HYPERSURFACES IN (DFC)-SPACES

LE MAU HAI

Abstract. It is shown that every hypersurface H in a (DFM)-space E is of uniform type. This means that there exist a continuous semi-norm ρ on E and a hypersurface \hat{H} in E_{ρ} , the Banach space associated to ρ , such that $H = \omega_{\rho}^{-1}(\hat{H})$, where $\omega_{\rho}: E \longrightarrow E_{\rho}$ is the canonical map.

Introduction

In [2] Dineen, Meise and Vogt have proved that every polar set in a (DFN)-space is of uniform type. This means that there exist a continuous seminorm ρ on E and a polar set A_{ρ} in E_{ρ} , the Banach space associated to ρ , such that $\omega_{\rho}(A) \subseteq A_{\rho}$, where $\omega_{\rho}: E \longrightarrow E_{\rho}$ is the canonical map. The aim of the present paper is to prove the above result for hypersurfaces in (DFM)-spaces.

To obtain the main result (Theorem 2.1) we study in Section 1 the extension of hypersurfaces in a Riemann domain over Banach spaces to its envelope of holomorphy. In the finite dimensional case the problem was solved by Dloussky in [3]. By extending the method of Dloussky to the infinite dimensional case we prove that for every hypersurface H in a Riemann domain D over a Banach space with a Schauder basic there exists an analytic set \hat{H} in \hat{D} , the envelope of holomorphy of D, such that

$$(D \setminus H)^{\wedge} \cong \hat{D} \setminus \hat{H}.$$

Using the fact that every plurisubharmonic function on a separable (DFC)-space is of uniform type [8], we show in Section 2 that every hypersurface in either a (DFC)-space, which has the approximation property, or in a (DFM)-space is of uniform type.

1. Extending hypersurfaces

We recall that a hypersurface in a Riemann domain D over a locally convex space E is an analytic set which locally is the zero-set of a holomorphic function.

In this section we prove the following.

THEOREM 1.1. Let H be a hypersurface in a Riemann domain D over a Banach space, B with a Schauder basic. Then there exists an analytic set \hat{H} in \hat{D} which is either empty or a hypersurface in \hat{D} such that

$$(D\setminus H)^{\wedge}\cong \hat{D}\setminus \hat{H}.$$

First, as in [3] we give the following.

DEFINITION 1.2. We say that (D, H), where D is a Riemann domain over a locally convex space E and H is a hypersurface in D, is maximal if for every Riemann domain D' containing D as an open subset such that $D' \setminus D \subseteq H'$ we have D' = D provided $H' \cap D = H$, where H' is a hypersurface in D'.

PROPOSITION 1.3. If (D, H) is maximal and $D \setminus H$ is a domain of holomorphy, then D is a domain of holomorphy.

For the proof of Proposition 1.3 we need the following lemma:

LEMMA 1.4. Let $p: X \longrightarrow Y$ be a local homeomorphism between two connected topological spaces and $H \subseteq Y$ be a closed subset of Y such that H has an empty interior and $Y \setminus H$ is connected. If p has a section σ on $Y \setminus H$, then p is injective.

PROOF. Since $X \setminus p^{-1}(H)$ is dense in X, it suffices to show that p is injective on $X \setminus p^{-1}(H)$. By hypothesis there exists a section σ_1 of p on a connected neighbourhood V in Y such that $V \cap H \neq \emptyset$. We need to prove that $\sigma_1 = \sigma$ on V. Take an arbitrary point $y \in V$. Since $V \setminus p^{-1}(H)$ is connected, there exists a curve $\gamma : [0,1] \longrightarrow X \setminus p^{-1}(H)$ such that $\gamma(0) = \sigma(y)$ and $\gamma(1) = \sigma_1(y)$. For each $t \in [0,1]$ we have the equality $\gamma(t) = \sigma p(\gamma(t))$. Hence $\sigma_1(y) = \gamma(1) = \sigma p(\gamma(1)) = \sigma p(\sigma_1(y)) = \sigma(y)$. It follows that $\sigma_1(y) = \sigma(y)$, which means $\sigma_1|_{V} = \sigma|_{V}$. The lemma is proved.

Now we return to the proof of Proposition 1.3.

For each $t \in [0,1]$ we put

$$M_t = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1| \le 1 \text{ and } z_2 \in [0, t] \text{ or } |z_1| = 1 \text{ and } z_2 \in [t, 1]\}.$$

Let φ be an arbitrary holomorphic map from a neighbourhood U of M_0 to D such that $p\varphi: U \longrightarrow p\varphi(U)$ is a homeomorphism and $p\varphi(U)$ is contained in a subspace B of E of dimension 2. By [4] it suffices to show that φ can be extended holomorphically to a neighbourhood of M_1 , where $p: D \longrightarrow E$ is a locally homeomorphic map defining D as a Riemann domain over E. By a result of Dloussky [3] we can find an analytic set $\tilde{H} \in \tilde{U}$ such that

$$(U \setminus \varphi^{-1}(H))^{\wedge} \cong \hat{U} \setminus \tilde{H}.$$

Since $\varphi(U \setminus \varphi^{-1}(H)) \subseteq D \setminus H$ and, by hypothesis, φ can be extended to a holomorphic map $\hat{\varphi}$ on $\hat{U} \setminus \hat{H}$ with values in $D \setminus H$. Write $E = B \oplus B^{\perp}$. Replacing U by a smaller neighbourhood of M_0 we can assume that there exists a neighbourhood V of $0 \in B$ such that p has a holomorphic section $\delta : p\varphi(U) \times V \longrightarrow D$. Put

$$\tilde{\varphi} = \delta \cdot (p\varphi \times id) : U \times V \longrightarrow D,$$

and assume that Z is the domain of existence of $\tilde{\varphi}$ over $\hat{U} \times V$. Then $\tilde{\varphi}$ has a holomorphic extension $\hat{\tilde{\varphi}}$ on Z with value in D and

$$((\hat{U} \setminus \tilde{H}) \cup U) \times V \subseteq Z.$$

We have the following commutative diagram

$$((\hat{U} \setminus \tilde{H}) \cup U) \times V \longrightarrow Z$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\hat{U} \times V$$

where $\pi: Z \longrightarrow \hat{U} \times V$ defines Z as a Riemann domain over $\hat{U} \times V$. Since π is injective (by Lemma 1.4), Z is an open subset in $\hat{U} \times V$. Now on $(\hat{U} \times V) \sqcup D$ we can define an equivalent relation as follows. Let $x \in \hat{U} \times V$ and $y \in D$. We

write $x \sim y$ if $\hat{\tilde{\varphi}} = y$. Put $D = (\hat{U} \times V) \sqcup D / \sim$ and

$$p = \begin{cases} p \text{ on } D, \\ \text{the holomorphic extension of } p\varphi \times id \text{ on } \hat{U} \times V. \end{cases}$$

It follows that (D,p) is a Riemann domain over E and $\hat{\varphi}$ can be extended holomorphically to a map from $\hat{U} \times V$ into D. Moreover $H = (\hat{H} \times V) \sqcup H/\sim$ is an analytic set in D with $D \cap H = H$ and $D \setminus D \subseteq H$. By the maximality of D we have D = D and hence $\hat{\varphi}$ is extended holomorphically on $\hat{U} \times V$. It implies that $Z = \hat{U} \times V$. Thus, φ can be extended to a holomorphic map on a neighbourhood \hat{U} of M_1 . The proposition is proved.

As in [3] we give the following.

DEFINITION 1.5. Let (D,p) be a Riemann domain over a Banach space E. A boundary point of (D,p) is a basic of a filter r consists of connected open set in D such that

- (i) r has no limit point in D,
- (ii) p(r) converges to a point $x \in E$,
- (iii) For every open connected neighbourhood U(x) of x, r contains one and only one connected component of $p^{-1}(U(x))$ and every element of r has such a form.

Let $D = D \cup \partial D$, where ∂D denotes the set of boundary points of (D, p). If $q:(D_1, p_1) \longrightarrow (D_2, p_2)$ is a morphism between Riemann domains over E, then it can be extended to a continuous map $q:D_1 \longrightarrow D_2$. Now we assume that $r \in \partial D$. We say that ∂D is a local hypersurface at r if there exists a neighbourhood U(r) of r in D such that $p:U(r) \longrightarrow p(U(r))$ is a homeomorphism, p(U(r)) is an open set in E and $p(\partial D \cap U(r))$ is a hypersurface in p(U(r)).

PROPOSITION 1.6. Let (D,p) be a Riemann domain over a Banach space E and H a hypersurface in D which is singular for a holomorphic function f on $D \setminus H$. Then there exists a hypersurface \hat{H} in \hat{D} such that $\lambda^{-1}(\hat{H}) = H$ and

$$(D \setminus H)^{\wedge} = \hat{D} \setminus \hat{H},$$

where $\lambda: D \longrightarrow \hat{D}$ is the canonical map.

PROOF. Let $\hat{\lambda}: (D\backslash H)^{\wedge} \longrightarrow \hat{D}$ be the holomorphic map such that the following diagram is commutative

Construct (D, λ) , where $D = (D \setminus H)^{\wedge} \cup Z$ and Z denotes the set of boundary points of $(D \setminus H)^{\wedge}$ and as in [3], Z is a local hypersurface. Put

$$\lambda = \dot{\hat{\lambda}}, \quad H = Z.$$

As in [3], 'H is a hypersurface of 'D such that ' $H \cap D = H$ and ('D,'H) is maximal. By Proposition 1.3 it implies that 'D is a domain of holomorphy. Hence $D \cong \hat{D}$. Since $D \setminus = (D \setminus H)$ we obtain $(D \setminus H) = \hat{D} \setminus \hat{H}$, where $\hat{H} = \lambda(H)$. The proposition is proved.

Now based on Proposition 1.6 and ideas of Dloussky [3] we prove Theorem 1.1. We can assume that H is irreducible. Let H be the set of poins $h \in H$ such that for every holomorphic function f on $D \setminus H$ there exists an open neighbourhood V_f of h to which f can be extended holomorphically. Then $H \setminus H$ is a hypersurface in D which is singular for a holomorphic function on $D \setminus H \setminus H$. Indeed, we have $(D \setminus (H \setminus H))^{\wedge}$ is the domain of existence of a holomorphic function f. Let f is holomorphic on f in holomorphic on f is holomorphic on f is holomorphic on f in holomorphic on f is holomorphic on f in holomorphic on f in holomorphic on f is holomorphic on f in holomorphic on f in holomorphic on f is holomorphic on f in holomorphically to f in holomorphically f

$$(D \setminus (H \setminus 'H))^{\wedge} \cong \hat{D} \setminus \hat{H}.$$

By the definition of 'H it follows that

$$(D\setminus (H\setminus 'H))^{\wedge}\cong (D\setminus H)^{\wedge}.$$

The theorem is completely proved.

2. Hypersurfaces in (DFC)-spaces

Using Theorem 1.1 and [8] we shall prove the following

THEOREM 2.1. Let E be a separable (DFC)-space and H a hypersurface in E. Then H is of uniform type if one of the following two conditions holds

- (i) E has the approximation property and E has a fundamental system of continuous semi-norm $\{\rho\}$ such that E_{ρ} has the approximation property.
 - (ii) E is a (DFM)-space.

We need the following five lemmas.

LEMMA 2.2. Let S be a continuous linear map from a Banach space A onto a Banach space B. Let Z_0 be a locally closed submanifold of codimension 1 in an open subset D of B such that $Cl[S^{-1}(Z_0)]_{S^{-1}}(D)$ is an analytic set of codimension 1 in $S^{-1}(D)$. Then $Cl[Z_0]_D$ is an analytic set of finite dimension in D.

ಕರ್ಡಿ ಇತ್ತಿ ಎಕ್ಕಾರಿಸಿದರ

- PROOF. (i) First we show that $S(W) = Cl[Z_0]_D$, where $W = Cl[S^{-1}(Z_0)]_{S^{-1}}(D)$. Note that $Cl[S(W)]_D = Cl[Z_0]_D$. It suffices to check that S(W) is closed in D. Indeed, let $y_n \in S(W), y_n \longrightarrow y$. Since $S(W) \subseteq Cl[Z_0]_D$ we can assume that $y_n \in Z_0$ for $n \ge 1$. By hypothesis, S is open, there exists a sequence $x_n \in S^{-1}(Z_0) \subseteq W$ such that $S(x_n) = y_n$ for $n \ge 1$ and $x_n \longrightarrow x \in W$. Since S(x) = y, it follows that $x \in S^{-1}(D)$ and hence $y \in S(W)$.
- (ii) Given $y_0 \in Cl[Z_0]_D$. We may assume that $y_0 = 0$. Since W is a hypersurface in $S^{-1}(D)$ we can find $e \in A, e \neq 0$ such that for a neighbourhood U of $0 \in A$ the map $\sigma_1 : W \cap U \longrightarrow V := \sigma_1(U)$ is branched cover, where $\sigma_1 : A \longrightarrow A/\mathbb{C}e$ is the canonical projection. Without loss of generality we may assume that B is a quotient space of A and hence $B/\mathbb{C}\tilde{e}$ is also a quotient space of B, where $\tilde{e} = S(e)$. Moreover we can assume that U is the open unit ball in A. Then V, S(U) and $\tilde{S}(V)$ are open unit balles in $A/\mathbb{C}e, B$ and $B/\mathbb{C}\tilde{e}$

respectively, where $\tilde{S}:A/\mathbb{C}e\longrightarrow B/\mathbb{C}\tilde{e}$ is the canonical map induced by S. Consider the commutative diagram

$$egin{array}{ccc} U\cap V & \stackrel{S}{\longrightarrow} & S(U\cap W) \\ \sigma_1 & & & \sigma_2 & & \\ V & \stackrel{\tilde{S}}{\longrightarrow} & \tilde{S}(V) \end{array}$$

with $\sigma_2: B \longrightarrow B/C\tilde{e}$ is the canonical projection.

Assume that $\{y_n\} \subset \tilde{S}(V)$ and $y_n \longrightarrow y \in \tilde{S}(V)$. Choose $\delta > 0$ such that $\|y_n\| < 1 - \delta$ for $n \ge 1$. Let $\{y_{n_k}\} \subset \{y_n\}$ such that

$$\sum_{k\geq 1} \|y_{n_{k+1}} - y_{n_k}\| < \delta/2,$$

and $\epsilon_k \downarrow 0$ such that

$$\sum_{k\geq 1} (1+\epsilon) \|y_{n_{k+1}} - y_{n_k}\| < \delta/2.$$

For each $k \ge 1$ take $z_k \in V$ such that $\tilde{S}(z_k) = y_{n_{k+1}} - y_{n_k}$ and $||z_k|| < (1+\epsilon_k)||y_{n_{k+1}} - y_{n_k}||$. Then

$$\sum_{k>1}\|z_k\|<\delta/2.$$

Hence for

we have $\tilde{S}(z) = y - y_{n_1}$.

Choose $z' \in V$ such that $\tilde{S}(z') = y_{n_1}$ and $||z'|| < (1 + \delta/2)||y_{n_1}||$. Then $\tilde{S}(z+z') = y$ and $||z+z'|| < ||z|| + ||z'|| < \delta/2 + 1 - \delta + \delta/2 = 1$. Thus the sequence $\{u_k\}$ with $u_k = z_1 + \cdots + z_k + z'$ is contained in V and $u_k \longrightarrow u$ for which $\tilde{S}(u) = y$ and $\tilde{S}(u_k) = y_{n_{k+1}}$ for $k \ge 1$. By the properity of σ_1 this implies that σ_2 is also proper. Since σ_1 is finite and $S: U \cap W \longrightarrow S(U \cap W)$ is surjective, we get that

$$\infty>\sup\{\operatorname{card}\,\sigma_1^{-1}(z):z\in V\}=\sup\{\operatorname{card}\,\sigma_2^{-1}(y):y\in \tilde{S}(V)\}.$$

Hence $\sigma_2: S(U\cap W) \longrightarrow \tilde{S}(V)$ is a branched covering map.

- (iii) As in (ii) for every sequence $\{y_N\} \subset S(U \cap W)$, converging to $y \in S(U)$, there exists a subsequence $\{y_{n_k}\}$ such that $y_{n_k} = S(u_k), u_k \in U \cap W$ for $k \geq 1$, and $u_k \longrightarrow u \in U \cap W$. Then $\sigma_2(y_{n_k}) \longrightarrow \tilde{S}\sigma_1(u) \in \tilde{S}(V)$. Hence, by the properity of σ_2 , we have $y \in S(U \cap W)$.
- (iv) From (ii) and (iii) it implies that $S(U \cap W)$ is an analytic set in S(U) of dimension 1. Now from the relation $U \cap S^{-1}(Z_0) \subseteq R(U \cap W)$, where $R(U \cap W)$ is the regular locus of $U \cap W$, we have

$$S(U) \cap Z_0 \subseteq S(R(U \cap W)).$$

This relation yields

$$S(U)\cap Cl(Z_0)_D=S(U\cap W).$$

到数据图10分配的**3**

The lemma is proved.

LEMMA 2.3. Every separable Banach space is the image of the space l^1 under a continuous linear map.

PROOF. Given B a separable Banach space. Take a continuous map S from a space $l^1(T)$ onto B, where T is some index set. By the open mapping theorem there exists $C \geq 0$ such that for every $y \in B$ there exists $x \in l^1(T)$ for which S(x) = y and $||x|| < C||y_n||$.

Let $\{y_n\}$ be a dense sequence in B. For each $n \geq 1$ choose $x_n \in l^1(T)$ with $S(x_n) = y_n$ and $||x_n|| < C||y_n||$. Put

$$T_0 = \bigcup_{n \geq 1} \{t \in T : x_{n,t} \neq 0\},$$

where $x_n = \{x_{n,t} : t \in T\}$ for $n \geq 1$. Then T_0 is countable and hence $l^1(T_0) \cong l^1$. Consider $S_0 = S|_{l^1(T_0)} : l^1(T_0) \longrightarrow B$. It remains to check that Im $S_0 = B$. Again by the open mapping theorem it suffices to show that $Cl\{S_0(U)\}$ is a neighbourhood of $0 \in B$, where $U = \{x \in l^1(T_0) : \|x\| < 1\}$. Given $y \in B$ with $\|y\| < 1/C$. For each $\delta > 0$ take y_n with $\|y_n - y\| < \delta$. Then for x_n we have $S(x_n) = y_n$, $\|x_n\| < 1$ and $\|S(x_n) - y\| < \delta$.

LEMMA 2.4. Every separable Frechet space is a subspace of a Frechet space with the approximation property.

PROOF. We write $E = \text{limproj } E_n$, where E is a given separable Frechet space and E_n are separable Banach spaces. For each $n \ge 1$ there exists a Banach space F_n with a Schauder basis containing E_n as a subspace. Then $F := \prod_{n \ge 1} F_n$ is a Frechet space having the approximation containing E as a subspace.

LEMMA 2.5. Let G be an open subset in a normed space E and σ a holomorphic function on G. Then σ can be extended to a holomorphic function $\hat{\sigma}$ on a neighbourhood \hat{G} of G in \hat{E} , the completion of E, such that $Z(\sigma)$ is dense in $Z(\hat{\sigma})$, where $Z(\sigma)$ and $Z(\hat{\sigma})$ are zero-sets of σ and $\hat{\sigma}$, respectively.

PROOF. Obviously σ can be extended to a holomorphic function $\hat{\sigma}$ on a neighbourhood \hat{G} of G in \hat{E} . It remains to show that $Z(\sigma)$ is dense in $Z(\hat{\sigma})$. Since the regular locus $R(Z(\hat{\sigma}))$ is dense in $Z(\hat{\sigma})$ [7], it suffices to show that $Z(\sigma)$ is dense in $R(Z(\hat{\sigma}))$. Given $z_0 \in R(Z(\hat{\sigma}))$ with $x' = \hat{\sigma}'(z_0) \neq 0$. Choose $e \in E$ with x'(e) = 1 and write $E = Ce \oplus Ker x'_0$, with $x'_0 = x'|_E$. Then $\hat{E} = Ce \oplus Ker x'$. Define a biholomorphism θ from a neighbourhood U of z_0 onto a neighbourhood $\Delta \times V$, where Δ is the open unit disc in C, as follow:

$$\theta(te, u) = (\hat{\sigma}(te + u), u) \text{ for } u \in V; te + u \in U.$$

We may assume that $U \cap R(Z(\hat{\sigma})) = U \cap Z(\hat{\sigma})$. We have

$$\theta(Z(\hat{\sigma}) \cap U) = 0 \times V$$
 and $\theta(Z(\sigma) \cap U) \subseteq 0 \times V_0$,

where $V_0 = V \cap \text{Ker } x_0'$. Let $v_0 \in V_0$ and $(t_0 e, u_0) \in Z(\hat{\sigma}) \cap U$ such that $(0, v_0) = \theta(t_0 e, u_0) = (\hat{\sigma}(t_0 e, u_0), u_0) = (0, u_0)$. This means that $(t_0 e, u_0) \in Z(\sigma) \cap U$. Hence

$$\theta(Z(\sigma)\cap U)=0\times V_0.$$

Since $0 \times V_0$ is dense in $0 \times V$, it follows that $Z(\sigma) \cap U$ is dense in $Z(\hat{\sigma}) \cap U$. The lemma is proved. LEMMA 2.6. Let H be a hypersurface in a normed space E. Then H can be extended to a hypersurface in a neighbourhood of E in \hat{E} .

PROOF. Cover E by open subset $\{U_i : i \in I\}$ such that on each U_i we have a holomorphic function h_i for which $H \cap U_i = Z(h_i)$. By Lemma 2.5 for each $i \in I$ there exist a neighbourhood V_i of U_i in \hat{E} and a holomorphic function \hat{h}_i on V_i such that $\hat{h}_i|_{U_i} = h_i$ and $Z(h_i)$ is dense in $Z(\hat{h}_i)$. Let $D = \bigcup \{V_i : i \in I\}$ and let $\{W_i\}$ be a locally finite open cover of D such that $Cl(W_i)_D \subseteq V_i$ for $i \in I$. Put

$$\tilde{H} = \bigcup \{ Z(\hat{h}_i|_{W_i}) : i \in I \}.$$

We check that \tilde{H} is a hypersurface in D. Given $z_0 \in D$. Choose a neighbourhood W of z_0 such that $W \cap W_i = \emptyset$ for $i \notin I(z_0)$, where $I(z_0)$ is a finite subset of I. Then

$$\begin{split} \tilde{H} \cap W &= \cup \{Z(\hat{h}_i)|_{W_i}) \cap W\} = \cup \{Z(\hat{h}_i|_{W_i}) \cap W_j \cap W : i, j \in I\} \\ &= \cup \{Z(\hat{h}_i|_{W_i}) \cap W \cap W_j : i, j \in I(z_0)\} \\ &= \cup \{Z(\hat{h}_i|_{W_i}) : i \in I(z_0)\} \cap (\cup \{W_j : j \in I(z_0)\}) \cap W. \end{split}$$

Hence it suffices to show that $U\{Z(\hat{h}_i|W_i): i \in I(z_0)\}$ is closed in $\cup\{W_i: i \in I(z_0)\}$. For simplicity we assume that $I(z_0) = (i_1, i_2)$. Let $\{z_n\} \subset Z(\hat{h}_{i_1}|W_{i_1}) \cup Z(\hat{h}_{i_2}|W_{i_2})$ with $z_n \longrightarrow z \in W_{i_1} \cup W_{i_2}$. By Lemma 3.5 without loss of generality we may assume that $\{z_n\} \subset Z(\hat{h}_{i_i}|W_{i_1})$. If $z \in W_{i_1}$, then $\hat{h}_{i_1}(z) = 0$, because \hat{h}_1 is holomorphic on $V_{i_1} \supseteq Cl(W_{i_1})_D$. Consider the case $z \in W_{i_2}$. Then with $n > N, z_n \in W_{i_1} \cap W_{i_2}$. Hence $\hat{h}_{i_2}(z) = 0$. The lemma is proved.

PROOF OF THEOREM 2.1. (i) Since E has the approximation, H is singular for a holomorphic function on $E \setminus H$ [5]. From the Lindelöfness of E and $E \setminus H$ [5] there exist two open covers $\{z_j + U_j\}$ and $\{x_j + V_j\}$ of E and $E \setminus H$ respectively such that

$$H \cap (z_j + U_j) = Z(h_i)$$
 for $j \ge 1$,

where h_j are bounded holomorphic functions on $z_j + U_j$, $f(x_j + V_j)$ are bounded and U_j, V_j are balanced convex neighbourhoods of $0 \in E$. Choose a sequence $\mu_j \to \infty$ such that

$$V = \bigcap_{j \ge 1} \mu_j(U_j \cap V_j)$$

is a neighbourhood of $0 \in E$. Then $\omega_V(z_j + U_j)$ and $\omega_V(x_j + V_j)$ are open in $E/\mathrm{Ker}\rho_V$, where we write $\omega_V = \omega_{\rho_V}$.

By Lemma 2.6 $\omega_V(H)$ can be extended to a hypersurface \tilde{H} in a neighbourhood D of $E/\mathrm{Ker} \ \rho_V$ in $E_V = E_{\rho_V}$. On the other hand, the function f can be considered as a holomorphic function on $(E/\mathrm{Ker}\rho_V)\setminus\omega_V(H)$. Given $z_0\in R(\tilde{H})$ with $x'=h'(z_0)\neq 0$, where h is a holomorphic function on a neighbourhood $U(z_0)$ of z_0 in E_V such that

$$U(z_0) \cap \tilde{H} = U(z_0) \cap Z(h) = U(z_0) \cap R(\tilde{H}).$$

Take $e \in E/\mathrm{Ker}\rho_V$ with x'(e) = 1 and write

$$E/\operatorname{Ker}\rho_V = \mathbb{C}e \oplus \operatorname{Ker} x_0'$$
, with $x_0' = x'|_{(E/\operatorname{Ker}\rho_V)}$.

Then

$$E_V = \mathbb{C}e \oplus \operatorname{Ker} x'$$
.

Define a biholomorphism θ_{z_0} from $U(z_0)$ onto a neighbourhood $\Delta \times W(z_0)$ of $0 \in E_V$, where Δ is the open disc in \mathbb{C} , by the formular

$$\theta_{z_0}(te,u) = (h(te+u),u) \text{ for } u \in W(z_0) \text{ and } te+u \in U(z_0),$$

Then as in the proof of Lemma 2.5, it follows that

$$\theta_{z_0}(Z(h) \cap U(z_0)) = 0 \times W(z_0)_0$$

where $W(z_0)_0 = W(z_0) \cap E/\operatorname{Ker} \rho_V$. Since $f\theta_{z_0}^{-1}$ is holomorphic on $\Delta^* \times W(z_0)_0$, where $\Delta^* = \Delta \setminus 0$, it can be extended to a holomorphic function g^{z_0} on $W_0^{z_0}$, where $W_0^{z_0}$ is a neighbourhood of $W(z_0)_0$ in Ker x'. This means also that $f|_{U(z_0)\cap(E/\operatorname{Ker}\rho_V\setminus Z(h))}$ can be extended to a holomorphic function f^{z_0} on a neighbourhood G^{z_0} of $U(z_0)\cap(E/\operatorname{Ker}\rho_V\setminus Z(h))$ in E_V . By the identity principle the family $\{f^{z_0}: z_0 \in R(\tilde{H})\}$ defines a holomorphic extension g of f to a neighbourhood G_0 of $E/\operatorname{Ker}\rho_V\setminus \tilde{H}$ in E_V . Put

$$G = \operatorname{Int} (G_0 \cup \tilde{H}).$$

Since

$$G \cap \theta_{z_0}^{-1}(\Delta e \times W_0^{z_0}) \subset G_0 \cap \tilde{H} \text{ for } z_0 \in R(\tilde{H}),$$

it follows that G is a neighbourhood of $E/\mathrm{Ker}\rho_V\setminus S(\tilde{H})$, where $S(\tilde{H})$ is the singular locus of \tilde{H} . By hypothesis, we may assume that E_V has the approximation property. Hence, by Theorem 1.1, there exists a hypersurface $\hat{\tilde{H}}$ in \hat{G} such that

 $(G \setminus \tilde{H})^{\wedge} \cong \hat{G} \setminus \hat{\tilde{H}}, \quad \text{for all } f \in \mathcal{F}$

Since codim $S(\tilde{H}) \geq 2$, we have $\hat{G} \supset E/\mathrm{Ker}\rho_V$. It is easy to see that \tilde{H} is singular for g. This yields that

$$\hat{ ilde{H}}\cap E/\mathrm{Ker}
ho_V= ilde{H}.$$

Consider the plurisubharmonic function φ on \hat{G} given by

$$arphi(z) = -\log d(z,\partial \hat{G}).$$

By [8] we can find a plurisubharmonic function ψ on E_{ρ} , with $\rho \geq \rho_{V}$, and ρ is a continuous semi-norm on E, such that

$$\psi\omega_{
ho}=\psi\omega_{V}$$
 . The constant of the constant $\psi\omega_{
ho}=\psi\omega_{V}$.

It remains to check that Im $\omega_{\rho\rho\nu} \subset \hat{G}$, where $\omega_{\rho\rho\nu} : E_{\rho} \longrightarrow E_{V}$ is the canonical map. In the converse case there would exist $z \in E_{\rho}$ with $\omega_{\rho\rho\nu}(z) \in \partial \hat{G}$. Choose a sequence $\{z_n\} \subset E/\text{Ker}\rho$ which is convergent to z. Then

$$\infty = \lim \varphi_{\omega_{\rho\rho_V}}(z_n) = \lim \psi(z_n) \le \psi(z) < \infty.$$

This is impossible. Hence Im $\omega_{\rho\rho_V} \subset \hat{G}$. Then $\hat{H} = \omega_{\rho\rho_V}^{-1}(\hat{\tilde{H}})$ is a required hypersurface and (i) is proved.

- (ii) Now assume that E is a (DFM)-space.
- (a) Let F be a Frechet space given by Lemma 2.4 for P = E', the dual space of E. Consider the restriction map

$$R:F_c'\longrightarrow P_c'=E.$$

Since F'_c is B-complete and E is a barrelled space, the open mapping theorem implies that R is open. As in (i) we can finds a continuous semi-norm ρ_1 on E and a hypersurface H_1 in a neighbourhood G_1 of $E/\text{Ker}\rho_1$ in E_{ρ_1} such that $H = \omega_{\rho_1}^{-1}(H_1)$.

(b) Let

$$\tilde{H} = R^{-1}(H).$$

Since F'_c has the approximation property, we can find, as in (i), a continuous semi-norm $\beta \geq \rho_1 R$ on F'_c , a neighbourhood \tilde{G}_1 of $F'_c/\text{Ker}\beta$, a hypersurface \tilde{H}_1 in \tilde{G}_1 and a holomorphic function \tilde{g}_1 on $\tilde{G}_1 \setminus \tilde{H}_1$ such that

$$\tilde{g}_1\omega_\beta=f,$$

where f is a holomorphic function on $F'_c \setminus \tilde{H}$ such that \tilde{H} is singular for f.

(c) Choose a continuous linear map S from l^1 onto $F'_{c\beta}$ and consider

$$M = S^{-1}(\tilde{H}_1), D = S^{-1}(\tilde{G}_1), g = \tilde{g}_1 S|_{(D \setminus M)}.$$

We check that M is singular for g. Indeed, assume that there exists $z_0 \in M$ such that g can be extended to a bounded holomorphic function g_1 on a neighbourhood $z_0 + U$ where U is a balanced convex neighbourhood of $0 \in l^1$. Consider the Taylor expansion of g_1 on $z_0 + U/2$ at z_0

$$g_1(z_0+z_1)=\sum_{k\geq 0}P_kg_1(z_0)(z),$$

where

$$P_k g_1(z_0)(z) = 1/2\pi i \int_{|t|=2} (g_1(z_0 + tz)/t^{k+1}) dt.$$

Let $\{z_n\} \subset D \setminus M$ with $z_n \to z_0$. Then

$$P_k g_1(z_n) \to P_k g_1(z_0)$$
 as $n \to \infty$ for $k \ge 1$,

uniformly on every compact set in l^1 . Since every compact set in $F'_{c\beta}$ is the image of a compact set in l^1 , it follows that

$$P_k g_1(y_n) \to T_k$$
 as $n \to \infty$ for $k \ge 1$,

uniformly on every compact set in $F'_{c\beta}$, where $y_n = S(z_n)$ for $n \geq 1$. We have

$$\sup\{|P_k g_1(z_n)(z)| : z \in U/2\} \le C/2^k \text{ for } k \ge 0,$$

where

$$C = \sup\{|g_1(z_0 + z)| : z \in U/2\}.$$

Hence the series

$$\sum_{k>0} T_k(y_0+y)$$

is convergent uniformly on $y_0 + V/2$, where V = S(U) is a neighbourhood of $0 \in F'_{c\beta}$, to a holomorphic extension of \hat{g}_1 to $y_0 + V/2$. This is impossible, because $y_0 \in \tilde{H}_1$ is singular for \tilde{g}_1 . By Theorem 1.1, M can be extended to a hypersurface \hat{M} in \hat{D} such that

$$(D \setminus M)^{\wedge} = \hat{D} \setminus \hat{M}.$$

(d) Let α be a continuous seminorm on E induced by β , and $\tilde{R}: F'_{c\beta} \longrightarrow E_{\alpha}$ be the map induced by R. Put $T = \tilde{R}S: l^1 \longrightarrow E_{\alpha}$. Note that T is open. Moreover

$$T^{-1}(H_1) \subset M$$
 and $T^{-1}(G_1) \subset D$.

Then as in (b) we have

$$T(\hat{D}) = \hat{G}_1.$$

Since $R(\tilde{H})$ is locally closed in G_1 , it is so in \hat{G}_1 . Using Lemma 2.2 to T, \hat{G}_1 , and $R(\tilde{H})$, we conclude that $\hat{H} = Cl[R(\tilde{H})]_{\hat{G}_1}$ is a hypersurface in \hat{G}_1 for which

$$H = \omega_{\alpha}^{-1}(\tilde{H}).$$

(e) As in (i) we can find a continuous seminorm $\gamma \geq \alpha$ on E such that Im $\omega_{\gamma\alpha} \subset \hat{G}_1$. This completes the proof of (ii) and Theorem 2.1.

Now we have the following corollary on extending hypersurface from a subspace of a (DFC)-space E to E.

COROLLARY 2.7. Let F be a subspace of a (DFC)-space E satisfying the condition (i) or (ii) of Theorem 2.1. Assume that the topology of E is defined by a system of Hibert-seminorms $\{\rho\}$ and H is a hypersurface in F. Then H can be extended to a hypersurface \hat{H} in E.

PROOF. By Theorem 2.1 there exists a semi-norm ρ on E and a hypersurface $\tilde{H} \subset E_{\rho}$ such that $\omega_{\rho}(H) = \tilde{H}$, where $\omega_{\rho} : E \longrightarrow E_{\rho}$ is the canonical map. By the hypothesis we can assume that E_{ρ} is a Hilbert space and, hence, F_{ρ} is a closed subspace of E_{ρ} . Consider the orthogonal projection $\pi_{\rho} : E_{\rho} \longrightarrow F_{\rho}$.

Then there exists a hypersurface $H' \subset E_{\rho}$ such that $\pi_{\rho}(H') = \tilde{H}$. Hence, $\hat{H} = \omega_{\rho}^{-1}(H')$ is a hypersurface in E and it is extending the hypersurface H. The corollary is proved.

REFERENCES

- [1] J. F. Colombeau, "Differential Caculus and Holomorphic," North-Holland Math. Stud., 64, 1982.
- [2] S. Dineen, R. Meise and D. Vogt, Polar subsets of locally convex spaces, Aspect of Math. and its Appl., Ed. J. Barroso, Elsevier Sci. Publ. BV. 1986, 295-319.
- [3] G. Dloussky, Enveloppes d'holomorphie et prolongement d'hypersurfaces, Seminaire Pierre Lelong (Analyse), Annees 1975-76, Lecture notes in Math, 578, Springer Verlag 1977.
- [4] M. Harita, Continuation of meromorphic functions in a locally convex space, Mem. Fac. Sci. Kyushu Univ. Ser. A 41 (1987), 115-132.
- [5] J. Mujica, Domains of holomorphy in (DFC)-spaces, "Functional Analysis, Holomorphy and Approximation Theory," Lecture Notes in Math. 834, Springer-Verlag, 1981, pp. 500-533.
- [6] J. Mujica, "Complex Analysis in Banach spaces," Mathematics Studies. Vol. 120, North-Holland, Amstesdam, 1986.
- [7] J. P. Ramis, "Sous Analytiques d'une Variete Banachique Complexe," Erg. der Math.
 53 Springer-Verlag.
- [8] Bui Dac Tac and Nguyen Thu Nga, The Oka-Weil Theorem in nuclear Frechet spaces and plurisubharmonic functions of uniform type, Acta Math. Vietnam. 16 (1991), 133-145.

DEPARTMENT OF MATHEMATICS
PEDAGOGICAL UNIVERSITY 1 HANOI, TU LIEM, HANOI VIET NAM