a € I,a # Orsatis'fying Theorem

2.2 is called a parameter family of nontrivial solution of the equation (2.3).

)\i(a) =

Theorem 2.2 shows that we can always find at least two different parameter

families of nontrivial solutions of (2.3).

REMARK 2.4. If there are two distinet points z',z7%2 € RP and two disjoint
neighborhoods Uy, US in RP of 7!, 72, respectively, satisfying Hypothesis 3 and
I’,Iz,(/\?:(a),v;h(a)), j = 1,2 exist by Theorem 2.2 corresponding to &', Uy
and z2,UJ, respectively, then vg:(af) # vg:(a) forall o € ' NI%a #0.

REMARK 2.5. In Theorem 2.2 we need no continuity of the mapping M(., u)
.with respect to A € A for any fixed v € D and no differentiability of the

mappings L, M. Theorem 2.2 can be applied to consider bifurcation points of -

the equation .
—Au — Au = h(A)|u]u on 2 C R"

“together with the Dirichlet boundary condition, where h is not continuous with
réspect to A € A and ¢ > 0. But, the other results in [1], [3], [9] and [11] cannot
be applied. '

Further, we obtain the following corollaries whose proofs are similar to the

ones of Corollaries 2 and 3 in [1].

oz
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COROLLARY 2.6. Let Hypotheses 1, 2 be satisfied and the mapping A defined in
(2.5) be a potential operator with potential h, which possesses a local minimum
and isolated critical point  # 0. Then the conclusions of Theorem 2.2 continue
to hold for some open neighborhood U* of the point T in RP.

COROLLARY 2.7. Let Hypotheses 1, 2 be satisfied. Let the mapping A defined
in (2.5) be Gétaux differentiable and let & € R?,T # 0, be such that

A(z) =0 (2.8)

and

et (Y ’
7—dt( ()>jk 1,..,p7!_-0. 29

Then the conclusions of Theorem 2.2 continue to hold for some open neighborhood
U* of the point ¥ in R?.

REMARK 2.8. The point Z satisfying (2.8) and (2.9) is called a regular solution
of the equation A(z) = 0. In case 7 satisfies (2.8) but does not satisfy (2.9) we
say" that % is a degenerate solution. The bifurcation problem of the equation
(2.3) in the degenerate case can also be investigated by the same ways as in
[12]. We do not study it here. '

Next, we consider the case when X is a simple characteristic value of the pair
(T, L) i.e. Ker(T'— L(},.)) = [v!] and Ker(T — L(},.))* = [']. We assume
that < T(v!),¥? ># 0 and make the hypothesis.

HYPOTHESIS 2°. Hypothesis 2 is satisfled with W replaced by m
for any fixed 8 € R

We can prove the following theorem which generalizes the well-known theorem ;
obtained by Crandall and Rabinowitz [3].

THEOREM 2.9. Let X, vl 1! be as above and let L, H and K satisfy Hypotheses
- 1, 2, respectively. Then (},0) is a bifurcation point of the equation (2.3). More
precisely, given § > 0 there exists a neighborhood I of zero in R such that for
each v € I,y # 0, one can find a point f¥(y) € R and a nontrzwal solution
(AE(7y), vE(7)) of the equation (2.3) with

X
(1 |y|s—18% (7))

ZE(y) =

and _
v¥(y)= tlyjv' + o(la]) asy — 0
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satisfying |\t (y) — A|a < & and 0 < |jot ()| < 6.

PrRoOOF. The proof of this theorem proceeds exactly as the one of Theorem 7
in [11], using the modification of Lemma 2.1. '

3. The main results for Hopf bifurcation

Let X be a real or complex Banach space with the dual X*. By X =
Con(R, X),(X* = Cor(R, X*}) we denote the spaces of 27w —periodic continuous
functions from R into X. By Y = Co([0,27], X),(}* = Co[0,27],X*)) we
denote the Banach spaces of continuous functions & : [0,27] — X such that
h{0) = 0. The topology in X and )Y is the usual sup-norm topology. The
pairing between elements in X and X* will be denoted by (,) and the parings
between elements in X’ and X'*, also in )/ and Y* will be denoted by the same
symbol <, > defined by

2w
<u,v>= (u(t), v(2))dt, (u,v) € X X A" or (u,v) € ¥ x V*.
0
The space X can be considered as a subspace of X'. In this section we

" consider Hopf bifurcation of the equation

du
dt

where D is a neighborhood of the origin in X, A is an open subset of a normed

+ T(u)+ LA u) + HAu)+ KA, u) =0, (Mu)€AxD  (3.10)

space. For any A € A, T, L(A,.) are linear continuous mappings from a dense set
of X into Y, H(A,.), K(},.) are nonlinear mappings with H(A,0) = K(A,0) =0
for all A € A. Let ¢ denote the complex number such that :2 = —1 and let
XA € A be such that linear mapping T + L(},.) is Fredholm and has iy, as
eigenvalues with nullity p and index zero, py # 0. Without loss of generality
we may assume pp = 1. In what follows we consider the existence of Hopf
bifurcation points of the equation (3.10) in the case when ki is an eigenvalue
of the linear mapping T + L(},.). We also assume that the mapping T + L(},.)
has no other eigenvalues of the form +in with n =0,2,....

Let v!,...v? be independent eigenvectors corresponding to eigenvalue ¢, i.e.,

T(v?)+ L\ v') =dv',j =1,...,p.

It then follows
Ker(T + L(},.) —iI) = [v!,... 7],



292 NGUYEN XUAN TAN

where I denotes the identity mapping: A simple calculation shows

Ker (;+T+Lu))=w%~AW

with ¢%#~1(¢) = Re (e~*v*) and ¢?¥(t) = Im(e~v¥),k =1,2,...,p.

Let _
Ker (T+L(%,) —i)* =,

Without loss of generality we may assume < ok 4 > =65, Jk=1,...,p
If then follows

Ker (jt + T+ LA, )) =[y',..., 9]
with $25-1(¢) = Re (e™%4%), 925 (t) = Im(e™"4*),k =1,... ,p.-We put

= [¥,..., 9],

Then X, has a complementary orthogonal subspace X3, i.e. X = Xp © A3.
By the Hahn-Banach Theorem we can find 2p functionals f L. ., f* on X and
2p elements z',...,22? in Y such that < o*, f7 >= & and < 2™, P" >=
6m,',,_k,j,m,n‘ =1,...,2p. We set

Yo =[e, .., 2]
M={yeV<yp*>=0, k=1...,2}

If then follows Y = )y @ 4. Let Py, Qx, Py, Qy be defined as in Section 2
with X,Y replaced by X,Y and p replaced by 2p respectively. It is clear that
-f—t + T+ L(},.) is a one to one mapping from A}, onto J;.

The problem of finding (1 & ¢)27~ periodic solutions of the equation (3 10)
will be done by finding 27- periodic solutions of the equation

(1 HT(w) + IO O+ HOW+HEOWE=0 (oA cRxAxD,

(3.11)
which has g close to zero and letting ¢ = (1 £ ¢)7. As in Section 2, the equation
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(3.11) is eQu‘ivaleni: to the following 2p + 1 equations
Q;v{ +(1ﬂ=9)(T+L(A U)‘l'H(f\ u) + KA u)} =0,

< E +(1% 9)(T(U) + L(A,u) + K(A, u)+ K\ u), 97 > = |
| _j=1,7...,2p_

. We assume that the mappings L, H and K satisfy Hypotheses 1 and 2,
respectively. In this section we shall give some sufficient conditions such that
(A, 0) is a Hopf bifurcation point of the equation (3.10).

As before, since any u € X can be writen as u = Zﬁil
e = (€1,...,€2p) € R?,w € X, we then conclude that to solve the system of
equations (3.12) we need to find A € A,e = (e1,...,63,) € R? and w € X

satisfying
d(zj-l EJ¢] tTw )

€;¢’ + w for some

pra— +(1¢9)(T§jej¢’+w)+L(]Z_je,¢?+w)
2p '
+H\ Y ei=1é +w) + K, z eid? +w))} =0,
j=1 j=1
d( P o€l + '
L ~ L )(T(JZ_;W’ + L), ;egcﬁ’ +w)

+H(A Ze3¢3+w)+K(f\ Eeg¢3+w)) ¥ >=0, k=1,..,2.

=1
We take I;,U; and D; C A as in Section 2 and define the ma.pplng Gy
I] XI] XU] XDl—i'XI by

Gi(g,a,s w) =
' od E Poeidl +w 2p '
- —1Qy { ( ;tJ ) +(ia:l: o +ap)T (ZEJQSJ +w)
. - =1

+ol (/\ Z€J¢3+w) +(1:{:a)(1:|:g)M ((133 )5,25356 +w)}

=1
' for (g, a,c,w) € I; x I x Ur x Dy,
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where II is the inverse of the mapping % + T + L{},.) from J; onto X; and
M = H + K. We have

LEMMA 3.1. Under Hypotheses 1, 2 there exists a neighborhoods Iy of zero
in R,I; C I, D, of the origin in X;,D2 C D, such that for any fixed a €
Lya # 0,(|al® |al®, lafz) € I x I, x Uy, & = (z1,...,%32p), one can find a
point wi(|e|®, |al®, |a|z) € Dy satisfying:

1) wa(lal®, o], [ofz) = Ga(lal®, ol lole, wallal?, [al*, loz))

2} There exists a constant kg > 0 dependmg on « such that fora € L,a #
0, |a|z?, |a|z? € Uy we have

llwa(fel®, |al®, |ale) = wllel®, ol lalz®)]] < kola’ — 7.

It follows that for any fixed e € Iy, wi(]el®,|al®, |a|) is a continuous
mapping with respect to z € Uy.

3) Let « € Lyya # 0, be fixed. For any natural number n there exists
constants E,, F, such that

wx(lef? lof* |a|2)
«

< E.(1+ |/_\I+|$D|a|a—] +Fn|ai(n+l)a_(n+2)

holds for all (|a|?, |a|®, |a|2) € ngngUl As a consequence, |jwx(|e|?, |a|*, la|z)|] =
o(la]) as a — 0.

PRrRoOOF. The proof of this lemma proceeds exactly as the one of Lemma 2.1.

Now, let A, ¢1,...,¢%P 9, ...,%%" be as above. We define the mapping
A: R*? — R, A = (A,...,Asp) by

2p )
Ax(z) =< H ANy owid |9t >, 3= (21,00, 225) € R,
=1 .

Ek=1,...,2p, (3.12)
and make

HYPOTHESIS 4. There is a point ¥ € R and an open neighborhood U* of Z
not containing the origin in R?? such that the topological degree, deg (A,U*,0),
of the mapping A with respect to U* and the origin is defined and different from
zero. ‘ ‘

We have
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THEOREM 3.2. Under Hypotheses 1, 2, 4, (:\,O) is a Hopf bifurcation point
of periodic solutions of the equation (3.10). More precisely, there exists a
neighborhood Iy of zero in R. For any o € Iy, # 0, one can find a point
z*(a) = (27 (a), ..., z5,(a)) € U* such that (o1(a), Ax(a), vi(a)), o € Iy, o
0, with :

p+(a) =% |a|®
5 _ X
) = AT app

vi(e) = lefeF(a)d’ +wa(la]® lof*, |ajzE(a))

i=1
satisfies the equation (3.10), p+(a) — 0, i(a) — Avi(o — 0 as a —
0,04(a) # 0 as o # 0, and us(alt)) = va(a) (m) is (1 + px(a))2m -

periodic , where w4 is from Lemma 3.1.

PROOF. Let I;,U;,w+ be from Lemma 3.1 and U* be from Hypothesis 4.

Without loss of generality we may assume aU* C U, holds for all o« € L.
We define the mapping E* : I, x U* — R?P E* = (Eli, ... ,Eg;;), by

( <EF+ || YT, el jéd + wa(lat, |al, lafe)+
F(1 2 |al)(1 2 o VH (pfopeyss S22y 2507 + 2alleltled o)) 4

j=

£, N 5 :
Bileor) =1 412 [od*)(1 £ lol®) el K (rrhmys S22, lale; ¢/ +
+ wi(lal?, [a]*, |ale) , $* > for o # 0,
L Ag(s), for a = 0.

By choosing I, C I, if necessary we may assume that E(ta,z) # 0 holds
for all @ € Ip,t € [0,1) and = € AU*. Indeed, by contrary we assume that
for any n there exist a, € I,,t, € [0,1} and z, € 8U* such that ap, — 0
and E:’:(tnan,azn) = (. Since QU™ is a compact set, therefore we may assume
Tn — 29 € OU™ and ayt, — 0. Using 3) of Lemma 3.1 we deduce E(0,zy) =0
or A(xp) = 0. This contradicts the definition of deg(A, U*, 0). Further, for any
fixed o € I, a # 0, we define the mapping ¢% : [0,1], U* — R?? by

¢5(t,2) = E*(ta,z), (t,a) €[0,1] x U*.

Hence, ££(t,z) # 0 for all ¢ € [0,1],z € HU* and then we have
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deg(E%(a,.),U*,0) = deg(¢*(1,.),U*,0)
7 = deg(fi(o, ')s U*s 0)
= deg(A, U*,0) # {0}.

It then follows that for any a € I, « # 0, there exists 2% («) € U* such that
E*(a, z%(a)) = 0. Further, the proof proceeds exactly as the one of Theorem
1 in [11]. This completes the proof of the theorem.

The proofs of the following corollaries are similar to the ones of Corollaries

2 and 3 in [11]. , '
COROLLARY 3.3. Let Hypotheses 1, 2, be satisfied and the mapping A defined
as in (3.12) be a potential operator with potential h, which possesses a local
minimum and isolated critical point T # 0. Then the conclusions of Theorem
3.2 continue to hold.

‘COROLLARY 3.4. Let Hypotheses 1, 2 be satisfied. In addition, assume that
there exists a point T € R*?,% # 0, such that A(Z) # 0 and

A,
det ( (:}:‘)) # 0.
Oz; k,j=1,..,2p

Thgn the conclusions of Theorem 3.2 continue to hold.

LEMMA 3.5. Under Hypotheses 1, 2 there exist neighborhoods I, of zero in
R, D, of the origin in X; such that for any fixed a € Iy, o # 0,(|a]*™1, ||, |a|z) €
LxIyxUy, z = (z1,...,%2,) € Uy, one can find a point wi(|e}*™, |a]*, |o]z) €

D, satistying 1) - 3) of Lemma 3.1 with (|a|*, |a|®, |a|z) replaced by (|a]*~1, |a]®,

|aefz).
PRroor. The proof of this lemma proceeds exactly as in Lemma 2.1.

Let A, ¢',...,¢%",%!,...4? and A be as above. We define the mapping
B*: R* — R*,B* = (Bf,...,B5), by

< dZ?i—l(ij)
- dt
for k =1,...,2p, and make

Bi(c) =7 ,PF > +Ax(2), 2 =(21,...,22p) € R?,

HYPOTHESIS 5. Hypothesis 4 is satisfied with A, %, U* replaced by B z* U**,
respectively,
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We have

THEOREM 3.6. Under hypotheses 1, 2, and 5, (,0) is a Hopf bifurcation point
of periodic solutions of the equation (3.10). More precisely, the conclusions of
Theorem 3.2 continue to hold with ‘

o+(o =+ |a|*?

A
) “TEaFy

and

vi(e) = Y lale} (@)’ +wa(lal" ™, ol Jole*())

j=1

ProoF. The proof of this theorem proceeds exactly as the one of Theorem 3.2
with E¥ replaced by J* = (Jli, e ,Jz'“;), where '

d( ?P z~¢i+w(1°|a—l;’fﬁla.la|=)
< (ZL']. + |a|) ( Z_r=1 7 - +

2P . ¢—1 a
+(E|of + |a|*)T (E zj¢f + 2ol ;!al ,l_alx))_

=1

Gy =] HOEROE el (i D¢t
| + w(l""a_l;'aI“:IaIx))

a .

F(L 2 |of?)(1 £ |al* el K (imr Tiki lale;oi+
+w(jal*1, lal®, a|z)) , $* > for a #£ 0,
( Bi(z), for a = 0.

This completes the proof of the theorem.

By the same methods as in the proofs of Corollaries 2, 3, in [11], we have
COROLLARY 3.7. Let Hypotheses 1, 2 be satisfied and let the mapping BT be
a potential operator with potential h¥ which possesses a local minimum and

isolated critical point Z # o. Then the conclusions of Theorem 3.6 continue to

hold

COROLLARY 3.8. Let Hypotheses 1, 2 be satisfied. In addition, assume that
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there exists a point T+ € R?P 3% +£0, such that Bi(ii) =0 and

+
det (‘93 k (a-:i)) #£0.
Oz; Fk=1,...,2p

Then the conclusions of Theorem 3.6 continue to hold.

LEMMA 3.9. Under Hypotheses 1, 2 there exists a neighborhoods I of zero in
R, D, of the origin in X such that for any fixed & € Lya#0,(Jaj ™ le*7 T, lalz)
€ LxIxUy,z = (z1,...,%2,) € Uy one can find a point wi(|e|*?, laje1, lale) €
D, satisfying 1) - 3) of Lemma 3.1 with (|a|*, [o*, je¢|2) replaced by (|a|*~1, la|*7},
lae|z).

PROOF. The proof of this lemma proceeds exactly as the one of Lemma 2.1.

Let X, ¢%,...,0%7, 90, .. ,%?? and « be as a,bdve., We define the mapping
c . R — R ,CE = (CE=(CE,....C5)), by

o
Cki(:v) =4+<T (Z:cjéj) A >4+ Aw(z), z=(21,.--,%2p) € R??,

and make

HyPOTHESIS 6. Hypothesis 4 is satisfied with o, Z,U” replaced by ¢*, % and
U**, respectively.

We have

THEOREM 3.10. Under Hypotheses 1, 2 and 6, (), 0) is a Hopf bifurcation point
of periodic solutions of the equation (3.10). More precisely, the conclusions of
Theorem 3.2 continue to hold with

ps(a) =  of*
o) o
@) = ey

and

2p .
va(@) = ol (@) + wa(lal* ™, ol* lale™ (@)

i=1

The proof of this theorem proceeds exactly as the one of Theorem 3.2 with
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- E* replaced by M* = (MZF,. .. ,M;;,), where

(< (Z1+]a*H)T (Eﬁ’;l ;¢ + “’*('““’_1’5"'“"1"“"”) +
+(1 & o)1 £ ol* D (rapemre, T2, a5+
4 (alelulol ™ lel)) o (1 4 o T)(1 £ [afe ).

ME(a,z) = ¢
lo =K ( Gy, T2 lada; ¢+
walal®, o, Jaja))  * >, for a 0,
L Cif(a), for o = 0.

This completes the proof of the theorem.

The proofs of the following corollaries are similar to the ones of Corollaries
2 and 3 in [11].

COROLLARY 3.11. Let Hypotheses 1, 2 be satisfied and the mapping C defined
as above be a potential operator with potential h*, which possesses a local

minimum and isolated critical point £ 3 0. Then the conclusions of Theorem
3.10 continue to hold.

COROLLARY 3.12. Let Hypotheses 1 and 2 be satisfied. In addition, assume
that there exists a point #+ € R?? 3% £ ( such that C*(z%) =0 and

det (%(fi)) 0.

k.j=1,.,2p
" Then the conclusions of the Theorem 3.10 continue to hold.

LEMMA 3.13. Under Hypotheses 1, 2 there exist neighborhoods I, of zero in
R, D, of the origin in X such that for any fixed @ € I, o # 0,(Ja®, |a®~1, |a|z) €
Iy X Iy x Us,z = (#1,...,22p) one can find a point wi(ja|?, |a|*~1,|e|z) € D
satisfying 1} - 3) of Lemma 3.1 with (|a|*, ||, |a|z) replaced by (Ja|?, |a}* 1, |a|x).

PROOF. The proof of this lemma proceeds exactly as the one of Lemma 3.1.
Next, let 5\,¢1,...,¢2P,¢1,...,¢2P and be « as above. We define the
mapping D* : R¥ — R? D* = (DF, ... ,Dg;), by

. 2P
Di(z) =F < L(X,Y_2;¢7),4* > +Ae(z), =z =(1,...,35) € R?,

i=1

for k=1,...,2p, and make
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HYPOTHESIS 7. Hypothesis 4 is satisfied with a, Z,U* replaced by D* 7% and
U**, respectively.

We have

THEOREM 3.14. Under Hypotheses 1, 2, and 7, (},0) is a Hopf bifurcation point
of periodic solutions of the equation (3.10). More precisely, the conclusions of
Theorem 3.2 continue to hold with

ex(a) ==|af*
le) e
O =Ax oy

and

va(@) = lefe(a)d +wi(lel, lal*, |afz)).
j=1

ProoF. The proof of this theorem proceeds exactly as the one of Theorem 3.2
with E* replaced by F* = (FZ,... Fi), where

¢ d ¢J+ w(|a]®,|o
< (F12 o) i —

+H(Ea + |a]|®)T (23_1 z¢7 + 2lelulsls l’lalx)) +

| (1% o)L £ fa]*)

Fron) = | H (rapghe T a5 + S bl |

| (1 Jao1)(1 & o) a]

B (o T2k lales#? + w(lal?, ol lade) ) 4% >,
for a # 0,

| | DE(2) ' - fora=0.

This completes the proof of the theorem.

lal

,IC!EII)

The following corollaries are proved by the same methods as the one of
Corollaries 2, 3 in [11].

COROLLARY 3.15. Let Hypotheses 1, 2 be satisﬁed and let the mapping D*
defined as above be a potential operator with potential h*, which possesses



BIFURCATION AND HOPF BIFURCATION 301

a local minimum and isolated critical point % # 0. Then the conclusions of
Theorem 3.10 continue to hold.

COROLLARY 3.16. Let Hypotheses 1, 2 be satisfied. In addition, assume that
there exists a point #* € sz’ ,Z* £ 0, such that

oD
det ( k(zt ) # 0.
a‘r.? ( ) k,j=1,....2p

Then the conclusions of Theorem 3.10 continue to hold,

REMARK 3.17. Similarly, we also make Remarks 2.3 - 2.8 in Section 2 for the

equation (3.10).

EXAMPLE 3.18. We consider the existence of Hopf bifurcation points of periodic

solutions of the equation

% +T(u) + AL(w) + H(A,u) + K(A,u) , (Au) € Ex R (3.13)
where
-1, -1, 0, 0 1, 0, 0, O
1, =1, 0, © 10, 1, 0, 0
7= 0, 0, -1, 1 ]’ L= 0, 0, 1, 0
0, 0, -1, -1 0, 0, 0, 1
1
: 1
H()\,U.)=)\(Z:uj)3 1 ’ u=(uls"':u4)1
1

and K satisfies Hypothesis 2.

A simple calculation shows that if A = 1, the mapping T + L has +i as
eigenvalues with multiplicity 2.

We have
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5 1
0 .
s 2 _ 1 1y 1 T I 0
CET T o | 4 2v2r | o 2v2r | ~1
0
1 1
If then follows,
cost —gint
1 —gsint 1 —cost
S B 2 _ 2
¢ =9 2v/2r | cost , P =Y = 2v2n | —sint
sint cost
sint cost
1 cost 1 —sint
3 _ g3 4 __ 44
¢ =9 2./27. | —sint , O =Y 2v/2r | —cost
cost —sint

One can easily see that

Df:(:c) =Fr + (:E] +$3) + (.’Bg -I-:E4) (.’.B] +$3)

b | =

Dék(m) =+ Ty — (z2 + 554)3 + (z1 + Es)z(l‘z + z4)

(21 + z3)* + (22 + 24)* (21 + 23)

B E

Di(e) =Fzs +

Di(e) =Fas -

Fleo Fleo Fleo Fleo

AN TN TN TN
b |

L NN

(z2 + 554)3 + (=1 + $3)2($2 + z4)

B

W=

Taking D* and 7F = #F = 0, #F = a5 = + (%)
’D"’(s’ci) =0 and .
oDt o
("—“amj (%)) =

a nonsingular matrix. Therefore, we apply Corollary 3.16, to conclude that

, we can easily verify

~

]

-

LB

-

H

DlePM|~
= O o O
Pt:}]:—lpwlw
oo = O

"

9

(1,0) is a Hopf bifurcation point of periodic solutions of the equation (3.13).
. 1 .

Anslogously, if we chose 3 = Zf = * (¥)* and L = ¥ = 0, we can also

prove that the conditions of Corollary 3.16 are satisfied. Consequently, using

Remark 2.4 for the equation (3.13), we deduce that there exist at least 8 distinct

parameter families of nontrivial periodic solutions of this equation.
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4. The degenerate cases of Hopf bifurcation

Let the mappings A, B*,C* and D% be as in Section 3. We begin this
section by making the following hypotheses.

HYPOTHESIS 8. There exists a'point Z € R? & # 0, such that A(Z) = 0 and

( 8'4"(3)) 0.
k,j=1,..2p

HypoTHESIS 9. Hypothesis 8 with # and A replaced by + and B*, respectively.

HyPOTHESIS 10. Hypothesis 8 with T and A replaced by 7+ and C*, respectivél_y.

HYPOTHESIS 11. Hypothesis 8 with & and A replaced by #* and D¥, respectively.

The case when one of the above hypotheses occurs is said to be a degenerate
case. In what follows we consider Hopf bifurcation points of the equation (3.10)
In degenerate cases, assuming that Hypotheses 1, 2 in Section 2 are satisfied.
We only investigate the case when Hypothesis 8 is fulfilled, the other cases
should be studied similarly.

Now, let
x5 ={z e v/ (Fr@) e =of =00
J

xgr:{xemp/(“’“(x)) o= } (€., &)

and

X! ={z€R?/<z,t'>= 0,7=1,...,r}
X{"={z€R?/ <z, >=0,7=1,...,r}

One can verify that R?? = X7 @ X] = X} @ X717, Further, let Pr, Q, be the
projections of R?? into X", X7, respectively. By D/ A(E) = A, .(Z), (G-
times), we denote the j-th derivative of the mapping A at the point #,j =
1,2,.... Let ¢ be the smallest natural number such that P,D°A(Z) # on X3
We deﬁne the mapping f: R" —» R", f = (f1,..., f2), b

fr@) =< DA@E) [ Y ;67 | €% >, t=(t,....,t,) €ER", k=1,...,7,(4.14)

j=1
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Analogously, we define the mappings g%, k¥, g% : R" — R, with A replaced by
B,C* and D%, respectively. _
' We make the followmg hypotheses on these ma.ppmgs

HyPOTHESIS 12. There exists apomt #* € R",t* = (#,...,t*) and a neighborhood
U* of t* in R” such that the topological degree, deg(f,U*,0), of f with respect
to U* and the origin in R" is deﬁned and different from zero.

HYPOTHESIS 13. Hypothesis 12 with t*,U* and f* replaced by t*%, U*+ and
g¥, respectively.

HYPOTHESIS 14. Hypothesis 12 with t*,U* and f* replaced by t*,U** and
h*, respectively.

HypoTHESIS 15. Hypothesis 12 with t*,U* and f* replaced by t** U*+ and
q:_t, respectively.

We have

THEOREM 4.1. Under Hypotheses 1, 2, 8 and 12, (X,0) is a Hopf bifurcation
point of periodic solutions of the equation (3.10). More precisely, to given
d > 0 with de < a — 1, there exists a neighborhood Iy of zero in R such that
for each a € I, o # 0, one can find t£(a) = (tF(a), . .. ,tE(a)) € U* such that

(o+(@), Ax(a), vi(a)) with

02(a) = & lof°

Y _
) TRy
and _ 2 | ' _
va(a) = Y lal(@x + Z |t (a)e])g* + ofla]) as Jaf — 0
k=1 '

satisfies the equation (3.10), gi(a) — 0, A(a) = A, va(a) — » 0 as a —

0, vi(a) # 0 for o # 0, and u._;:(a)(t) = vi(a) (1+gi(a)) isa(l+ gi(a)27r -
periodic.

PROOF. Let I,U; and wa be from Lemina 3.1. Without loss of generality we

may assume Z ¢ Uy, The proof of this theorem proceeds exactly as the one of
Theorem 1 in [12] with A replaced by A and C replaced by NE = (J\f LN 2:;:,)
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where
( 2 ' A & ]
<L fal*)lol ™M | Friemys L lalzjé + wallal®, ol of2)
J=

NE(a,z) =« _2p .
—H )\azquSJ 1¢k> y fora#o

=1
L 0 ' for @ = 0.

ProoF. This completes the proof of the theorem.

COROLLARY 4.2. Let Hypotheses 1, 2 and 8 be satisfied and ¢ be an odd
number. In addition, assume that f(t) # 0 for all t € R",|t| = 1. Then the
conclusions of Theorem 4.1 continue to hold for U* = {{ € R"/|{} < 1}.

PROOF. Since c is an odd number, it follows that the mapping f is an odd
mapping. The condition of the corollary implies f(t} # 0 for all ¢ € SU™*. So,
by the Borsuk Theorem (see, for example, [4, Theorem 4.1]}, the topological
degree deg(f,U*,0), of f with respect to U* and the origin in R” is defined and
different from zero. Consequently, Hypothesis 12 is also satisfied. Therefore, to
complete the proof of the corollary, it remains to apply Theorem 4.1.

COROLLARY 4.3. Let Hypotheses 1, 2 and 8 be satisfied. Let r = 1 and ¢ be
an odd number. Then the conclusions of Theorem 4.1 continue to hold.

PROOF. Sincer = 1, it follows f(t) = < D A(Z)(t £1),£*1 > = t° < DA(Z}(¢Y),
£*! > 3£ 0 for t € R,|t| = 1. Consequently, this corollary follows immediately
from Corollary 4.2.

THEOREM 4.4. Under Hypotheses 1, 2, 9 and 13, the same conclusions of
Theorem 4.1 continue to hold with p4, Ay replaced by

o+(a) = £la|*!

and

A

A+(0) = T T Tarp

respectively.

PROOF. The proof of this theorem proceeds exactly as the one of Theorem 1
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in [12] with A replaced by B* and C replaced by Z + = (TE,... ,I;;,), where
< (1 £ Jaf#)(1 £ Jelo )l =M ( iy Lot lode; ¢+
TE(a,7) = + wallol®, [, ladz) — HR, T3, 2587), 0% >, for a0
- o for « # O
Proor. This c.ompleters the proof of the theorem. |

The following corollaries are proved by the same ways as Corollaries 4.2, 4.3.

COROLLARY 4.5. Let Hypbth’eses 1, 2 and 9 satisfied and ¢ be an odd number.
In addition, assume that g*(t) # 0 for alit € R™,|t| = 1. Then the conclusions
of Theorem 4.4 continue to hold for U** = {¢ € R"/|¢] < 1}

COROLLARY 4.6. Let Hypotheses 1, 2 and 9 be satisfied. Let 7 = 1 and c be
an odd number. Then the conclusions of Theorem 4.4 continue to hold.

THEOREM 4.7. Under Hyptheses 1, 2, 10 and 14, the conclusions of Theorem
4.1 continue to hold with g+, Az replaced by : '

0x(0) =% oI
Nl e
) = E Ty

ProOOF. The proof of this theorem proceeds exactly as the one of Theorem 1
in [12] with A replaced by C * and C replaced by P* = (PE, ... ,’Pz:‘;,), where

( ' < 2p. .
< (1% |a*) (1 £ la*™la|™*M ((—I;ﬁ—-ﬁa 21 o ;07 +
=1

Pi , — - , ;
k()= +wi(jal*™ et falz)) — K (A, % 333'45’) pF >, fora#0
=

L 0 | for o = 0.

This completes the proof of the theorem.

The following. corollaries are proved by the same ways as Corollaries 4.2, 4.3,
respectively. ' ' '

COROLLARY 4.8. Let Hypotheses 1, 2 and 9 be satisfied and let ¢ be an odd

number. In addition, assume that h(t) # 0 for all t € R, [H =1. Then the
conclusions of Theorem 4.7 continue to hold for Ut = {¢ € R7/|¢] < 1}
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COROLLARY 4.9. Let Hypotheses 1, 2 and 1) be satisfied. Let r = 1 and ¢ be
an odd number. Then the conclusions of Theorem 4.7 continue to hold.

THEOREM 4.10. Under Hypotheses 1, 2, 11 and 15, the same conclusions of
Theorem 4.1 continue to hold with p1, Ay replaced by

ex(a) == |af*
Nafe) = A
R

PROOF. The proof of this theorem procceds exactly as the one of Theorem 1
in {12] with A replaced by D* and C replaced by Y+ = (y;b, ey yg;,), where

<(1+ Ialaﬂ-l)(l + |o*)a| ™0 M (m: 2321 |a|$j¢'j+
Vi(erz) =1 +wallal*, ol lafe) — KR, T2, 2;7), 9% >, for a #0
0 for o = 0.

ProoF. This completes the proof of the theorem.

The following corollaries are proved by the same ways as Corollaries 3.16,
4.3 respectively.

COROLLARY 4.11. Let Hypotheses 1, 2 and 11 be satisfied a:id let ¢ be an
odd number. In addition, assume ¢%(t) # 0 for all t € R",|t| = 1. Then the
conclusions of Theorem 4.10 continue to hold for U** = {¢ € R??/|¢| < 1}.

COROLLARY 4.12. Let Hypotheses 1, 2 and 10 be satisfied. Let r = 1 and ¢ be
an odd number. Then the conclusions of Theorem 4.7 continue to hold.

To illustrate the above results we now consider some special cases of the
equation (3.10). Let T,L,K, X, ¢',...,4% and o!,... %2P be as above. Let
g:AXX xX — Rbea mapping such that for any fixed A € A, g(},.,.) is
a bilinear form. Let L, be a linear mapping from X into X. In addition, we
assurme

1) < T(¢7),9* >= crdjk,

_2) < g(A, c_;Sj, VL1 (™), Y™ >= akbnb;rbmn, Gmbn # 0,7, k,m,n=1,...,2p,
g(X, ¢™,¢™) =a,, >0forallm=1,...,2p.
We investigate Hopf bifurcation points of the equation

ifl};- +T('U)+ L(/\,U)‘I‘Q(A,U,U)Ll('u) +K(A,’U) = 0, ()\’u) c A x D.

We ha\_re:
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THEOREM 4.13. If the above conditions are satisfied, then (X,0) is a Hopf
bifurcation point of periodic solutions of the equation (4.15). More precisely,
the same conclusions of Theorem 4.7 continue to hold for a = 3.

ProoOF. In this case we have

Ar(z) =< g(’\ ijﬁbj ijqﬁj)Ll(ZquﬁJ) d’k

=1
2p
= Y =iz, < g(A,esJ,qq)L(w),e/»" >
59:d=1 ’
2p
= Zajbk:n?mk,

=1

and hence
2p
Cf(:c) = tepxp + (—1)":“1 Zajbkm?a:k.
j=1
We assume 3= > 0. Consider the mapping Ct and take 7+ = (zF,... ,:Efi,l:p)
with 5% = 4,/z% 5% = ... = 75, = 0. Then C*(3%) = 0 and
_ —20¢1,0,..., 0...00
+ caby—boe 0
C= oc, (%)) = 0, 32 ,.-.00
\ Oz; 0, 0 . 0
0 B 02251‘*‘62261
b} by -
If ¢;by # bjey forall j =2,... ,2p, the matrix C is nonsingular. In this case, we
apply Corollary 3.12 to complete the proof of the theorem.
Now, we suppose that ¢;1b = bj1c; = - = bJ:rcl for r € {2,3,...,2p}.

Without loss of generality we may assume j; = 2p—r+I, [=1,...,r. Further,
we can easily see that

Ry=R;={z € R?/Cz =0} =[¢,...,{"]
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with

Q 2
' 0
zit=|11],...,¢ =1]0

0
o/ i/

(1isin the 2p'— r + j—th row of £9). We have

Dpet(z®h = (_2clh1, Qﬁ?bl;—clbz)hz,. . Cap-rb1 ;‘ bap—rer hpe1,0,... ,o)
1 1

2p 2p

2p
Z2alb :r] h, h;

Jj=1

This 1mp11es Py DCH(zt)h = PU.DzC"‘(wi)h = 0 for all h € Ry. By a simple
calculation we can verify

D3C*(#%)h =(6a1bi A + 2apbyhah3 + - + 2a2,b°h2h3
2@152h2h% -4 6&262}1,3 + 2a3b3h2h§ +--- 4+ 2a2pbzh2h§p, cuny

2a4 bzphgph? + -4+ 2a2p_1 bzpthh%p_l + Sazpbgphgp).
Hence,

hﬂﬂ—<D%ﬂfﬂZ)ﬁﬂﬁ

j=1
"'2b2p r+ktk(3‘12p r+ktk+ Z dop— 1“+Jt_7)
J=1,j#k

We now claim that h*(t) # 0 for all t € R", |t| = 1. By contrary, assume that
there exists £ € R", [f| = 1 and h*(£) = 0. This yields

. r
_ 2
2bsp—rykte(Bazp_rerty + ZGZP-—TH i=0
==
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for all k=1,...,r. Since |#| = 1, we deduce that fore some k =1,...,r,

r :
(3a’2p—r+7cf% + Z azP—r'F;ff?) =0
iA=k

a contradiction. Consequently,

deg(ht,U,0) £ 0 for U = {t € R"/|t| < 1}.

Applying Corollary 4.8, we obtain the proof of the theorem. '

ExAMPLE 4.14. Let T, L and K be asin Exarﬁple 3.18; and g{u,v) = (u,v), I =
u, A = 1. We have A

< g6, 800, (7,07 > = < (¢, N8> i

Hence (1,0) is a Hopf bifurcation point of the equation

Z_“J,T(U)HL(U)JF,\Q(U wyu + KO, u) =0,(A\u) € RX R".
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