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TRINH ANH NGOC AND DANG DUC TRONG
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1. Introduction

In this paper we consider an analytical model for the calculation of the
velocity distribution in a viscoplastic rod of finite length L undergoing an impact
on an elastic obstacle. The rod is assumed to translate along its longitudinal
axis and to strike against an elastic obstacle in the normal direction. We also
assume that the material is incompressible and that the phenomenon is one-
dimensional. This model can thus be described as that of the impact of a rod
on an elastic spring,.

The deformation of the rod takes place according to Bingham’s law

. ou™
- M@x*

where o* is the stress, o the yield stress, ¢ the coefficient of viscosity and u*

o*(z*,t*) + oy (z*,t%), if |o*| > oy, (1.1)

the velocity in the z-direction.

Whe'n' the impact takes place, the rod is divided into two parts separated by
z* = s*(t*). All the points in the region s*(#*) < 2* < L have the same u*(t*).
The functions u*(¢*) and s*(¢*) are related by the following equation

du* Go
a = pL— s ()

(1.2)

where p is the density of the rod ((1.2) is the. equation of motion for the rigid
part); in the viscoplastic region 0 < z* < s*(t*), the velocity u*(z*,t*) satisfies

the equation
du*  JPu*
P = Hge (1.3)
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Moreover, at the interface between the two regions, the stress reaches the yield

value, one has, by (1.1)
- Ou*

oz*

Since the obstacle is an elastic spring, the normal impact pressure on the end

(*(E), 1) =0. (1.4)

of impact, according to Hooke’s law, is proportional to the displacement of the

obstacle
' t* s
ox(0,t*) = —k_*[j w*(0,7)dr + ao], if [ u*(0,7)dr + a0 <0
0 0

where a;(U,t*) is the normal impact pressure on the end of impact, k* the
rigidity of spring, do the initial position of the end of impact, the quantity
f; w*(0, 7)dr +ag is the change in lenght of the spring (if f[: u*(0,7)dr + a0 <
0). '

It is physically obvious that ap < 0. The problem will be consideréd_ only in
the time interval of the impact, that is

" t* ! T e :
f u*(0,7)dr +ap L 0for 0 < th<T (1.5)
0. | o

and (1.5) can be written
L e :
(0,7 = k* [ [ (0, 7)dr + aO:\ . (18
0 S

Introducing the dimensionless variables
| 2 =3*/L, 't'=t*/T,-
w(z,t) = u*(Lz, THT/L, s(t) = s*(TH)/L, (17)
- o(z,t)= o*(Lz, Tt)/ o0
and using the following notations

pL? ooT k*L o :
= — = = = - 1.
uT’ w Q=71 (1.8)

we obtain, after some simple compﬁta.tions,. the dimensionless system
uy(z,t) = —éuu(:c,t) for 0 <z < s(t),0<t<T, (1.9)

du 7 S
EE(S@’” = R(1-s@®)’ o @19
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ug(s(t),t) = 0, | (1.11)
- ug(0,8) = 5{1 +Q U; u(0,7)dr + a] } | (1.12)
where T" = T*/T. |
In view of (1.12), the condition (1.5) becomes
| u(0,6) -85 <0, 0<t<T. *)

Assuming continuity of the solution and of all its derivatives up to the boundary
and letting z T s(¢) in (1.9), we obtain (using(1.10), (1.11))

S

u(s(2),1) = RO — @)’ (1.13)
S
uzz(s(t), 1) = T=s@)" (1.14)
We assume given the initial values
u(z,0) = ¢(z), 0 <z < b, (1.15)
s(0)=b 0<b<1. (1.16)

To make (1.11), (1.12) and (1.14) consistent, we must require that ¢(z) is C?
on {0, b) and satisfies '

#'(0) = S(L+ Qa), ¢'(5) =0, ¢"(}) = T (1.17)

Note that the present problem (1.9)-(1.16) is related to the one posed by
Barenblatt and Ishlinskii in 1962, on the impact of a viscoplastic rod against a
fixed rigid obstacle (see [1]). In 1975 A. Fasano and M. Primicerio [2] considered |
the same problem with the velocity at the end of impact not jumping to zero
as in [1], but going monotonically to zero according to a given function. In our
problem, the above boundary condition is replaced by a pressure load depending

on the displacement of the end of impact. For simplicity we assume that b > 0.
The case b = 0 will be studied elsewhere. |

The remainder of the paper is organized as follows. In section 2, we reformu-
late the problem as a system of integral equations. Section 3 is devoted to the
problem of existence and uniqueness. In the final section we give a numerical
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example.

2. Integral equation formulation

We shall reformulate the problem as a system of integral equations. That
can be solved by successive approximation, using the contraction principle.
"~ Put v = u;. The equations and the conditions for v can be derived easily
from the equations and the conditions for u by differentiation. It can be shown
that v satisfies

0(3,1) = Fveslz, 1) (2.1)
(s(t)8) = F (22)
vels(t), 1) = —> 3(2) (2.3)
o(z,0) = =¢"(z) % y(a), 24
v2(0,¢) = SQ [/: v(0, 7)dr + »(0)] , (2.5)

| Y(b) = W{?ﬁ’ $'(0) = SQp(0). (2.6)

Assume for now that s(t) is C! on (0,T") and that ¢(z) is C* on (0, ). Once
v(z,t) is found by solving the system (2.1)-(2.6), we can calculate u(z,t) from
the formula

we =R [ [ oln)dnde +u(0,0) (2.7)
0 s(t)
Let k = RY/2. We define the Green’s functions

vk [ K(z-€)
K(z,t;¢,7) = N exp l 4(t——r)] ;
G(z, 4 ¢,7) = K(z,t;€,7) — K(z,t;,—¢€, 1),

N(z,t;&,7) = K(z, 4, €, 7) + K(z,t; €, 1),

(2.8)

for0<z<s(t), 0<é<s(r), 0<7 <t

Thus, let v(£,7), s(T) be a solution of the system (2.1)-(2.6) with (z,?)
replaced by (€, 7). Integrating the following identity

(N'Ug - NEU)E - kz(NU)T =. 0 (29)
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over the region {(£,7) : 0 < ¢ < s(1), € £ 7 < t—¢}, applying Green’s formula
and letting ¢ — 07, we obtain

b t
oeit) = [ HONG 16,0~ 5 [ (N, t0,r)ar

1 [t
+ﬁ/0 v (s(1), T)N(z, t; s(7), 7)dr

¢
- % vo(T)Ne(x, 25 8(7), 7)dr
0

| (2.10)

t
+ [ NGt i),
0
where we have put

2.11
v1(2) = v,(0,%). (211)

Taking the x-derivative of both sides of (2.10}, we obtain

{ vo(t) = v(s(t), t),

b t ‘ |
wlet) = [ HON.a, 16,00~ 7 [ oa(re(o,t50,7)dn

-i-%]ﬂ vg(s(r), 7)N (&, ¢; 8(7), 7)dr

1 t

. (2.12)
— — | wvo(T)Neg(a,t;8(r), 7)dr

k2 f,
¢ ‘
+ [ oo(PN.a, b5, (e
0
Integrating by parts we get

b t
v;(:c,t)=f0 P (6)G(x, t; ‘E’O)d€‘£2-/0 v1(7)Nz(z, ¢; 0, 7)dr

-+ %/ﬂi vz(s(f),T)Nz(a:,t;S(%),T)dT (2.13)

v (TG, & (), 7Y,

where we have used the identities Nez = k*G,, N, = —G¢. Now, let z T s(t).
Using a lemma of [3] we have

5 ot
306, = [ WG, 660 - g7 [ mN(s(0),:0,7)dr
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t

+%[¢&WJW(@J%¢)&+fmmaﬁﬂdﬂﬂw(m@

where v1(t) is calculated from (2.5) and (2 10). In order to deﬁne v1, We note

that (2.10) can by (2.2), (2 3) be written-
1@ﬂ—f¢@M¢HM£—~waMMﬂﬂ&

- 2 [ wNe(e,tis(r), ).

Letting z — 0, we obtain

v(0,) —f HE)N(0,; €,0)dE ~ -—] v1(7)N(0, %0, 7)dr
1 _

t
- k_zj; Ug(T)NE(O,f;S(T),T)dT.
Combining (2.5) and (2.16) giveé
: t b
() =8 ' (E)N(0, t'; ¢,0)dedt!
n(t) = 5Q U} /0 Y(E)N(0,¢';€,0)dEdt |
t ot
- I:_Z/ f v (T)N(0,¢'; 0, 7)drdt’
o Jo ‘ :
1 t ot : '
——ﬁfo fo vo(_'r)Ns(O,t';s(r),r)drdt'+(,o(0):|.

From (2.8) we get

) 1 4 t' 'UI(T)
_ﬁf / v1(7)N(0,t';0,7)drdt' = / f d dt'

,zﬁﬁl“mﬁzWT?

2
_ ——m/g_vl(r)\/t—fdr.

We finally have

(2.15)

(2.16)

(2.17)

dt' dr

(2.18)
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w(t) = SQ [ / ] PN (0, 1¢,0)dede’ f (W

’ | (2.19)
“kiz /0 /ﬂ 0o(r)Ne(0, 5 5(r), T)drdt’ + p(0)] .
Define ‘
(1) = §(2) (2.20)
so that , . |
s(t) =b+ f r(r)dr, (2.21)
and recall (2.2) and (2.3). Then (2.14) and (2.19) can be written as
r(t) = - 2= 40) [ / W(EG(s(8), 1€, 0)de
1 ] wr(F)No(5(8), & 0, 7)dr — " f et (s(2), & s(r), 7dr
T(T) JS\T ), T)ar .
+5 | et st ] , (2.22)
() = SQ [ [ f BEN(O, 1€, 0)dedt — ﬁ o WETdr
(2.23)

_E/O"/(; mNE(O,t';s(T),T)drdt' —i—cp(O)]

Thus, the solution of the problemr (1.9)-(1.16) can be found by solving the
integral equations (2.22) and (2.23), where s(¢) is defined by (2.21).

3. Existence and uniqueness results

In this section, we state some results on existence and uniqueness of solu-
tions. First, it can be shown that there exist M > 0 and § > 0 such that the
right-hand sides of (2.22) and (2.23) define a contraction on the closed ball of
radius M, center 0 in a space of continuous functions on [0,6]. We theréfore
obtain the following theorem.

THEOREM 1. Assume that ¢(z) is C* on (0, b) and satisfies (1.16). Then there
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exists one and only one solution (v(z,t), s(t)) of the system (2.1)-(2.6) (or
(u(z,t), s(t)) of the system (1.9)-(1.12)) for 0 < t < 8, &.sufficiently small.

Applying Theorem 1 and using the condition (*) in Section 2 we obtain the
following global existence result:

THEOREM 2. Under the conditions of Theorem 1 and the additional conditions

(i) ¢(0) <0,
.. S S .
(ii) 021; l¥(z) — R(= b)l < SR b)’

| there are T*, €, C > 0 such that if —e < ¢(0) < 0,0 < a < ¢ and
: b
supg<.<p [¥'(2)] < CTy! min{i, 18}, then the system (2.1)-(2.6) (or (1.9)-
(1.12)) has a unique solution (v(z,t), s(t)) on the domain 0 < z < s(t), 0 <
t < T* satisfying ' :

0« T < Ty,
uy{(0,8) — S <0 for every 0 <t < T
uz{(0,T*)— S =0.

Here Ty = ﬂg‘—bl [—50(0) + \/f:(UP - ﬁﬁ%}

PROOF. Let A be the set of all numbers T > O such that (2.1)-(2.5) has a
unique solution (v(z,1), s(#)) in [0, T] satisfying

(a) ug(0,8)— S5 <0,

S S
O 0.0 - mrs | < s (31)
(c) ) < Ty min{b/2, (1 - b)/2}

forevery 0 <t < T.
We put:
| _ T* = sup A.
We first prove that 7* < Tj. From (2.5), (2.7) we have
t o
u(0,8) = S =¢'(0)— 5+ SQ/ [/ v(0, T)dT + p(0)}dd, t€[0,T%). (3.2)
0 Jo
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In view of (3.2), (3.1)(b), (3.1)(a) we get:

S
4R(1 - b)

where S > 0 and ¢'(0) = S(1 + Qa).

£+ o0t +a<0, t€l[0,T*) (3.3)

From (3.3) we get

2R(1— b)

0<T"<Th=—= [—-ﬂP(O)} \/W(O)z - % } - (34

Now we want to prove that

uz(0,8) = S <0, telo,T%),
u5(0,T*) — § = 0.

From (3.1)(c), (3.4) and (2.21) we get
b/2 < s(t) £ (148)/2, te[0,T™). (3.5)
In view of (2.22), (3.4), (3.5), we get after some computations
r() < C{ sup {¥'(z)| + vTo sup (|vi(?)] + ()]} (3.6)
0<z<b 0<t<T™
for every 0 <t < T™*.
Similarly, from (2.23) it follows that
lo1()] < CTo{ sup |(2)| + sup [ni(t)] + vTo} + e(0)]  (3.7)
0<z<b 0<t<T"
for every 0 < ¢ < T™*.

Letting © | 0 in (2.16) and esti.ma,ting the result thus obtained we get

S
T 0<a<b| R(1-1b)
+CVTy sup (|va(t)] + [vo(?)]) (3.8)
0<t<T

< sup

v(0,1) — R(_lsj;)' Y¥(z) +

From (2.2} and (3.1)(b), (3.1)(c) we infer that

25
Y € ——m—.
oS Il = 7
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Hence (3.8) give:

v(0,1) — Pz} 4+

——-———S |< .su ———~—S |
R(I=D)| ~ o<ozs R(1—-b)
25

+c¢ﬁ{ sup ()] + R )}

(3.9)

By (3.6)-(3.9), there is an € > 0 such that if 0 < e < ¢ and —e < (0) < 0 then
7(t)] < C sup ['(=)] |
0<z<h

s S (3.10)
o0, - 7 —35| < ama =) €O
If |
o2, |9 (:r)l <CT'TL! mm{b/2 (1-18)/2}
then from (3.10) we get
Ir(®)] < T, min{b/2,(1 - b)/2}, t€{0,T] (3.11)
Now, assume by the contrary that
uz(0,T*) — § < 0. (3.12)

From (3 11), (3.12) we can a.pply the local existence result to get a 6 > 0 such
that (2.1)-(2.6) has a unique solution on [0,T* + é] for every. t € [0,T* + 6.
Hence T* + § € A, which is a contradiction. Thus

u(0,T%) = § = 0.

This completes the proof of the Theorem.

4. A numerical example

We have used a numerical method based on (2.22) and (2.23) for solving a
test problem. In our numerical experiment, we have used a = —0.01, b= 0.5,

R =5 =1, and Q = —1/a; the initial velocity in the zone of viscoplastic flow
. 4 '
wlz) = ~3-a:3 —z? -1

* Figure 1 shows plots of the moving boundary s(t) for various values of £. Once
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s(t) is known, we used (2.10), (2.7) and (1.1) to calculate velocity and stress
fields on the rod. Figure 2 and 3 show velocity and stress profiles for fixed ¢.

10

sth)

0.8 -
ag - 0045 t
Fig. 1: Moving boundary
~-0.5
i=0.0 .
' s &
U{X'ﬁt:\”’f\ﬁ
15 :
2.0 ' o 10 X

Fig. 2: Velocity profiles for fixed
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