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FIRING SEQUENCES AND PROCESSES OF PETRI NETS

. DANG VAN HUNG* AND TRAN VAN DUNG"*

" Abstract. We show how an equivalence relation on the set of firing sequences
of a general net can be defined so that equivalent sequences have the same
set of processes. For a special class of nets, we establish a characterization of
equivalence classes on firing sequences which define the same partial orders on
transition occurrences as those defined by the processes. With every n-safe net
we associate a 1-safe net which has, in a certain sense, the sarme set of processes as
the initial net. For some classes of nets we obtain some kind of regular properties
for the set of processes.

1. Introduction

- There are two widely used ways for describing the behaviour of a net by its
firing sequences and by its processes. Relationships between these two notions
have been investigated in [2, 6, 7, 11].

For 1-safe Petri nets, Mazurkiewicz’s traces are equivalent to the processes
presented in (8, 2]. From the set of firing sequences and an equivalence relation
derived from the structure of a 1l-safe net it is easy to determine all of its
processes. But this can not be done for general nets as shown in [2]. There
E. Best introduced an equivalence relation based on the dynamic behaviour of
nets and analyzed the relationship between firing sequences and processes. In
general it is hard to find a nice relation between firing sequences and processes.
In this paper we try to give answers to the following questions:

¢ How can we define an equivalence relation on the set of transitions of a
general net so that the elements of an equivalence class have the same corres-
ponding sets of processes? ' '

¢ For which nets can we construct the set of processes from the set of firing
sequences and the knowledge on the structure of the net?

Some earlier terminology and results of [1, 2, 3, 4, 6, 7, 9, 10] will be recalled

in Section 2. In Section 3 we define a semi-commutation on transitions which
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is based only on the structure of net. Then we show that the corresponding
equivalence relation on the set of firing sequences meets the requirement of the
first question. Furthermore, we prove that when the parallel occurrences of the
same transition are not allowed, there exists a reduced set of firing sequences
such that two of its elements are equivalent if and only if they define the same
set of processes.

For the general case, the sets of processes corresponding to different equi- -
valence classes can overlap Hence we cannot get a nice relationship between
firing sequences ; and processes. We W1ll introduce a class of nets in which there
is a global observation for every process of net. A net of this class is called -
a globally observable net. We show that for such nets the set of equivalence
classes generated by the above mentioned reduced set of firing sequences and
the set of processes define the same partial orders of transition occurrences.

In Section 4 we consider the behaviour of n-safe nets. We present a method
to construct a l-safe net from a given n-safe net so that the 1-safe net has, in
a’'certain sense, the same behaviour as the n-safe net. From this and the fact
that the set of firing sequences of a 1-safe net is regular; we deduce a regular
characterization of the set of processes of an n-safe net. This correspondence is
bijective if in the n-safe net no transition oceurs concurrently with itself. For
the globally observable nets the regularity of the set of firing sequences implies
the regularity of the set of processes in the sense that there exists a regular trace
language which is equivalent to the set of processes as labelled partial orders.

2 ' Basic definitions and riotions
In this sectlon we recall some termlnology a,nd results

DEFINITION 2.1, _ - o

() A triple (S, T, F) is anet iff S and T are disjoint sets, F' C (SxT)UH(TxS)
and T C dom(F)Ucod(F'). Therelation F is interpreted as a function: F(z,y) =
1< (z,y) e F.

(ii) & (S T, F, My) is a system net (or Petri net) iff (S, T, F) is a net and
Mg: S — N is a marking, where N is the set of positive integers.

(iii) A net N = (B, E, F) is an occurrence net iff ¥s € S: |*s|<1. A, |s'[§.l
and F* (the transitive closure of F) is acyclic. '

Here we use the notations:
*z = {y € SUT | (y,z) € F} and =* —{yESUTl(J:,y)EF}



" FIRING SEQUENCES AND PROCESES OF PETRI NETS 221

DEFINITION 2.2. Let N = (B, E, F) be an occurrence net.

(1) We define two sets li, co C (BUE) x (BUE) by
(g,y)elies(z<yVy<zVz=y).
(2,9) € co & ((z,y) ¢ W) V2 =y).

(ii)) 1 € BU E is a li-set iff Vz,y €l: (z,¥) € li.

(iii} ¢ € BUE is a co-set iff Vz,y € c: (z,y) € co.

(iv) The interval between two co-sets ¢y, ¢; is defined by:

1,2l ={z€ BUE |3z €c; Fy€ey: s <2<yl
(v) A net N is discrete with respect to c iff
V€ BUE 3n € N:Vli-sets I: [[c,z]Nl | <nA|[z,e]n]] < n.

DEFINITION 2.3. Let £ = (5,T, F) be a net, M a marking and ¢, € T.

(1) M enables  iff Vs € S: F(s,#)<M(s).

(ii) M' is produced from M by the firing of ¢ iff M enables t and Vs € S:
M'(s) = M(s) — F(s,t) + F(t,s). In that case, we write M[t> M’.

(iii) M enables concurrently {¢; | 1 < ¢ < k} iff Vs € - Zle F(s,t) <
M(s).

DEFINITION 2.4. Let £ = (S, T, F, Mp) be a system net.

(1) o = Myt My. . .t;M; ... is a firing sequence of D iff Vi > 1: M;_;[t;> M.
Sometime one may use the reduced form of o: 0 = t;t5.. .4;... and My[¢;.. ;>
M;. The marking M; is called a reachable marking from Mj.

(i} The set of all finite and infinite firing sequences of ¥ is denoted by F(X).

(iii) [Mp> will denote the set of all reachable markings of the net T from
the initial marking Mp.

(iv) ¥ is a l-safe iff VM € [My>,Vs € S M({s)<1.

'(v) £ is an n-safe iff 3n € N such that YM ¢ {Mg>,Vs €5 M(s)<n.

(vi) ¥ is a self-concurrency free iff V¢ € T and VM € [My>: {t,t} are not
enabled concurrently at M.

DEFINITION 2.5. Let & = (5, T, F, My) be a system net, N = (B, E,F') an
occurrence net and p a mapping: BUE—SUT. The pair (N, p) is a process of
Zaff |

(i) p(B) C S,p(E) CT.

(ii) Min(N) is a B-cut of N, i.e., a maximal co-set consisting of elements
of B. '

(iii) N is discrete with respect to Min(N).

(iv) Ve € E,s € S: F(s,p(e)) = |p~1(s)N%¢| A F(p(e), s) = |e*np~1(s)}.
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(v) Vs € §: My(s) = |p~1(s)NMin(N)|.

From the practical point of view we only consider the countable systexﬁ
nets that are degree-finite (i.e., Yz € B U E: z° and *z are finite sets) and
have finite markings. For a process 7 = (B, E,F,p) of a sys_tém net, we call
O = (E, <, p) the labelled partial ordering derived from 7, where <, = F*|g.
The basic. relationship between processes and firing sequences presented in [3] -
is based on the following construction. '

CONSTRUCTION 2.6. Let ¥ = (S, T, F, M) be asystem net and o = Myt1 M. ..
be a firing sequence of L. A set n(o) of processes is associated to o as follows.
We construct labelled occurrence nets (Ni,p:) = (Bi, Ei, F;,pi), where.i € N
and p;: B;UE; — SUT, by a recursive pfocedure: -

Define Ey = Fp = @ and B, containing, for each s € 5, My(s) distinct
conditions b with pg(b) = s. Suppose (Ni,p;) has been a.lready constructed.
For each s € *t;41 we choose a condition b(s) € Maz(N;)Np; (s) Then we
add a new event e with p;y1(e) = 2i31. Also for each s € #,, we add a new
condition ¥ = '(s) with p;41(§') = s such that (e,¥') € Fiy, for all s € 5.
For z,y € B;UE; we define pi11(z) = pi(z),(z,y) € Fiy1 © (z,y) € Fy.

For o = Mpyt,...t, M, the procedure stops at ¢ = n, and we put 7 = (N, p) €
n(o) with N = N, and p = p,. If ¢ is infinite, we put 7 = (UB;, UE;, UF;,
Up;) € m(o). '

The following theorem is taken from (4].

‘THEOREM 2.7. Let £ be a system net that is degree-ﬁmte with a finite initial
- marking. Then .

| (1) For each firing sequence g of &, 71'(0) is a set of processes of L.

(ii) For each process w of ¥ there exists a ﬁrmg sequence o such that 7 €

m(a). .

DEFINITION 2.8. Let m = (B, By, Fi,pi)yi = 1,2 be processes of a systemn net
¥.. We define 7, = 3 iff there is a bijection 8: E;—»E; such that Ve, e;,e; € Ey:
((p2(e) = pa(B(e)) A (e1 <1 €2 & Bler) <z B(e2))), where <;= F}F.

For a system net ¥, let P(X) denote the set of proces'ses_ of .

THEOREM 2.9. Let ¥ be a system net, 7 = (B, E, F,p) be a process of ¥ and
let o = t1t,... be a sequence of transitions of ¥.. Then o is a firing sequence of
T and m € m{0) if and only if there exists a bijection : E—{1,2,...} such that
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Ve, e1,e2 € E: ((p(e) =1tp(e)) A(er <x e2>B(e1) < Bles)))
PRrOOF. It immediately follows from 2.10 and the proof of 2.10 in [2].

DEFINITION 2.10. Let T be a process of a system net &. We denote the Lin-set
of 7 by _
Lin(r) = {0 | ¢ is a firing sequence of & and 7 € 7(c)}.

A semi-commutative system SC =<A4, R> is a semi-Thue system, where A
is a finite set alphabet and R is a set of rules of the form ab—ba with a,b € A and
a # b. If all rules in R are symmetrical, then we say <4, R> is a commutative
system. For a semi-commutative system SC =<A, R> let Rg denote the set of
symmetrical rules of R, i.e.

Rg = {ab—ba | ab—ba € R A ba—ab € R).

We say <A, Rs> is the commutative system derived from <A,R>. We
write z— gy for z,y € A* if ¢ = z,abry,y = xbaz, and ab—ba € R. The
reflexive and transitive closure — r is denoted by —%. A semi-trace generated
by a string z will be defined as a set of all words derived from z by rules of R
and denoted by [z>p, ie., [z>p= {y € A* | 2—%y).

We define an equivalence relation associated with a commutative system
<A,Rg>: z=y iff 2—%_ y. Equivalence class is denoted by [:c] Rs and will
be called a trace.

Let us fix some semi-commutative system < A, R>. Unless there is no
confusion, we omit the subscripts R, Rg for semi-traces and traces. A semi-

~commutative monoid over <A, R> is a triple (M, 0, {e}), where M = {[z>]

z € A"}, [z>oly>= [z.y>. We denote a free partial commutative monoid over
<A, Rg> by (Mg, o, {€}), where Ms = {[z] | z € A*} and [z] o [¢] = [z.y].

The following lemma is obvious from the above mentioned notations (see

[6,10]).
LEMMA 2.11. ‘[u>= [v><= [u] = [v].

DEFINITION 2.12. Let w = ajqas...a, € A*. Set

O(w) = {(a,k) | @ € alph(w),k €N, 1 < k < fwiq }
We define an ordering <,, on O(w) as follows: (a, k)<q(a',m) iff Jua: w €
wa'T* with |ua'|, = m and Jva:- ua' € vaT* with |va|, = k and aa’—d'a ¢ R.
For <,= (<q)*, the labelled partial ordering derived from ¢ is denoted by
0, = (0(0), <4, Ib), where Ib((a,n)) = a,for all a € A, and all n € N.
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Let us consider the following orde'rings on M and Mg between semitraces
and traces of the same length:
[a>< B> ff [ex>C[8>,ie. B a.
[a] <[B] iff [a><[B>,ie B—*a.

LEMMA 2.13. (see [6]). Let w,w' € A*. Then |
> < [w><= (0(w) = O(w') A <y'C Su)-

3. Semi-commutation and equivalence relation on firing sequences

As shown by E. Best [2], from the "independence relation” [2, 3] on transi-
tions one cannot in general derived an equivalence relation on firing sequences
such that each equivalence class corresponds exactly to one process. 7

In this section we introduce a semi-commutation on transitions of a net.
Then we give another notion of the equivalence on firing sequences in order to
find a finer rélationship between processes and firing sequences. We show that
the "independence relation” which is derived from a. semi-commutation based
on the structure of nets can generate an equivalence relation on firing sequences
in which two equivalent sequences have the same set of processes. When the
parallel occurrences of the same transition are not allowed and there is a global
observation for every process, the set of equivalence classes genera,ted- by those
global observations can replace the set of processes.

Firstly we want to extend the definition of finite semi-traces and traces
to infinite semi-traces and traces. Let SC =<A, R> be a semi-commutative
system and AY = 4* U A*°.

DEFINITION-3.1. Let z,y € A¥. Then z —* y iff V prefix u of y Jv prefix of z-
and w € A* such that: v —* uw. We define and denote semi-traces and traces
corresponding by
[z>={y€ AY |z =¥y}, [zs] ={y € A¥ |z >¥ y Ay —* z}.
and derive the labelled partial ordering (O(z), <., Ib) from z € A¥ as follows:
O(z) = UO(u) and <;=U <, for all prefixes u of z.

From Definition 3.1 and Lemma 2.13 it immediately follows

LEMMA 3.2. Let z,y € A¥. Then
i)z -y iff O(y) C O(z)and <; C <,
(i) [e>=[y> iff [«] = [y]. |
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DEFINITION 3.3. Let & = (S, T, F, My) be a system net. The semi-commuta-
tive system derived from ¥ is SC(X) =<T, B>, where
R={tt'>t"t |[t*N*t=0At # ).
Rs = {tt'=t't | t* Nt =t"N*t =B At # ')
For a system net T we é,lways take the labelled partial ordering (O,, <,, Ib)
from a firing sequence ¢, and we deal with semi-traces and traces in this derlved
semi-commutative system SC(X).

- The next theorem shows that our definition meets the above mentioned
requirements.

THEOREM 3.4. Let ¥ be a sjrstem net and 01,0, be firing sequences of ¥.. If
o1 = 03 then n(o1) = n(o2).
PROOF. See [7].

The following example shows that the converse of 3.4 is not true.

EXAMPLE 3.5. Let ¥ be a system net given in Fig. 1. ‘

s q r-
O————0O—>F :
Fig. 1

zxy # zyz, but 7(rzy) = n(zyz) contains unique process shown in Fig, 2.

r

>0

Fig. 2

DEFINITION 3.6. Let & = (S, T;F) be a net and let ¢ € T*. A word o is
strict with the transition ¢ € alph(o) iff for all prefixes v of o which has the
form vy = B, there exists an injective mapping 7: Maz(8) N *t — S such that
7(t') = s with (¢',s) € F and (s,t) € F. In this case, we say that Maz(B) is
consistent with the transition ¢.

A word o € T is strict if ¢ is strict with every transition ¢ € alph(o).
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PROPOSITION 3.7. Let & be a self-concurrency free system net and o €F(X).
Then o is strict iff there exists a process m = (B, E, F'? p) of X such that
(E;‘Svr;p) = (O(O’),Sa,lb) l

ProoF. (<) Clearly, thé-injeétive mapping 7 should be chosen corresponding
to the relation F' of process .’

(=) By the Construction 2.6 and the self-concurrency freeness of I (when
we construct a process 7 associated to firing sequence o by adding some new
event p~!(¢) corresponding to some transition t) we use the injective mapping
7 of Definition 3.5 for connecting maximal conditions of current process with
this event. So (O(¢), <4,10) C (E,<x,p). The converse inclusion is cbvious
by Theorem 2.9. Hence (E,<.,p) = (0O(s),<,,1b). When o is infinite, the
proof follows from the relation (UE;,U <.,,Up;) = (UO(s;),U <,,,1b), where
7 = Um,m = (E;, B;, F{,p;) and o; is the prefix of ¢ with (E;, <n,,p:) =
(O(a:), <oy, 10). .

Under the assumption of Proposition 3.7 the process = is called globally
observable, and the corresponding semi-trace [o> is its global observation. We
define the set of strict semi-traces and the set of strict traces on firing sequences
corresponding by

SS(X) :={[e>] o €F(T) and o is strict }.
ST(X):= {[o] | ¢ €F(Z) and o is strict }.

By 2.11 and 3.2 the sets SS(Z) and ST(Z) have the same representatives.

Now we give a sufficient condition for the converse of Theorem 3.4.

CORROLARY 3.8. Let 01,0, be strict firing sequences of self-concurrency free
system net Y. and 7(oy) = n{02). Then o1 = o3.

PROOF. There exist processes 7,72 € 7(o1) = w(oq) such that

(E1, SmysP1) = (0(01), oy, ) and (B, <y p2) = (0(02), oy ).
So Lin(m) = [0y >,Lin(m) = [0 >. Since m; € w(0;) and m € 7(0y),
oy € [01> and o1 € [02>. Hence o, = ay.

DEFINITION 3.9. A self-concurrency free system net X is globally observable iff
all of its processes are globally observable. -

THEOREM 3.10. Let ¥ be a globally observable system net. Then the mappings
mg and Lin are order-preserving bijections between the set SS(X) of strict semi-

. traces on firing sequences of ¥ and the set of ~s-equivalence classes on processes
of X, Le.
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53(Z) & P(Z)/~,
where mo([o>) = {7 | = € n(c) A (O(0), <,, Ib) = (E, <mP)}-

PROOF. From the above presented results 2.8, 3.4, 3.7 and 3.8 we need only
to show that if Lin(r) = [0>, then (O(0), <o:1b) = (E,<4,p). In this case;
the word ¢ is strict by Proposition 3.7. From the self-concurrency freeness of
% for m = (B, E, F',p) with Lin(7) = [o> there is a unique. bijection name:
E — O(o) such that p(e) = Ib(name(e)). So we can identify the set of events
of the process 7 and the set O(s). Hence, by 2.9 and since Lin(r) = [o> we
get (0(0), <o, 1b) = (B, <4, p). | | |

By Theorem 3.10, strict semi-traces on firing sequences can replace processes
of globally observable nets. Since for 1-safe nets semi-commutation and com-
mutation coincide and since 1-safe nets are globally observable. Theorem 3.10
extends the results on the relationship between traces and processes of 1-safe
nets in [2,3,8].

EXAMPLE 3.11. Let ¥ be the system net given in Fig. 3. It is easy to see that

% is globally observable.
A :
v z :I :
x

Fig. 3

The set. of strict semi-traces is _

{lz>, [y>, [zy>, [22>, [y2>, [zzy>, [yzz>,[zzyz>, [yzez>).
As labelled partial ordered sets, they are isomorphic to the corresponding
subprocesses of the two processes shown in Fig. 4.

4. Regular property of the set of processes

In this section we consider the relationship between firing sequences and
processes by distinguishing the individualities of several tokens in the same
place. This relationship can be expressed by a 1-safe system net constructed
from a given n-safe system net, which has, in a certain sense, the same set
of processes as the original net. Combining with the results in [2, 3] we get a _
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L

O—Ttk———O~—Lxk
. o

.o(b

8

Fig. 4

regular characterization of the set of processes of the original net. When we deal
with some classes of nets as self-concurrency free n-safe or globally observable
nets, then the regularity of the set of firing sequences implies the regularity of
the set of processes as labelled partial orderings. derived from the representatives

of regular trace language.

CONSTRUCTION 4.1. Let & = (5, T, F, My) be an n-safe system net with k(s) =
maz{M(s) | VM € [Mp>} < n for every place s € S. Define a 1-safe system
net ' = (&', T, F', M}) as follows:
() s’ = Uses{s1,51,- -1 8k(s) Sl(s)}'n
(i) T' = U{(t, {sis) | s€*tUt*})|tET A i(s) < K(s) Ai(s)eN},
(iii) For s; € §',(t,B) e T". - .
(si,(t, B)) € F' iff si€B A s€°t,
((t,B),s;)e F' iff s;eB Aset?,
(s,,(t,B)) e F' iff s;€B A s€t®As ¢ *t,
((t,B),s})e F' ff s;€B A s€'tAs ¢te,
(iv) Mi(si)=1 ff Mo(s)>0 A ¢< My(s),
Mi(sy=1 if My(si)=0,
M (p) = 0 for the other cases of p.

By this construction each place s with maximal number of tokens k in X is
multiplied into k places in &' indexed by 1,2,..., k. Each transition ¢ in X is
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multiplied into transitions in &' in order to distinguish token flows. There is an
arc from (to) s; to (from) a transition in ' corresponding to the transition ¢ in
¥ iff there is an arc from (to) s to (from) t in 3. The places s are introduced
to ensure the 1-safeness of 5. '

By deﬁmtlon, ¥isal- sa.fe countable and degree—ﬁmte net.

EXAMPLE 4.2. Let us consider a 2-safe system net ¥ given in Fig. 1. The
associated 1-safe system net ¥’ is shown in Fig. 5.

Sl = - . qq
-\ [xispad) LAY
5 D | i
b {s2. m})
(< {spad) - 92 .
B N O
x.{sz,qz}] T, by.{r.93)
5'2 = -
Fig. 5

Let I: &' — X be defined as I((¢, B)) = ¢, {(s;) = s, {(s}} = "undefined”.

For each process m = (By, E1, Fi,p1) of ', we define h{r) = (Bs, E2, F2,p2),
where By = By \ {b | p1(b) = si}, Bz = E1, Fy = Fi|B,xE\UE xBsy P2 =
lopilB,uE, -

PROPOSITION 4.3. Let ¥ be an n-safe system net and X' the associated 1-safe
system net with the mapping h: P(¥') — P(E) Then

(i} h is a surjective mapping.

(ii) h is bijection iff % is a self-concurrency free net.

ProOF. (i) has been proved by using Constructions 2.6 and 4.2 in [7].

(ii) By (i) and Theorem 2.9 there exists, for every process = € P(X), a firing
sequence o’ of X’ such that Lin(m) = l({c” | ¢” = ¢'}). So there are two
firing sequences v',v” of T’ such that +' #Z v” and I(¥') = I(%”) if and only
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if there exist z,y,y € T and (¢, B),(t,B") € T' for which o' = z(t, B)y,
4" = z(t,B")y' and B # B'. Thus, {t,t} are enabled at a reachable marking
M: Myli(z)> M, i.e., T is not a self-concurrency free net, a contradiction.

Let ¥ be an n-safe system net. The associated system net ¥’ is a 1-safe
system net. There is an one-to-one corresponding between processes and =-
equivalence classes on firing sequences of X'. Here we notice that the relation =
defined in 3.3 restricted to 1-safe system nets is exactly the relation introduced
by Mazukiewicz [8]. The set of =-equivalence classes of %', as well-known,
forms a regular trace language which can be recognized by a finite asynchronous
automaton (see [13]). By 4.3 we get the set of processes--of Y, from the trace
language on firing sequences of X'. This can be formulated formally by the
following theorem.

THEOREM 4.4. Let & = (S, T, F, My) be a self-concurrency free n-safe system
net. Then there exist a commutative system (A, R); a mapping I: A — T and
a prefix closed regular trace language L over <A,R> with order-preserving
bijection ¢: L — P(%)/~ between the set of labelled partial orderings derived
from traces of L and the set of labelled partial orderings derived from processes
of ¥ such that

$lo') =7 = (E,B,F',p) & (O(0"),<or, 10 lb) = (E, < P)-

In [6] the regularity of the set of maximal traces is studied in connection
with the regularity of the set of firing sequences. Here we investigate regular
properties of the set of strict traces on firing sequences.

THEOREM 4.5. Let T be a self-concurrency free system net. If F(X) is a regular
language, then ST(X) is a regular trace language.

PROOF. Suppose a finite asynchronous automaton A = (@, T, 8, ¢°, F') recogni-
zes the trace language [F(X)], where :
o Q=(@Q1,...,@,) with Q;is a finite set for 1 <: <n.
o If Jis a subset of {1,...,n}, we denote by Qs the product [] @;, andif ¢is
an element of @), qs will be the element of Qs consisting ot; i}{e components
of ¢ having their index in J. ' '
I. T— 2{1,2,... ,n}'
- For each letter # there is a corresponding mapping 6;: Qry — Qrq)-
The transition function 6: Q x T — Q is defined as follows: ¢' = 6(q,1) is
the unique state ¢’ such that g7,y = 6:(dr(¢), and Vj ¢ I(t), q; = ¢;-
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o F is a subset of Q, the set of final states, and ¢° is an element of @, the
initial stafe.

‘Because the class of all recognizable trace languages is closed under inter-
section, it is sufficient to prove that the set STY(Z) = {[o] | ¢ € F(T) and
o is strict with the transition t € T} is a regular trace language. Then so is
ST(Z) = ST(Z)- |

Now we construct a finite asynchronous automaton ..A; =(Q',T,¢, qv F )
that recognizes ST3(Z) for the transition t € T as follows:

Q =(Q4,...,Q)and Q) =Q; fori ¢ I, , Q. = (Q;,2TV ")) for i € I,.

¢ =(q%,...,q%) with ¢ =g? fori ¢ I; and g7 = (g},0) for i € I..

For ¢! = ¢i we denote first(q!) = ¢ and last(q}) ="undefined” and for
gt = (q;, H) with H C T U {A}, first(q}) = ¢; and last(q;) = H.

We define the set of final states F' and the state function &' by

F'={(q},...,q¢>) | (first(q}),..., first(q,)) € F and Vi € I, last{q}) #
{A}}. |
For a transition a € T we set 6'(q},...,¢5,6) = (¢1”7,...,¢") where
(first(q™),-.. , first(q,”)) = 8(first(q)), ... , first(q),), a). The second com-
ponent last(g;”) for i € I, is defined by
(1) last(¢:") =last(q}) ifa#tandeae* Nt =40
(i1) last(q:”) = last(g)\ {p |0 N*a# 0} U{a} Ha#t a*N*t#0and
last(d!) # {A).
(iil) last(q;") =@ ifa=t¢, last(q}) # {A} and last(q}) is consistent with t.
(iv) last(q;) = {A} for the other cases, i.e., if last(¢}) = {A} orif ¢ = and

last(qg!) is not consistent with ¢.

The element A is introduced to indicate that a state containing a component
with this element corresponds to some firing sequence which is not consistent
with ¢. It is easy to verify that the constructed finite asynchronous automaton
A} recognizes the trace language STy (Z).

By Theorems 3.10 and 4.5, the regularity of the set of firing sequences for a
globally observable net implies the regularity of the set of its processes.

For general nets, E.Ochmanski [9], Hung and Knuth [6] suggested the set
of maximal semi-traces for representing their concurrent behaviour. From the
results presented in this paper we would like to propose the set of strict semi-
traces on firing sequences as some domain [12] or labelled partial orderings (7]
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for representing concurrent behaviour of some classes of nets. This paper is the

extended version of [7].
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