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SURFACE TEMPERATURE DETERMINATION FROM
BOREHOLE MEASUREMENTS: A FINITE SLAB MODEL

TRAN THI LE*, DINH NGOC THANH* AND PHAM HUU TRI**

Abstract. The authors consider the problem of determining the temperature at
one surface of a slab of finite thickness from temperatures measured at interior
points. The problem is reduced to solving a Cauchy problem for the heat
equation, which is then regularized using the Tikhonov method. Error estimastes
are given.

Dedicated to Professor Dang Dinh Ang on the occasion of his 70th birthda:y

1. Introduction

The problem of determining surface temperatures from measurements at
inner points of a domain has been considered by several authors in view of its
many applications, e. g. in geophysics, where the problem is to find temperatures
at the surface from borehole measurements. The model most commonly used is
that of a one dimensional space domain represented by a half-line z > 0 (see e.
g. Carasso {3], Engl, Manselli [8], Le-Navarro [17] and [18], Talenti and Vessella
[5]). While this simplified model, in many instances, yields useful results, it is
not realistic when applied to the earth. Indeed, the conductivity of the earth
is not constant throughout but, instead, varies from point to point. It is the
purpose of this paper to take account of this lack of homogene1ty As a first
approximation, we can consider it as a series of superposed layers, each with
constant conductivity. Thus we are led to consider a slab of finite thickness
0 < z < a with constant conductivity, assumed to be eqﬁal to 1.
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In the case the space domain is 0 <z < 00, and the temperature at infinity
israssumed. to be 0, it is sufficient for surface temperature determination to
specify the temperature at one interior point. In the case of a slab of finite
thickness 0 < z < a with a assumed to be > 2 for notational convenience, we
<hall have to measure the temperature at two points in the interior, which we
take to be z =1 and z = 2. As we shall see, with temperature measurements
at two points, uniqueness of solution is gnaranteed. However, the problem is ill-
posed. Hence a regularization is in order, in fact, we shall apply the Tikhonov
regularization method. Error estimates will be given.

The remainder of this paper is organized as follows. In section 2, we shall
determine the flux at ¢ = 1. The determination of the surface temperature
u(0,t) is then reduced to solving a Cauchy problem for the heat equation in the
slab 0 < z < 1, which is the object of section 3.

The results of this paper were announced in the Abstracts of The Third
International Congress On Industrial And Applied Mathematics ([19])

2. Flux determination at z =1

The problem is to determine u,{1,) = w(t) . We shall derive the integral
equation that w(t) satisfies. It turns out that the integral equation is of the
Volterra type (see (7)) and can be solved hy iteration on each finite interval
0 < t < T. We shall determine conditions on the measured data f(t) and g(f)
such that the solution w(t) is in L*(R*), in which case we can use Fourier

integral transform techniques.

Consider the equation

v Ou )
4—9_:&5__6?:0 in l<z<a,t>0

where a > 2 and let

u(2,t) = g(t), t>0
u(1,t) = f(1), t>0
ue(l,t) =w(t), t>0
We shall assume throughout that u(z,0) = 0, which is simply a matter of

convenience and does not affect the generality. The functions w is unknown
and f,g are given. '
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Put

Gla,ti6,7) = z_ﬁlt—_‘) & (‘%‘(ffa')) - (‘("H)] |

Let 1 < z < 2,t > 0. Integrating the identity

0 Ou oG g
% (95 ~a) -3 o) =0

over the domain (1,2) x (0,t — ¢) for small € > 0 and letting ¢ — 0 , we have,
after some rearrangements.

¢ ‘ ¢
/ Gz, 1, 7he(r)dr = —~u(z,t) — / Ge(z,t;2,7)g(r)dr
0 0

+ ] G, t;1,7)g(r)dr (1)

In order to get an integral equation in w(t), we shall take the x-derivative of
each side of (1) and then, let # — 1+4. First, taking the x-derivative of the left
hand side of (1), we have

a [ _ 1t z-1 (z —1)?
7 J, ot PO E I o G (Fny) wer

N 1 (% z2-3 (z —3)? (r)d
ajr Jo G=rpR P\ Tgg =7y ) Y
=L+ (2)
It is easy to see that
11 1
Ii = — —
z_xﬁ].;.Iz 2\/??/0 (t—¢)3/26mp( t—-r) w(T)dr (3)
If w is in L2(R*), then using arguments similar to those in [20}, we have
lim I, = —=w(t)
s—it 02

and for continuous w(t),

lim I) = —%w(t)

z—1+

Now, taking the x-derivative of each term in the right hand side of {1) and
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letting ¢ — 14, we have
lin, (e, t) = w() (4)
xl{{l+ Oz Tt = ‘

Hm 6—-/ Ge(z,t;2,7)g(T)dr

z—tl4

Ry S I B

t
lim 56;/0 Ge(z, t;1,7)f(r)dr

z— 14

- | - i (= L) e (—t—}—)] fryar. (6)

From (1)-(6), we arrive at the equation

Lute) - g2z [0 (— 25 )y

f (t"r)—m[ 2(t—r)] ('4(t1—r))g(f)df |
f (t— —3/2[ (1—ti1_)e:cp (—t—%;)]f(r)dr. )

Eq. (7) is a linear Volterra 1ntegral equation of the second kind. For f(t)
and g¢(t) integrable on [0, T] for each T > 0 (which will be assumed), the right
hand side of (7) is a continuous function. Hence, for each T' > 0, Eq. (7) can be

solved by successive approximation on the space C[0, T of continuous functions
on [0, T}, its unique solution being denoted by wr(t). Since T > 0 is arbitrary,
we can define a w(t) continuous on R*, such that for each T > 0, w(t) = wr(t)
for0<t<T.

We have just pointed out that Eq. (7) admits a unique solution, continuous
on R*. For our later analysis, it is important that w(t) be in L*(RT), for then
we can apply the isometric properties of Fourier transforms on L*{R) for our
error estimastes. We first set some notations and rewrite Eq. (7) in a convenient.
form. We let

0, t<0

| K(t) = { Vart (-, t>0
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2—\‘? =m0 L4 (1- 5k ) ezp (=) | £(r)ar

F(t) = j;](t 1..)——3 /2 [ Z(tIT-r)] exp (—4“—1__1_)-) g(‘r)d‘r, t>0
0, : - - t<0

and set w(t) = 0 if # < 0. Then we have

w(?) -\/% f_ : K(t — Tyw(r)dr = F(¢),¢ € R. )
Taking the Fourier - transform of both sides of (8), we have formally
[1-E@)(p)=F(p) peR 9)
where
K(P)= f K(t)e™Pidt
= exp |: ]129| + 1. sgn(p) |p| P €ER |
and
aepy 17 —ipt
F(P) = ﬁ;/_mF(t)e Prdt o
- 2—17; [/0 '4 a(?& - T)f(r)e_iptdrdt
o0 st
- j; /0 Bt — T)f(T)e_ipthdt (10)
in which
"3!2 — ezxp (—1
ag- { OB R DL oo
0, t<0
ﬂ(t) = { \/_t_3/2 [1 B _f] ea:p( 4:) t>0
- 0, <0

Note that F(p) is in L*(R) provided f(t) and g(t) are in L%(R), which we shall
assume. In fact, in order for (9) to have a solution w(p) in L*(R), we shall
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assume further that Iflﬁ ) is in L2(R), which is satisfied if

f(p) ) 2 |

P12 and W are in L*(R). (11)
Assuming (11), Eq. (8), or equivalently Eq. (7), has a unique solution in L?(R)
and this solution is stable with respect to variations in f and ¢ provided these
functions are equipped with the norm

1= 191 + 1k,

g(p
ol = ok + 55X

Where |.|; is the L2-norm. These are unwieldy norms. If f.and g are simply in
'L? then the problem is ill-posed. We regularize (9) into

coe(p) + |1 - K@) delp) = (1 - K@), e>0.  (12)

Let wy be the solution of (8) cérresponding to f replaced by fy and g replaced
by go. Suppose

f—foh<e  lg—gol<e ()

Assume wg 1s in H*(R). Then for small £

lw — wolz < Co [ln (%)] o (14)

where Cjp is some constant. The details (which are similar to those in the next
section) are omitted.

3. Determination of surface temperature

We have shown in the previous section that the problem of surface tempera-
ture determination reduces to solving a Cauchy problem for the heat equation
on the slab 0 < z < 1. We point out that the problem is ill-posed and that -
it has been the object of numerous publications. We single out the paper of
Hao and Gorenflo [15], describing a class of functions in which the problem
is well-posed and a modification method to solve the problem stably. In {8]
Engl and Manselli consider a mixed problem in the slab 0 < # < 1 for which
uz(0,%) = 0 and u(l,t) = f(¢) are specified. In [21], Knabner and Vessella
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derived stability estimates for solutions of the Cauchy problem for the heat
equation on the slab 0 < z < 1 with u(0,t) = f(¢) and u(0,¢) = 0 given. For
other related papers, the reader is referred to the paper of Hao and Gorenflo
(loc. cit.} which contains a huge bibliography. Returning to our problem, we
shall find v(t) (= «(0,?)) from u(1,t) = f(t),u.(1,t) = w(t) using integral
equation and Fourier transform fechniques.

The derivation of the integral equation in v(t) is similar to that for w(t) of
the previous section. For the reader’s convenience, we sketch the main steps.

Consider the equation

Uz —ur=0 0O0<z<1, t>0" (15)
together with the Cauchy data at z =1

u(lat) = f(t)
Cug(1,8) = w(t)

We have to find u(0,%) = v(t). Letting

wiess) = gy o () - (6]

and using Green’s identity, we find as in the previous section :

) Y z? i
N fo =P (“4(7—"?5) V() =ulet) - fn N t1, mw(mdr
it 3N .
+ A a—{(r,t; 1,7)f(r)dr.

(16)

Letting z — 1—, we have

T f e (Ca ) o

.=.f(t‘) + 2\1/7‘, /0‘ (t_—i)lﬂ exp (_%i_r> w(r)dr

~5ve / e (s ) e

Let G,(t) be the right-hand side of (17) which is defined for £ > 0 and depends
continuously on f(t) and w(t) in the L?-sense and let




200 T. T. LE, D. N. THANH AND P. H. TRI

1 1
k(t) = { viarseap (~31)> >0

0, t<0
Gi(t), t>0
6(t) = 1(f)
0, t<0.
Then we have from (17)

(k*v)(t) = % [ Z K(t — rYo(r)dr

1 [ _a/2 1
=§ﬁ A (t—T1) Pexp (_4(t—1‘)) v(7)dr
= G(t), teR (18)

which is a convolution equation in v(f).

Now, we are able to regularize this equation by constructing a family (vg)p>0
of regularized solutions and pick a regularized solution that 1s ’félose” to the
exact solution of (18). We note that, by regularized solution, we mean a function
. that is stable with respect to variations in the right hand side of (18). We have

THEOREM 1. Suppose the exact solution vy of (18) corresponding to GG is in
H*(R),s > 0,1ie,
| (1 + [t7)/?)8o(t) € L(R)
and let

G -Gyl < é
Then there exists a regularized solution vs of (18) such that

|vs —vol2 < —% for small 6§ >0
[ing] |

where C is any constant greater than
2(2(s + 1)) V3.maz ([t kloo + [£*00l2, (103 + 1)/

Furthermore, if Iﬂknl- € L%(R) then we have

[vs — volz < c_ﬂa)

where § is any constant greater than 2 (1 + |3k'1|2) .
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PrROOF. We have

k(t) = —f k(z)e™"dr = ——= / k(z)(coszt — i. sz%m:t)dz:

= —ezxp ( = 4. sgn(t)ﬂ

and note tha.t the functmn
. |¢]
k(1) = — =
|%(2) emp( 5
is decreasing int>0

For every § > 0, the function

ww=ﬂfgp (19)
belongs to L?(R). Defining |
alt) = = [ pla)etnda
we have vg € L*(R) and Ey (20), vg sétisﬁes the equation
Bog(t) + k() 05(t) = k(1)G(r), teR. (20)
On the other hand, we have from (18)
| E(t).ﬁu(i) = Go(t). (21)
From (20) and (21}, wé have
B(5a(2) = 50(t)) + (KD (B(t) - d0(2))
= —B%o(t) + k(t)(C(t) - Go(t)), teR. (22)

Multiplying both sides of (3.8) by the conjugate of #5(t) — 9p(¢) and then
intergrating over R, we have

Blog — ol3 + |k(Bg — Do)l3

=-3 / B095(2) — Bo(t)dt + f E)(G@) — Go())55(2) — Ba(D)dt.  (23)

[ o)
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Let 8 = § < 1 and note that
|G — Golz = |G — Golz2 < 8.

Then, we have

. . .o o, . 6. . 82 1. .
8195 — Dol + 1k(Bs — Bo)I3 < §|‘Uo|§ + 5105 — tol3 + 5 + 5105 — o 5

Therefore
s — tolf + k(35 — 80)I3 < 8 (I8f3 +1) .-

In particular
55 — Bol3 < 160l3 +1 (24)

k(b5 — 90)15 < 8 (I50f3 +1)
Now, multiplying both sides of the identity

8(35(t) — Do(£)) + |R(£)*(85(t) — Do(£)} = —6Bo(2) + E(£)(G(2) - Go()

by |t]24(85(t) — D0(t)) and then integrating over R, we have
818° (95 — Bo)5 + 1¢°K(95 — Do)l
=p4/ 121250 (£)5508) = o(B)dt
+ [ RO - Colt)e — oo
< 812012 [t°(85 — Do)z + [t*kloo|G — Giol2[t*(05 — Do)l2 (25)

where
(t9 k! oo = sup |||k ()] = exp(s In8s* — 2s) < oo.
teR : o

In particular
ﬂﬂm-%ﬁgﬂﬂ%—%NWHm+W%@
i.e. o

1#2(95 — 90)1 < [t°kloo + [t°B0 - {(26)

Letting '
4 = max (|¢*Kleo + [£50l2, (60§ +1)/2)
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we have, from (24) and (26),
|65 — Dpl2 < A
and _
[t°(%s — Bo)l2 < A (27)

Now, we have
oo o
os = ol = 15 = 30t = [ Ios(8) - su(e)e
—o0

For any {5 > 0, we have

[ sty o0t < / O 5 ) sty
Ri<ts I

s 1R(E
< eap(v/35) ] IHE(Es(t) — So(e) e
< exp(v/375) 426, (28)
On the other hand,

oC

/mx [05(2) — Bo(t)l"d < ti, [#9(86(2) — 5o (1)) Pdt

A2

< 5 (29)
t&

Let ¢5 be the positive solution of the equation

Sexp (v/2t5) = —

or equivalently

t2exp (V215 =%. (30)

The function k(y) = y**ezp (v/2y) is strictly increasing in y > 0 and A(R*) =
Rt, so that Eq. (30) has a unique solution ¢5 and t5 — +00 as § — 0. Indeed,
we have

2slnts + 2t =In (%)
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For § sufficiently small, we have

, 1
.2(3 + l)tg > 2slnts + /2t =1n (—) .

1)
Therefore - ' )
1 2(s + 1)) y
= < | —— . 31
t%s ( III(%) , ( )

By (28)-(31), we have

2
242 C
]Us—vo|25—;5( s)
T (In(3))"/)

where C = (2(s + 1))° /24 as desired.

Now, if we assume that l—';fl- € L?(R) then by multiphying both sides.of (22)
by the conjugate of fg(t) — Go(t) and then integrating over R, we have

Bl ~ Bl + k(55 — o)l
e 00— - —_—
— -5 [ omam = aa0dt + [ HOG(E) ~ Co()E0) ~ holD)
Do\ 3,n S A s A
< ﬁ’|“',::E 2|k(Bg — Bo)lz + |G —Gal2|k(Bg — Bo)l2-
Letting 8 = § and noting that |G — G|z = |G — Go|2 < & we have
T . o . . e ) _ 'i}
8|05 — o2 + |k(5 — D)2 < 6|k(5 — p)|2 (1 +-f 2) : (32)
In particular
o — 0)1 < 81hGss — o)z (1+ 2l
i.e. : )
k(65 — 50)]2 <6 (1 + ”f 2) . (33)
From (32) and (33), we have 7 |
8]ds — dol < 6° (1 + %h)

i.e.

|55 — Bol5 < & (1-!- %h)
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Since |vs — volz = |05 — Bg|e; we have
|65 — Dol < CVS
where C =1+ |1’fl2

This completes the proof of Theorem 1.

REFERENCES

[1] R. S. Anderssen and V. A, Saull, Surface temperature history determination from
Borehole measurements, Mathematical Geology 5 (1973).

[2] R.S. Anderssen and V. A. Saull, A review of numerrical methods for certain tmproperly
posed parabolic partial differential equations, Australian National University Computer
Centre, Technical Report 47 (1970).

[3] A. Carasso, Delermining surface temperatures from interior observations, SIAM J.
Appl. Math 42 (1981), 558-547.

[4]  G. Talenti, Dui problemi mal posti, Boll. Un. Mat. ltal, 15 (1978), 1-29.

[] G. Talentiand S. Vessella, Note on an ill-posed problem for the heat equation, J Austral.
Math. Soc. 32 (1981), 358-368.

(6] D.V. Widder, “The Heat Equation,” Academic Press, New York, 1975,

[77 J. R. Cannon, “The One Dimensional Heat Equation,” Addison-Wesley, Menlo Park,
1984,

[8] H. Engl and P. Manselli, Stability estimates and reqularization for an inverse heat
conduction problem, Numer. Funct. Anal. and Optim. 10 (1989), 517 - 540.

[9] A. Erdelyi, “Tables of Integral Transforms,” MacGraw-Hiil, 1954.

[10] M. J. Cialkowski, K. Grysa and J. Jankowski, Inverse problems of the linear nonsta-
tionary heat transfer equations, Z. angew. Math. Mech. 72 (1992), 611-614.

f11]] D.D. Ang, T. T. Le and D. N. Thanh, Multidimensional surface temperature deter-
mination (in preparation).

[12} J. R. Cannon, A Cauchy problem for the heat equetion, Ann. Mat. Pura Appl. 66
(1964), 155-166.

(13] J. R. Cannon and R. E. Klein, Optimal selection of measurements locations in a
conductor for approzimate determination of temperature distributions, J. Dyn. Syst.
Meas. and Contro! 93 (1971), 193-199.

[14] A. A. Tikhonov and V. V. Glasko, Methods of determining the surface temperature of
a body, Z. Vycisl. Mat. i Mat. Fiz. 7 (1967), 910-914.

[15] D.N.Hao and R. Gorenflo, A noncharacteristic Cauchy problem for the heat equation,
Acta Appl. Math. 24 (1991), 1-27.

[16] A.N. Tikhonov and L. V. Arsenin, “Solutions of Ill-Posed Problems,” Wiley, New York,
1977. :

[171  T. T. Le and M. P. Navarro, Surface Temperature From Borehole Measurements:
Regularization and Error Estimates, Internl. J. Math. and Math. Sci. (1995},

[18] T.T. Le and M. P. Navarro, More On Surface Ternperature Determination, Procee-
dings, International Conf. Appl. Analysis, HaNoi, 1993.

(19 D. N. Thanh, T. T. Le and P. H. Tri, Surface Temperature Determination From
Borehole Measurements: A Finite Slab Model, Abstracts ICIAM 95 (The Third Inter-
national Congress On Industrial And Applied Mathematics, Hamburg, 3-7 July, 1995),
p. 64. .



206 T.T.LE, D. N. THANH AND P. H. TRI

[20] K. Hoffman, “Banach Spaces Of Analytic Functions,” Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1962,

[21] P. Knabner and S. Vessella, “Stability Estimates For Ill-Posed Cauchy Problems For
Paraholic Equations,” Inverse and Ill-Posed Problems, 1986.

* DEPARTMENT OF MATHEMATICS, HOCHIMINH CITY UNIVERSITY
227 NGUYEN VAN CU, HOCHIMINH CITY, VIETNAM

** DEPARTMENT OF COMPUTER SCIENCE, HOCHIMINH CITY OPEN UNIVERSITY
87 VO VAN TAN, HOCHIMINH CITY, VIETNAM



