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MINIMIZING THE PRODUCT
OF TWO DISCRETE CONVEX FUNCTIONS

' NGUYEN DUC NGHIA*, DO DUY CHINH* AND PHAM CANH DUONG**

Abstract. A method for solving a discrete convex multiplicative programming
(referred to as DCMP) is proposed. It is shown that DCMP can be solved .
by parametric discrete convex minimization. The method is specialized for the
problem of minimizing the product of two discrete separable convex functions
over a general supermatroid. The results of computational experiments for the
last method are reported. An approximation algorithm is also propesed for
solving the problem in a more general case.

1. Introduction

In recent years discrete nonlinear optimization problems have attracted the
attention of many authors [1-8]. Minimizing a discrete nonconvex function is
a very difficult problem. Even for the simplést case, when the function to be
minimized is supermodular over a lattice, the problem is shown to be N P-hard
[2]. Soit is of particular interest to find special classes among those problems for
which efficient solution methods may be developed. The present paper concerns
the discrete minimization of the product of two convex positive functions with
separable variables. The product of two convex separable functions might not be
convex. Such a function may have multiple local minimizers. In [1] and, recently,
in {3] the continuous case of this problems has been investigated. For its solution
the authors proposed efficient algorithms, based on the use of linear parametric
programming technique. Using the same approach in [5] a polynomial algorithm
has been developed for the problem of finding a spanning tree with minimal
product on a two-weighted graph.

In this paper we propose an efficient algorithm for finding the global mini-
mum of the product of two convex positive separable functions over a general su-
permatroid. The paper consists of 5 sections. After the introduction, in Section
2 we show that the problem of minimizing the product of two positive functions
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over an arbitrary discrete set can be solved by parametric programming tech-
nique. Section 3 is devoted to the déscription of an algorithm for solving discrete
. programming problems on a general supermatroid. An efficient a.lgonthm for
solving the problem of minimizing the product of two discrete separable convex
functions over general supermatroids is described in Section 4 together with the
computational experiments made on test problems. In the last section, Section
5, an approximation method is : developed for solving the problem of minimizing
the product of two discrete-convex functions over a discrete set.

2. Minimizing the product of two positive functions
over an arbitrary discrete set

Let us consider the following discrete optimization problem:

min{f(z).g(z) : = €D}, ¢y

where f(z),g(x) are positive and finite over a finite discrete set D. To solve the _
problem (1), consider the next parametric problem P(t): '

p(t) = min{f(z) + tg(s) : ©€D}, (2)
where ¢ is a nonnega.twe real parameter.

- First, we establish some interesting and 1mp0rtant propertles of the objective
curve p(t). '

LEMMA 1. The function ¢(t) is nondecreasing, continuous, concave and piece-
Wise linear on [0, + co) with finite number N of breaking points

0<t; <tg <+ <ty < +oo.

PROOF. Because of the finiteness of the set D, the function ¢(t) is piecewise
linear. Furthermore, for arbitrary 0 < @ <1, ¥ >0,t">0, ﬁom the finiteness
of the functlons f(z), g(z) it follows that :

olot! + (1 — a)t") = min{ (&) + (at' + (1 - a)f"-)g(:&:) : c€D}
= min{a(f(z) + ¢ (=) + (1 — )}(f(z) + " g(z)) sz € D}
> min{a(f(z) + g(z)) : €D}
+min{(1 - 0)(f(z) + " 9(a)) : =€ D} = ap(t) +(1 - a)p(t")
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This inequality shows that (%) is concave.

Since g(z) is finite, it is obvious that (%) is continuous at the point ¢ = Q.
The concavity of ¢(t)then ensures its continuity at other points of D.

The fact that ¢(t) is nondecreasing follows from the positivity of g(z) over
D. The lemma is then proved.

LEMMA 2. If ¥ is an optimal solution of problem P(t) for t € [te—1, tx], where
1<k <N +1,t =0,tyy) = +oo, then g(z¥) > g(zF+1), f(z) < f(=z*H).

PROOF. From the definition of t5,z* and 1 < k < N +1 it follows that f(z*)+
tg(z*) = f(aF)+trg(z®) +(E—te)g(2*) 2 Fe*H)+trg(a™+) +(E 11 )g(z*H1),
for tz <t < 41 Since both z* and z**! are optimal solutions of problem P(#),
we have

F(&F) + i g(z*) = FFFY) + i g(a*Fh),

It means that the first inequality of the lemma holds. Together with the last
equality it immediately implies the second inequality in the statement of the
lemma. .

Denote the set of all optimal solutions of problem P(t) by =(t).

LEMMA 3. There exists a point ¥ € m(ty), which is an optimal solution for

the following problem
min{g(z) : = € D} _ 3)

PROOF. Let z' be an optimal solution of problem (3). Assﬁ.mizig the contrary,
we have N
g(z') < g{z), forevery z € n(ty). (4)

Let =V € =(t) for any fixed ¢ such that ¢t > t5. Hence zV € 7(ty)and 2V € n(t)
for every t > ty. Together with (4) this implies g(z') < g(z"). Furthermore,
since f(z) is finite, there exists a value ' > tx such that f(z') + #' g(z') <
F(aN)+t"g(zN). This contradicts the assumption that =V isan optimal solution
to problem P(#').

The following theorem shows the relationship between problem (1) and P(¢).

THEOREM 1. Let 2! be an optimal solution of the problem (2) for every t €
[ti=1,ti),t = 1,..., N+1 (tg = O;tn41 = +00). Then the optimal solution z* '
of the problem (1) can be determined as : '

¥ = argmin{f(mi) : g(a:"), :2=1,...,N+1}
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PROOF. Since f(z), g(z) are positive for every x € D, we have

[F(2) +t(2)]\ _ :
n(mT) =24f(a) s(a)l

Hence, we have

mm{f(a:) -g(z)} = % 1ﬁ{%O{M§M}}2
1
~ 3

{m>in{mmxe D [{2’) + tg(z)] 12
Yoo [F(=') +tg(=")] |12
== { 7 1}

4 1<i<N+1 ¢ 1<t<t‘

> min {f(z') g(z")} = f(z*) - g(z*).

1<i<N41

The theorem is proved.

REMARK 1. In the case when D is a polytope, f(z), g(z) are linear, the result
was given in [1]; in other cases, when D is the set of integer points of a convex
integer polytope, f(z), g(z) are linear; D is a polytope and f(z), g(z) are convex
functions, the similar results was given in [4,5] and, later, in [2].

Theorem 1 shows that the problem of minimizing the product of two positive
finite functions over an arbitrary bounded discrete set can be solved by solving
the parametric problem (2) (namely by finding all its optimal solutions for every
nonnegative parameter t).

Thus, to solve the problem (1) we have to study the parametrlc problem (2).
It is clear that if the functions f(z), g(x) are linear and D is an integer polytope,
problem (2) can be solved by ordinary parametric linear programming. But,
when the functions f(z) and g(z) are nonlinear, the problem (2) is rarely
studied. To our knowledge, in recent years, only the following simple problem -
has been studied in [9]: | -

mm{Z(fJ(":J ) +tgi(z))}: Z“’J

uj 5 rj <wj; x; are integers;j =1,...,n},

where f;(z;), g;(z;) are convex functions.
In [7] we have proposed an algorithm for solving problem (2) with D being
a general supermatroid and f(x), g(x) being separable convex. This algorithm
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may be used for solving problem (1) after some modifications based on Theorem
1. -

3. Description of the algorithm for solving the convex
parametric discrete problem over a general supermatroid

Let us recall the definition of a general supermatroid [8]. A general superma-
troid is a finite subset D of Z™ with the following property: For arbitrary two
poiuts z,y € D there exists a sequence of points z = z!,z%,... 2" (@¥+1 =
y , such that z* € D,r(zf,z"*!) = L,z + (2™ — &') € O(z,1) N D,i =
1,...,7(x,y); where O(z,1) denotes the unit ball in Z" with the metric

r(z,y) = %{Z s — il + 13 (25 =y}
=1 J=1

One of the typical examples of such sets is the general superma;troid of the tree
type which is defined as follows

n
Dlg}] ={z € 2" : ¢ < Zai;‘fﬂj <b;, t=1,...,m},
i=1 '
where ¢, b € Z™, (a;;) is a (m, n)-matrix of the tree type, i.e., a binary matrix
such that the sets of indices of nonzero elements of any pair of its rows have the
following property: they have an empty intersection or one of them contains

the other.

Now, we determine the set of feasible directions from a point = of D:
fes(z,D)={s : c+s €D, s € {eiy—ei e — e}, 4,7 =1,...,n, i # j},
where e;(e;) is the i(7)-th identity vector. Denote

A’f(z) = f(z + ) — f();
A%(@) = g(o +5) - 9(a)
- F(z,t) = f(z) + tg(=);
fes_(z,D) = {s : s € fes(v,D), A’g(z) < 0}
fes.,.-(x, D) = {s : s € fes(x, D), A%g{zx) > 0};

A*f(z)

t('s’x) = -A’g(:n)’
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Let D be a general supermatroid, f(z), g(z) be convex separable functions.
Then the point z! will be an optimal solution to problem P(t) if and only if the
following optimality criterion is satisfied [8]

A*F(z',t) > 0 for evefy s € fes(z%, D). (5)
For an optimal s‘-ol.ﬁtion zt of [;rc}blem P(t) let denote -
ti(zh) =t(sT,z) = min{t(s,z') : #(s,3%) 21,5 € fes_(z',D)};
t‘_(:ct) =#(s~,z) = max{t(s,z') : t(s,2") < ;s € fesy (z',D)}.
We adopt the convention that max{#} = 0 and min{#} = +oo .

THEOREM 2. Let D be a general supermatro:d f(:x:) and g(x) be separable
convex functions. Then

a) z! is an optimal solution of P(t) for every t € [t_(_xt), to(zh);
b) Ift_(z!) > 0 then z! =z + s~ is an optimal solution ofP(t_(aﬁt));
c) Ifty(z') < +oo then z, = z' +sT is an optimal solution of P(t.(z%)).

PROOF. a) Since z! is an optimal solution of problem P(¢), from the optimality
criterion (5) we get - :
A*F(z!,1) 2 0, Vs € fes(z", D). L (®

Together with the definition of ¢, (=) this yields A°F(z*,#') 20, s € fes_(z*,
D),# € [t,t4(z')]. Combining A®g(z*) = 0, Vs € fes(z*,D) \ fes_(z*,D) with
(6) we obtain : .

A*F(z, 1) = AF(a', 1) + (¢ —t) - A%(a") 2 0,

for arbitrary ¥ € [t,t4(z?)], s € fes(z?, D). Thereforé, the optimality criterion
(5) is satisfied for the solution z* and the parameter #'. This means that z* is
an optimal solution of the problem P(t') for every t' € {t,t4(z")].

Further, from the definition of ¢_(z*) and (6) it follows that

A*F(z',t') 2 0, Vs € fesy(z',D), t' € [t-(z),1]

A®g(z*) <0  fors € fes(z*,D) \ fes; (z*, D).
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Taking (6) into account we obtain
A*F(zht") = A*F(zbt) + (' —t) - A%g(z?) > 0,

for every t' € [t_(z'),%], Vs € fes(z*,D). This means that the optimality
criterion (5) is satisfied for the solution z* and the parameter ¢'. :
As a consequence, z' is an optimal solution of problem P(t') for every ¢ €

[t-(="),2]. -
b) If _(z*) > 0, then from the definition of #(s~, z!) we get
| - oy —AT ()
6y _
0= Koy
or

AT f(a') +t-(a") - A g(a!) = 0.

This yields F(z',t-(z")) = F(z',t_(2')). However, according to part a), z!
" 1s an optimal solution to problem P(i_(z*)). Therefore, z! is also its optimal
solution.

c) may be proved by similar arguments.

Since g(z') is a t-gradient of function F(z!,¢) at ¢ we shall also refer
to this as a gradient of the optimal solution z'. It is obvious that if ¢ is
not a breaking point of the function ¢(¢), then all the optimal solutions of
problem P(f) should have the same gradient which is equal to g(:c.t). The
definition of ¥, 2! ,f1(2%),¢_(z") yields that the gradient of the solution b,
(zL) is smaller (greater) than the gradient of the solution z!. Therefore the
points ¢4 (z*),t_(2*) are breaking points of the function ¢(¢). This implies the
following corollary.

CoroLLARY 1. The points t1(2'),t_(x!) given by Theorem 2 are breaking
points of the function (). '

Combining Theorem 2 and Corollary 1 we obtain the following algorithm for
finding out all breaking points #;,... ,ty of the function ©(%) and, consequently,
all optimal solutions z,... ,z%¥+! of problem P(2).

ALGORITHM 1. |

Initialization. After solving P(0) we obtain the dptimal solution z!. Set
k-——-l,pzl,tg =0.
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k-iteration:

1. A%g(z%) =0, s€ fes(z*, D), all breaking points #1,... ,tp—1 of function
o(t) and, respectively, the optimal sclutions z},...,zP are found. Stop.
Else calculate t(z*) = t(st,2F) = min{t(s,z¥): t(s,z*) > tr—1, s €
fes_(z*,D)} and set t; := to(zF), 2% = zF 4 5T,

9. Tt < +oo and tg # tg1, set 2?1 = g p=p+ 1.

3. If { < +00, then go to (k -+ 1)-iteration else Stop.

THEOREM 3. Algorithm 1 stops after a finite number of iterations, yielding all
breaking points t1,... ytp—1 of the objective curve @(t) and, as a consequence,
all the optimal solutions =',... ,2? of the problem P(t).

ProoF. Theorem 2 and Corollary 1 imply that ¢1,... ,t,-1 are breaking points
for the function ¢(t) and 2!,... , 2P arc optimal solutions of problem P(t). We
need only to show the finiteness of the proposed algorithm. Indeed, assuming
the contrary yields the existence of a number ko such that for every k > ko, tx =
¢1_1. This produces an infinite sequence of optimal solutions {z*} with different
gradients (from the definitions of z*+1 and #; it’s easily seen that the gradient of
2%+1 must be smaller than that of z* for every k > ko). The uniqueness of the
gradient of +* then follows from the infiniteness of D, which is a contradiction.
The proof of the theorem is complete.

‘We note that the Algorithm 1 requires solving the problem of minimizing
- convex function over a general supermatroid only once (problem P(0}). The
last problem can be solved efficiently by the greedy algorithm proposed in [8].

4. The Algorithm for solving the problem of minimizing
the product of two positive separable convex functions
over a general supermatroid. Compnutational experiments

Let us consider problem (1) in the case when D is a general supermatroid
and f(z), g(x) are positive separable convex functions over D. A special case of
this problem when f(z) and g(z) are linear was investigated in [5]. In this work
a polynomial algorithm with running time O(m? log(log n)) has been proposed
for solving the problem of finding a spanning tree with a minimal product on
the two-weighted graph having n vertices and m arcs.

Combining Theorem 1 and Algorithm 1 we obtain- the following algorithm
for solving the considered problem. '
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ALGORITHM 2.

Initialization. Solve P(0). Denote by z! the obtained optimal solution. Set
k=1,tg =0,z* = 2. '
k—iteration:
1. ¥ A°g(z*) > 0,5 € fes(z*, D) , the solution z* is an optimal solution of the
problem (1), Stop. Else calculate

t4(2¥) = t(sT, 2*) = min{i(s,2*) : #(s,2*) = tg_1,s € fes_(z¥, D)},

and sett =, (zF), 2% .= 2F 4 ot
2. If tx < 400 and #; # tr—1, then set

2 1= argmin{ f(s*).g(%), f(2*1) - g(a*H1)).
3. I ix < +o0, then go to (k + 1)-iteration else Stop.

Using Theorem 1 and Theorem 2 it is not difficult to prove the following

theorem.,_

- THEOREM 3. The solution z* given by the above described algorithm is an
optimal solution of the problem (1).

The implementation of the described algorithm requires the use of an al-
gorithm available for solving the minimization problem of separable convex
function over a general supermatroids. The last problem can be efficiently
solved by the greedy algorithm proposed in [8]. Note also that we have to solve
this problem (problem P({0)) only once. The above algorithm was coded in
PASCAL and ran on a IBM PC AT 80286. It has been successfully used to
solve the following problem |

Table 1. Computational results

n 10 10 10 16 15 15 20 20 20 25 25 25
m 5 10 15 10 15 20 10 15 20 10 25 30

(*) 23 27 17 8 96 78 274 289 386 962 714 549

(**y 41 23 13 102 86 50 240 290 266 673 337 280
(***%y 17 13 10 31 27 24 43 54 42 68 62 63

(*) Average time used in Stage 1 (solving P(0)) (in sec.)
(**) Average time used in Stage 2 (solving the parametric Problem) (in sec.)
(***) Average number of the breaking points
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f(z).g(z) — min,

Tt
b,-gZa;jija,', 1=1,...,m,
z; 20, integer, j=1,...,n,

where f(z) and g(z) are separable convex quadratic nonnegative functions over

the feasible set, A = {ai;} is a matrix of the tree type; ai,b; €2, 1=1,...,m.
| The elements of the matrix A and vectors a, b, are randomly generated in
the interval [0,300]. For each size, ten problems were tested. To solve P(0) we
have used the greedy algorithm from [8].

The computational results show that the average computational time for
solving the parametric problem is often not greater than that one required for
problem P(0). Moreover, the ratio between them is decreasing with the increase
of the number of its variables. We also note that the number of breaking points
of the problem under consideration approximately equals twice the number of

its variables.

5. Minimizing the product of two positive discrete convex functions

~ Let us consider problem (1) in the case when D is a set of integer points of a

bounded convex set in R® and f(z), g(z) are positive discrete-convex functions.

First, we recall that a function f(z) is called a discrete-convex function on
Z7™ if all its se‘cdnd’ order gradients |

AN f(z) = A F(2)) = Af{Aif(2))
= f(z +ei+ej)— flz+e)— flz+e) + f(z)

are nonnegative,

An important example for the discrete-convex function is the restriction to-
Z™ of a separable convex function on R™.

Some main properties of discrete-convex functions are established in the
following theorem | '

THEOREM 4. [7] Given a function f(=) defined over Z", the following state-
ments are equivalent:

1) f(z) is discrete-convex on Z% ;
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2) A;f(x) is nondecreasing on ZF ;
3) f(y) — fz) 2 Xien(zi — 1) - Aif(2) + Xienn(@i — i) - Aif(z Vy ~ ),

where N'={i : z; >y}, N"={i : yi > z:};

4) Itz >y, then f(y) - f(2) > X0, (yi — w:)Aif(z:).

Property 2) is similar to the monotone property of the derivative of a convex
differentiable function on R™. It should be used for constructing approximate
solutions as well as for estimating its quality in the discrete-convex programming
by.a similar way as it has been done in the convex programming,

Now let us introduce an order on D as follows

z <y if and only if m,-'g yi, t=1,...,n.
We call a neighbourhood of a point z° € D (and denote by O(z?)) the set:
0®)={z : z€D,z2<z® >or > 3:2 =},

From theorem 4 (statements 2. and 3.) we immediately obtain the following

COROLLARY 2. A point 2° € D is a minimizer of a discrete-convex function in
O(z") if and only if it is its minimizer in 0'(z°,1) equipped with the metric

: no
r(z,y) = ) lei — il
i=1

A point z° € D is called a local minimum of f(z) over D if f(z%) < f(z),
for every z € O(2%,1)ND. It is obvious that 0'(2°,1) ¢ O(z®1). Hence,
from Corollary 2 it follows that a local minimum may be considered as a good
approximate solution.

It 15 not difficult to show that a necessary and sufficient condition for a local
minimum z° €D of f(z) is |

A*F(z%) >0, Vs e fes(z”,D).
‘By an argument analogous to that used for the proof of Theorem 2 we obtain

the following theorem

THEOREM 5. Let z' be a local minimum of problem P(t) (for fixed t > 0).
Then z* is a local minimum of problem P(t') for every t' € [t—_(z?),t4+(z%)].

Set

S={w: w:—-iiggg,xED, s € fes(z,D)};
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and

0 < wo < minf|w’ —w'| : v #w", w',w" € S}.
Using Theorems 1 and 5 we develop an a’pproximafiori algorithm for solving
problem (1) in the mentioned above case.

ALGORITHM 3.

Initialization. Choose any approximation solution 2° €D, set k=1, >t* =
0,z* ==°. '
k-iteration: . : :
1. Solve P(t) with t = t*+1 4 wo by the algorithm of [8] with starting solution.
20 (¢511) = z**1, we obtain a local minimum z*. Calculate t* = ty(z*) (zF
is a local miinimum P(t) for every t € [t¥1, t¥]), then set z* = arg min{ f(z*)
o(2%), F(&*).9(=*)}. |
2. I tHz*) = +o0,
then algorithm terminates and gives z* as an approximation solution; else
go to (k + 1)-iteration.

The finiteness of Algorithm 3 is implied from the finiteness of the feasible
set D and the fact that [fes(z,D)| < n? +n , for every z € D. In addition, the
definition of t4(z*) and wq shows that the number of iterations required by
Algorithm 3 is bounded by (|51 + 1).

" It is obvious that when f and g are both linear functions then |S| < ’—‘(—%—t—l—)
We then obtain ' '

COROLLARY 3. The number of iterations required by Algorithm 3 in the case
when f, g are linear never exceeds (n+ 1)(n +2)/2. '

We note that an obvious shortcoming of Algorithm 3 is that it doesn’t allow
us to estimate the quality of the obtained approximate solutions. To overcome
this shortcoming we have developed an ¢-approximation algorithm for solving
combinatorial multiplicative programming problems. It will be reported in a

subsequent paper.
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