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FLOWS METHOD IN GLOBAIL ANALYSIS
DUONG MINH DUC

Abstract. We study the gradient flows method for W"?({AM, A), where A4 and
N are Riemannian manifolds and rp may be less than the dimension of M.

Dedsicated to Professor Dang Dinh Ang on the occasion of his 70th birthday

Introduction

Let (M, ¢) be a compact, connected and orientable Riemannian manifold of
class C* and of dimension m > 1, possibly with boundary M. A shall denote
a complete Riemannian manifold of class € and of dimension ni, without
boundary. ‘We assume that A is isometrically imbedded into R™. Denote by
W P(M,R") the usual Sobolev space and put

1/p
T I N LT
0<k<r v M
WP MN) = {ue WP (M,R") :u(z) €N ae. on M},

where v, is the volume element on M.

If r > % and N is compact, then W™P(M, ) has the Finsler manifold
structure (& proof is in [19]), and we can study variation problem in W™?( M, )
(see {13, 14, 19]). When r < 5 and N is not flat, we have the following
difficulties: '

(z) WmP(M,N') may not have any manifold structure.

(i¢) Some arcwisely connected component of W™?( M, N') may not be open
in WHP( M, N).

Therefore in this case it is not easy to construct flows for deformations
used in the variational m_ethdd, and an extremal point of a functional f in a
component may not be a critical point of f.
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To overcome these difficulties one has used the following methods:

(i) The heat flow method: Eells, Sampson and Hamilton have considered
evolution equations to get the existence of harmonic maps into manifolds having
non-positive sectional curvature (see [10, 16]). For the case of general target
manifolds Chen and Struwe have proved the existence of heat flows in the weak
sense (see [2, 4, 22]). But Chen and Ding showed that this method may not
work in every case because of the blow-up of heat-flows in [3]

(#) Perturbation method: Using the perturbation of functionals, Sacks and
Uhlenbeck [21] have obtained the existence of minimal immersions of 2-spheres.
But with this method we can only study the global analysis problem at the
border-line case m = rp. \

(iti) Weakly lower semicontinuity: Using the lower semicontinuity of the
functional with respect to the weak topology of W™?(M,A) one can get the
existence of its extremal points. But we ma,f not have this weakly lower
semicontinuity when r > 2 (see [18]). - -

(iv) Constructive methods: Eells, Lemaire, Ratto, Wood and many mathe-

maticians have constructed harmonic maps in special cases (see [8, 9]).

We can find more details of the above methods and other methods in [23].
The purpose of the present paper is to extend the gradient flows method in

critical point theory for the case r < %. Let f be a real functional on

WnP(M,N). Extending f into W"P(M,R"), we can define the differentiability
and a vector field corresponding to f without taking care of the smoothness of
WTP(M,N). Then we prove that the restriction on C"(M,N) of this vector
field is a vector field on C"(M,N). Using the smooth manifold structure of
CT(M, N} we get a flow on CT(M, N) corresponding to this vector field. But
this vector field may not be bounded on C"(M,N) and some curve of the flow
may be only defined in finite i:img, e.g. there may be u in C"(M, N} such that
the curve starting at u is only defined on a bounded interval [0,t,). Therefore
we could not use this flow for the deformation lemma in the critical point theory.
But we observe that in this case f decreases very fast along this curve and we
can. get a critical point of f. Thus we can apply the flow method to the case in
‘which W?(M, N) is not a smooth mannifold but C™(M,N) is dense in it. -
© Let M be an arcwisely connected component in WrP(M,N) and K its
closure in W"P(M,N). Using the flow constructed as above we can study
the following problems: ' '
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(P1) Let z be in K such that f(z) =inf f(K). Is x a critical point of f?

(P2) Let {ux} be a minimizing sequence of f i H. When does {f'(ui)}
converge to 0 as k fends to cof

If the metric on A is not euclidean, the problem (P;) is not trivial (see [17]).
It is related to a question of J. Eells: When does a minimizer of a real functional
f become a weak solution of the Lagrange-Euler equation associated to f?7 If
f is continuously differentiable on W"?( M,R") and C"(M, ) is dense in H,
then we get an affirmative answer for (P)) (see Theorem 3.1}. If f belongs
to a class of functionals, we get an affirmative answer for (P;) when {u;} is
in C"(M,N) (see Theorem 3.2). Using the Ekeland variational principle we
only can find a sequence {vx} associated to {ux} in (P2) such that {vi} is a
minimizing sequence of f and {f'(us)} converges to 0 as k tends to co. The
replacement of {u;} by {v;} is inconvenient in some cases because we can choose
{u} with some special properties but {vx} may not have these properties.

As aresult of our paper we see that the main difficulty of the flows method is
not the smoothness structure of the set of maps but the Palais—Smale condition
of functionals, which seems to have relations not only with the dimension of
source manifolds but also to the geometry of target manifolds (see {13, 14]). As
in [24] our approach to global analysis is simpler than those in [7, 13, 14, 19]. We
have studied this method in [6], when the functional satisfies the Palais-Smale
condition.

1. Notations and definitions

In [5] we have observed that we could use a very small part of tangent
space at any pomt in WHhi(M, R™) to establish flows for deformations in the
Lusternik—Schnirelman theory. On the other hand, some nice properties of the
tangent space of target manifolds can help us to get such a part. Now, combining
these ideas we request the target manifold A has the following properties:

(T'1) There are local charts {(¥;,O;)} of N and a positive real number 7
such that ||¢;llcr + 1|7 lor <07 and {z € N : |z —a] < n} is contained in
some O; for any a € R™.
 (T2) There is a C™*'-map © from R™ into the space L(R™, R™) of continuous
linear maps from R™ into R™ with usual norm such that sup,eg- || D°O(y)|| < oo
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for any s in {0,1, ..., + 1}, and O(y) is a projection from R™ onto the tangent
space Ty(N') of N at any y in N, which is identified as a linear subspace of R®
parallel to an affine linear subspace of R™ passing through y.

If A is compact, then it has the two above properties. Note that such a
map O need to be defined only on N, then we extend it into R™. For example,
let {,} be the scalar product in R and ¢ in C§°(R",R) such that ¢(y) =1 in
a neighborhood of $™~!. Then we can choose the map 8 for §7! in (T2) as
follows '

O(z)z =z — {z,p(z)z)z V(&,z) € R® x R™.

For any (u,p) in W"P(M,R") x C"(M,R") and z in M, put O,(¢)(z) =
O(u(z))p(z). We assume throughout this paper the following condition

(T'3) Fiz ¢ in C"T{M,R"). Then the map u — O,{¢p) i3 continuous fram
W”’(M R") into W"P(M R™).

If r =1, by (T2) there is a constant K such that Vu vEWHP(M,N), p€
C?(M,R™),

|1DOu(p} — DO.(p)| < K(|u — v||De| + [u — v|[Dullg| + |Du — Dofle|).
Thus, by th(_e Holder theorem we have

1DO.(p) — DOL()l|zr <
< Kllellwes (1 + ulls,p) (Il — ol 2, +1Du — Dollzs ).

Therefore we have (T3) when r = 1 and p-l > 7P o p > _2m_
D mp m+1
2m 3m

Similarly, the condition (T'3) is satisfied when r = 2 and p > max{

m+2’ m+4}

DEFINITION 1.1. Let {(¢;,9Q;)};cs be a family of local charts of M such that
Ujes2; = M, and let L(W™P(M, R™),R) be the space of linear mapp'in.gs'frpm
Wn?(M,R") inte R. For any j in J and any T in L{W™?(M,R"),R) put
C;/(M,R") = {u € C"(M,R") : support of u is contained in Q;},
er’p(M, R™) = {u € W"?(M,R™) : support of u is contained in Q;},
”T”u,j,r,p = Sup{lTeu(So)[ S Cr( R, [104( (P)” rp S }
. ”T”u:r-np = S:up”T“u‘j‘r,p,
jedJ
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where ||T|yj,rp and ||T}|x,r, may be equal to co.

DEFINITION 1.2. Let f be a continuous mapping from W"?(M,R"} into R.
We say f is weakly continuously differentiable on W7P(M,R") if and only if
two following conditions are satisfied:

(z) For any u € W"P(M,R") there exists a f'(u) in L(W"’P(M R“), R) such
tha.t '

Flu +tv) fu) _ = fllupy Yo e WIP(M,R™), Vj € J.

t-—»l]

(42) The map (u, ) — f'(u)p is continuous from WP(M,R™)x W P(M,R")
into R for any j in J. :

In this paper we denote the set {z € W™?(M,R"™) : ||z — q]|;,, < s} by
B(a, s).
2. Flows on WnP(M,N)

Let f be a continuously differentiable real function on W"?(M R™). In
this section we establish a flow associated to f on W™?(M,N) and study its
properties. First we obtain a vector field corresponding to f as follows.

LEMMA 2.1. Let j in J, u be in the open interval (0,1) and f be a continuously
differentiable real function on W™?(M,R"). Put

45 = {x € WM, R : [|F'(@)ls.imp > O}.

Then there is a C*-map v from an open neighborhood V of A; in W’"’P(M R™)
into W"P(M,R") such that

(0) llo(@)llr,p <1 and f'(u)o(u) < —pllf'(w)lls,j,rp for any v in A; and
(2t) the restriction of v on C"(M;N)NV is a C'-map from (CT(M,N) N
V, llller) into (CH(M, Tn), ([llcr)-

PROOF. For any u in A; there is (u) in CT(M,R™) such that

10u(e(u)llrp < 1 and f'(u)(p(w)) < —pllf'(@)llu,jr.p-

By (T'3) and the continuity of f' we can ﬁnd a positive real number d, such
that for any y in B(u,2d,)

F@O () < sl f Wllyims  a0d  [10y(2(@))llnp < 1.
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Since CT(M, R™) is dense in WP(M,R™), we can find @ in B(u,d,)NCT(M,R").
Then B(@,dy) C B(u,2d,) and the family {B(#,dv) : u € A;} covers Aj.
Therefore there. exists s locally finite refinement {B(#i,dy;)} of that family,
which covers A;. Denote |J; B(ii, du,) by V. For any i put

) { (a2, ~ ke~ aill5,)" Vu € B dur)
gi(u) = '

0 Yu € WTP(M,R™) \ B(i, du;)-
Then g; is of class C! on W™?(M,R"). Set

v(u)=(Zqzj(u)) o, (Zqzi(u)so(ui)) Vuev,

which satisfies (i). Note that @; belongs to C"(M,R") for any i. Since || llcr
is stronger than || ||, the restriction of g; on C"(M, R™) is also of class C! on
Cr(M,R"). Thus, by (T2) we get (ii).

Note that CT(M,N) NV is open in C"(M,N). By the results of [7, 15,
19 v|cr(m,anny in Lemma 2.1 is a vector field on C"(M,N)N V. Thus for
any u in CT(M,N)NV there is a C1-curve w(u,.) from an interval [0,¢1) into
C"(M,N) such that '

dt
w(u, 0) = u.

{ dw(u,?) _ v(w(u,t)) V€ (0,41)

We study w by the following lemmas.

LEMMA 2.2. Let ug be in A; and's a positive real number such that B{ug,3s) C
A; and there is only a finite number of B (i, du; } having a non-empty intersec-
tion with B{zo,3s). Then there is a positive real number ty such that w(u,.) is
defined on [0,t,) for any u in B(zo,s) 0 CT(M,N).

PROOF. Note that we only use a finite family {@;, p(u;)} in C"(M,R") to define
v(u) for any u in B(uo,3s). Thus, by (T2) there is a constant Co such that.

ll(@)llomrmy < Co and |jv(a) — v(8)|lx < Colla — bil.

for any a and b in B{ug, s)NC™(M, R“),Where 1 |1« is || ”C(M,hn) or || |lr (m,Rm)-
Fix u in B(ug,s) N C"(M,R™). Let n be the positive real number in the
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condition (T'1). Let (¢, ) be a local chart of M such that w(Q) C B(z, ) for
some z in R™. Thus we can choose a local chart (¥, () of A such that

youop I(U) C BO,7) C BO,31") CH(O) CR™,

 where U = (£2) and »/ depends only on 7.

Therefore we can reduce the problem to the case of euclidean metrics. Let
UcR™, 4 € C(UB(,n)) and & € C'I(C"(U B(0,37"), CT(U, R’“)) such
that

ll5(a)llo(m,rmry < C'i'-and 115(2) — 5(b)|| < Cilla — bl

foranyaand binY = C’I(U,B(O,Bn'))? where |||« is || licco,rm) of || lerurmr)

and the constant C} depénds only on Cj and 7. Choose #; = min G
1

1
Ci+1

}. Forany ¢ in X = C([O,tl],Y) put

Tow =+ [ “o(4(s))ds Vee [0t

It is easy to prove that T is a contraction on X and that it has a unique fixed
point there. Therefore we can choose ¢y for the lemma.

LEMMA 2.3. Let u € A4; N C"(M,N) and [0,t,) the maximal interval where
w(u,.) can be deﬁned We have

(¢) w(u,.) is a C'-curve from [0,t,) into Z, where Z is C(M N) or
C"(M,N) or WHP(M,N),

(23) llw(,u,t) — ul|rp <t for any t € [0,%,),

(32) If t, is finite, then {w(u,t)} converges to ug in WH?(M,N) ast — 1,
and || f'(vo)l|uo,jrp = 0, '

(iv) Ifthere is a positive real number s such that B(u, s) is contained in A;,
then t, > s,

() If ||f'(@)l|z,jrp > b for any z in B(u s), then f(u) — f(w(u,s)) >
pbs' Vs' € (0,s), where y is as in Lemma 2.1.

PROOF. Since w(u,.)is a C'!-curve from [0,,) into C7(M,N') and the topology
of C"(M,N) is stronger than those of C(M, N} and W"P(M, N}, we get (i).
By (¢} of Lemma 2.1, we have |

lw(u, ) = w(w, )]y < |s — 2| Vs,t € [0,24), (2.1)
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which yields (ii). When t, is finite, by (2.1) {w(u,t)} converges to ug in
WrP(M,N) as t — t,. Since [0,1,) is the maximal domain of w(u,.), by
Lemma 2.2 1o does not belong to'4;. Thus we have (#i). By Lemma 2.2, (i7)
and (zi1) we get (iv). Put f(t) = f(w(u,t)) for any ¢ € [0,%,). By Lemma 2.2
and (i) of Lemma 2.1 we see that s < ¢, and

fit) = ff(w(u,t))v(w(u,.t)l)s —pb ‘v:’t € (0,{3).

Therefore we get (v).

REMARK. The flow w(u,.) only changes the value of u inside 2;. Therefore we
can use special local properties of M to study global problems on W™? (M, N).

3. Applications

" Let f be a continuously differentiable real function on W"P(M,R"). Let H
be an arcwisely connected component in W™P(M, '), K be its closure and =
in X. Then we have the following results.

THEOREM 3.1. Assume that f(z) = inf f(H) and C"(M,N)N'H is dense in
H. Then ||f'(z)||z,rp = 0.

ProOF. Let {zz} be a sequence in C"(M,N) NH such that {ax} converges
to x in WHP(M,N). Assume that ||f'(z)|ls,jrp > 26 > O for some j and
b. Then we can find a real number s such that NF Wy jrp > b for any
y € B(z,3s). When k is greater than some ko, zx belongs to B(z, s). Replacing
zx by w(zx,s) and applying (v) of Lemma 2.3 we see that f(z) can not be
inf f(H). This contradiction proves the theorem.

THEOREM 3.2. Assume that
(F) For any minimizing sequence {vg} of f in H such that F (velllow,jrp >
2b for some j and some positive real number b, we can find a positive real
number s such that ||f'(z)||z,;,~p > b for any z in |J;, B(vk, $)-
Then {||f'(wx)||uy,jrp} converges to 0 when {ux} is a minimizing sequence of

f in H and belongs to CT(M, N).

PROOF. Using (F') and arguing as in the proof of Theorem 4.1 we get the
theorem. ' '

REMARK 3.1. The density of C°°(M,A) has been studied (see [1] and its
references). If f is the functional corresponding to the harmonic maps, Theorem
3.1 has been proved in [17] for some special cases.
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REMARK 3.2. With the Ekeland variational principle [11, 12] we have to replace
{ux} by another sequence to get the result of Theorem 3.2.

REMARK 3.3. If f is the functional corresponding to the harmonic maps, then f
satisfies (F'). In general, f satisfies (F') if the mappings f and = — ||f'(z)||z,7p
are bounded and uniformly continuous on (f~1(B),||||rp) for any bounded
subset B of R. '
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