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HYPERSURFACES IN (DFC)-SPACES
LE MAU HAI

Abstract. It is shown that every hypersurface H in a (DFM)-Space E is of .
uniform type. This means that there exist a continuous semi-norm p on E and a
hypersurface H in E,, the Banach space associated to p, such that H = w; Y (H),
where w, : E — E, is the canonical map.

Introductlon

~In [2] Dineen, Meise and Vogt have proved that every pola,r set in a (DFN)
space is of uniform type. This means that there exist a continuous seminorm
p on E and a polar set 4, in E,, 1 the Banach space associated to p, such that
w,,(A) C Ay, wherew, : E — E, is the canomcal map. The aim of the present
paper is to prove the above result for hypersurfaces in (DFM) spa,ces '

To obtain the main result (Theorem 2.1) we study in Section 1 the xtension
of hypersurfaces in a Riemann domain over Banach spaces to its envelope of
holomorphy. In the finite dimensional case the problem was solved by Dloussky
in [3]. By extending the method of Dloussky to the mﬁmte d1mens1onal case
we prove that for every hypersurfa.ce Hina Rlema.nn domaan D over 2 Ba.na.ch
space with a Schauder basic there exists an analytlc set H in D the envelope -
of holomorphy of D, such that

(D\H)“"’D\H

Using?f'he fact that every pllui"iSuBha;rmonie;functioh ona sepafable (DFC) ‘spaCe
is of umform type [8], we show i m Sectlon 2 that’ every hypersurface in e1ther a
(DFC) -space, which has the approx1rnat10n property, orin a (DFM) spaee is of

uniform type.
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1. Extending hypers‘:l'n"faces o

We recall that a hypersurface in a Riemann domain D over a locally convex
space E is an a.nalytm set whlch lo cally is the zerOmset of a holomorphlc function.

In this sectlon we prove the followmg

‘THEOREM 1.1. Let H bea hypersurface in a Riemann domain D over a Banach
space,B W1th a Schauder bas:c Then there exists an a.naiyt:c set H in D W}nch
is elther empty or a hypersurface in. D such that

(D\H)AgD\H.

First, as in [3] we give the followmg
DEFINITION 1.2. We say that (D H ) where D is a Riemann-domain over a
locally: convex: space F and H is a hypersurface in D, is maximal if- for every
Riemann domain D' cont'éiiningD; as-an open subset such that D'\D C H"we
have D' =D prowded H'N'D = H, where H "isa hypersurface in' D'

PROPOSITION 1 3. I (D H ) 1s ma.xxmal a.nd D \ H is a domam of ho]omorphy,‘
then D isa doma.m of holomophy o

- For: the: proof of Proposition 1.3 we need the: followmg lemma.: - - -

LEMMA 1.4 Let p: X — Y bea Tocal homeomorphxsm between two connected
topologwal spaces a.nd H - Y be ¢ a, closed subset of Y such that H has an empty

interior a.nd Y\H is connected It P has a sectzon o on Y\H then p is mjectxve

PROOF Slnce X \ p 1(H ) is dense in X it sufﬁces to show tha.t p is m_]ectlve "
on X \ p~'(H). By hypothesis there exists a'section oy of pon a connected
neighbourhood V in Y such that VN H £ §. We need to prove that 0y = o on
V Take an a.rb1tra.ry point y € V. Since V \ P 1(I:I ) is connected there exists a
curve 7: [0 1] — X\p 1(I-I) such that 7(0) = o(y). a.nd A1) = o (y) For each.
te [0 1] we ha.ve the equality 'y(t) = ap(*y(t)) Hence 0'1 (y) fy(l) = ap(*y(l)) =
op(a1(y)) = o(y). It follows that oy (y) = ¢(y), which means 0‘1|V a|V The

lemma, is proved.

Now we return to the proof of Proposition 1.3.
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For each ¢ € [0,1] we put
M, ={(z1,22) € C*: |z;| < 1 and 2, € [0,#] or || = 1 and 2, € [t,1]}.

Let ¢ be an arbitrary holomorphié .ma,p from a neighbourhood U of M, to D
such that pe: U . pp(U) is a homeomorphism and pp(U) is contained in
a subspace B of E of dimension 2. By [4] it suffices to show that ¢ can be
extended holomorphica.lly to a neighbourhood of M;, where p: D — E is a
lécally homeomorphic map defining D as a Riemann domain over E. By a result
of Dloussky {3] we can find an analytic set H € U such that

U\ EN =T\ A,

Since p(U \ ¢~ (H)) € D\ H and, by hypothesis, ¢ can be extended to a
holomorphic map ¢ on U\ H with values in D \ H. Write E = B @ B',
Replacing U by a smaller neighbourhood of M we can assume that there exists
a neighbourhood V' of 0 € B such that p has a holomorphic section é : pe(U) x
V — D. Put

p=6(ppxid):UxV — D,

and assume that Z is the domain of existence of ¢ over I x V. Then ¢ has a

holomorph1c extension ¢ on Z with value in D and
((ﬁ\_ﬁ)u UyxVCz

We have the following commutative diagram

(O\NB)UU)xV —— 2

T

UxV

where 7 : Z — U7 x V defines Z as a Riemann domain over U x V. Since 7 is
injective (by Lemma 1.4), Z is an open subset in I x V. Now on (' x V)U D

we can define an equivalent relation as follows, Let z € i xVandy € D. We
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writemNyif@'n——y.Put’Dz(ﬁxV)LJD/Nand

pon D _
p —
the holomorphic extension of pp X id on OxV.

It follows that (D, p) is a Rlerna.nn domam over E and & can be extended
holomorphically to a map from U x V into 'D. Moreover H=(HxV)UH/~
is an analytic set in 'D with DN 'H = H and D \ D C'H. By the maximality
of D we have D = D and hence @ is extended holomorphically on UxV. It
1mp11es that Z = U x V. Thus, ¢ can be extended to a holomorphic map on a
neighbourhood U of M. The proposition is proved.

As in [3] we give the following.

DEFINITION 1.5. Let (D,p) be a Riemann domain over a Banach space E. A
boundary pomt of (D, p) is a basic of a filter r consists of connected open set
in D such that

(i} r has no limit point in D,

(i1) p(r) converges to a point z € E,

(iii) For every open connected neighbourhood U(z) of z, r contains one and
only one connected component of p~!(U(z)) and every element of » has such a
e . . _ / :

Let D D U 8D, where 8D denotes the set of boundary pomts of (D p).
¥ q: (Dy,p) — (Da,p2) is a morphism between R1emann doma,ms over
E, then it can be extended to a continuous map q D1 — Dg Now we
assume that r € 8D. We say that 3D is a local. hypersurface at r if there
exists a nelghbourhood U(r) of r in D such that p U(r) ey p(U(r)) is a
homeomorphism, p(U(r))_ is an open set in E and p(aDﬂU(r)) is a hypersurface

in p(U(r))-

PROPOSITION 1.6. Let (D,p) be a Riemann domain over a Banach space E
and H a hypersurfa,ce in D which is singular for a holomorphic functxon f on

D\ H. Then there exists a hypersurface H in D such that A"'(H) = H and

(D\HY*=D\&,
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where A : D — D is the canonical map.

PROOF. Let A: (D\H)* — D be the holomorphlc map such that the followmg

diagram is commutative

D\H 22, (D\H)

e

Construct ('D,'A), where 'D = (D \ H)* U Z and Z denotes the set of boundary
points of (D' \ H)" and as in [3], Z is a local hypersurface. Put

Y
A=A H=2Z

Asin [3], 'H is a hypersurface of 'D such that ' HND = H and ('D,'H) is maximal.
By Proposition 1.3 it implies that D is a domain of holomophy Hence D = D.
Since D\ '= (D \ H)" we obtain (D \ H)" = b \ H, where H ='A('H). The
proposition is proved. _

Now based on Proposition 1.6 and ideas of Dloussky [3] we prove Theorem
1.1. We can assume that H is irreducible. Let ‘H be the set of poins h € H
such ‘that for every holomorph1c function f on D \ H there exists an open
neighbourhood V¢ of h to which f can be extended holomorphmally ‘Then H\
'His a hypersurface in D which is singular for a holornorphlc function on D\{(H\
'H). Indeed, we have (D\ (H\ H))" is the domain of existence of a holomorphic
function f Let z € (H\ 'H) be an arbitrary point. Assume that there exists a
neighbourhood U, of = such that fis holoﬁlorphic"on U,. Then U, C (D\ (H\
'H ))’\ By the definition of 'H it follows that if g is holomorph1c on D\ H, then g
is holomorphic on (D\(H\ 'H)). Hence, g canl be extended holomorphmally to
(D\ (H \ 'H))". Therefore, g is holomorphic on U This is 1mp0551ble because
for every neighbourhood U,z € (H\ 'H), there a.lways exists a holomorphm
function g on D\ H such that g can not be extended holomorphwally to Us.
By Proposition 1.6 there exisﬁs a hypersurface H in f) such that

(D\(H\ H)"=D\H
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By the definition of 'H it follows that
 (D\E\E) = (D\E)
The theorem is completely proved.

2. Hypersurfaces in (DFC)-spaces
Using Theorem 1.1 and (8] we shall prove the following

THEOREM 2.1. Let E be a separable (DFC)-space and H a hypersurface in E.
Then H is of uniform type if one of the following two conditions holds

(i) E has the approximation property and E has-a fundamental system of
continuous sem;l—nonn[p}such that E, has the approximation property.

(ii) E is a (DFM)-space.
We need the following five lei'nma,s"

LEMMA 2.2. Let S be a cont.tnuous linear map , from a Banach space A onto
a Banach space B. Let Z, be a locally closed submamfold of codimension 1
in an’ open subset D of B such that Cl[S (Zo)]_g-—l(D) isan analytic set of
cod1mens:on I inS~ 1(D) Then Cl[Zolp is an ana.lytm set of ﬁmte dimension
in D 3 ; ' ' ' ‘

PROOF (1) Flrst weshow that S(W) Cl[Zg]D,WhereW C’l[ l(Zo)]s 1(D).
Note that ClSW)lp. = CI[ZQ] p. It suffices to check that S(W) is closed in
D. Indeed let yn € S(W) yn — Y. Since S(W) C CI[ZO]D we can assume
that Yn. € Z[) for n > 1. By hypothesls, S is. open, there ex1s£s a sequence
Tn E S~ 1(Zg) cw such tha,t S(zn) =yn forn 21 and Tn — T E w. Smce
S(z) =y, it follows that z € §7I(D) and hence y € S(W) \ ,
(11) G1ven Y. € C’Z[Zo] p. We may assume that yo = 0. Smce W is a
hypersurface in 57 1(D) we can ﬁnd e€ A e 7’: 0 such that- for a nelghbourhood
Uofl e A the map 01 : w ﬂ U — V = U](U ) is bra,nched cover, where
A — A/Ce is the ca.nonlca,l pro_}ectlon Wxthout loss of genera.hty we

may assutne that B is & quotlent space of A and hence B/Cé s also a quotlent

space of B, where € = S(e). Moreover we can assume that Uis the open unit
ball in A. Then V, S(U) and S(V) are open unit balles in A/Ce B and B/Cé
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' respectively, where § : A/Ce' — B/C& is the canonical map induced by S.

Consider the commutative diagram
S vnv —o swnw)
0’1‘l'_ = | 0’2‘1'
Vv —— SV)
with ¢q : B — B/ Cé 1s the canonical pfojection
Assume that {y,} C §(V) andy, — y € S(V) Choose § > 0 such that
lynl < 1 — 6 for n > 1. Let {yn, } C {yn} such’ that
Z ”ynk+1 ynk ” < 6/2

k>1

and ¢ | 0 such that

Z(l +. e)llynk+1 = Ynul < 6/2.

k21

For each &k > 1 take 2 € 1% such that S(zk) = ynk+1 yn, and |lzx]| <
(1+ &6)lgmss = Y ||- Then a o

Szl < 8/2:

k>1
Hence for o
=Yz,
7 k21
we have 5(2) = Y — ¥n, . |

Choose z' € V such that S(2') = yn, and 12’ < (1 + &/2Mlyn,||- Then

S(z +z)Y=yand ||z 42| < ||z[| + ||z'|| < §/2 + 1— 64 6/2 = 1. Thus the
sequence {uk} with up =z 4+ 2z + 2 s conta,med in V and upy — u
for whlch S(u) =y and S(uk) = Uneps for k> 1. By the properity of o1 this
1mphes that o3 is also proper Since o1 is finite and S : U nNwW — S(U Nw)

is surjectlve, we get that

oo > sup{card o71(z) : 2 € V} = sup{card 07 '(y) : ¥ € 5(V)}.
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Hence oz : S(U QW) — S(V) isia branched covering map.. - S .
(iii) As in (ii) for évery sequence {yn} C S(UNW), converging to.y € S (U ) -
there exists a subsequence {y,, k} such that ynk = S(up),ur €EUNW for k 2> 1,
and upy — u € UNW. Then ag(ynk) — S'al(u) € S(V). Hence, by the
properity of o2, we have y € S(U NW).
(iv) From (ii) and (iii) it implies that S(UNW) is an analytic set in S(U) of
dimension 1. Now from the relatmn Uns- 1(Zg) C R(U N W), where R(U N W)

is the regula,r locus of U ﬂ W We have -
S(U) n. Zu - S(R(U N W))

This relation yields

Lt . . @ -
s . Do B " §o

S(U) N Cl(Zo)p = ST NW).
The lemma is proved.

LEMMA 2.3. Every separebleﬁ‘Bian'efch' spacéf?is"thet’fmage of the space I! under

a contmuous linear map.

PROOF leen Ba separable Banach space Ta.ke a contmuous map S from a
space ['(T) onto B, where T is some index set. By the open mapping theoremk
there exists C' > 0 such that for every y€ B there exists € I'(T) for which
S(z) =y and |lzf| < Clyall-

Let {yn} be a dense sequence in B For eachn >1 choose z, € 11 (T w1thi_
S(2a) = Yn and [|z,]| < Cllyall. Put-

U{tET $nt3£0}g

. n>1

where Zn = {mn X t € T} for n > 1 Then To is countable a.nd hence Il (T{)) = 1.’1

Consxder S() = Slnry. l (Tn) — B It remalns to check that Im So.=.B.

Again by the open mappmg theorern it suﬁices to show that Cl{So(U )} is a
nelghbourhood of 0. € B, Where U {a: E n (Ta) [|:c]| < 1} leen y€B W1th
lvll < 1/C. For each 5> Qtake yn With ||y,,, y| < é. Then for z, we ha.ve
S(@n) = Y llzall < 1 2nd [S(an) =3l <5.
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LEMMA 2.4. Every separable Frechet space is a subspace of a Frechet space

with the approximation property.

Proor. We write E = limproj E,, where E is a given separable Frechet space
and E, are separable Banach spaces. For each n 2 1 there exists a Banach
space F,, with a Schauder basis containing F, as a subspace. Then F := [] F,
is a Frechet space having the approximation containing F as a subspzalce.n21
LEMMA 2..5. Let G be an open subset ina norme& space F and ¢ a holomorphic
function on G. Then o can be extended to a holon‘aozpbjc function & on a
neighbourhood G of G in E, the completion of E, such that Z(c) is dense in

Z(&), where Z(0) and Z(&) are zero-sets of o and &, respectively.

Proo¥. Obviously o can be extended to a holomorphic function 5 ona neigh-
bourhood G of G in E. It remains to show that Z(o) is dense in Z(5). Since
the regular locus R(Z.(&)) is dense in Z (c“r) [7j, it suffices to show that Z(o) is
dense in R(Z(5)). Given z, € R(Z(5)) with 2’ = 6'(20) £ 0. Choose e € E with
2'(e) = 1 and write E = Ce @ Ker z},, with 2}, = z'|g. Then E = Ce @ Ker z'.
Define a biholomorphism & from a neighbourhood U of 2y onto a neighbourhood

A XYV, Where A is the open unit disq in ‘C,_ as follow :-
O(te,u) = (6(te+u),u) foru € Vite +u E U.
We may :;.ssﬁme thé.t Un R(Z(&))_% U N Z(&).__We ha.ve: |
8(Z(6)U) = 0 x Vand 8(Z(c) N U) C 0.x Vp,

where Vy = VNKer zg .- Let v;) € Vp and (i§ e,ug) € Z(b") ﬂ‘U such that (O,Ug.) =

B(toe,uo) = (6(toe,up),up) = (0,ug). ‘This means that (toe,ug) € Z{o)NT.

Hence ' ' o . o
6(Z(c)NU)=0x V.

Since 0 x V; is dense in 0 x V, it follows that Z(¢) N U is dense in Z(5) N'U.

The lemma is proved.
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LEMMA 2.6. Let H be-a hypersurface in a normed space' E. Then H can be
extended to a hypersurface in a neighbourhood of E in E.

ProoF. Cover E by open subset {U; : i € I} su'c_h.that on each U; we have
a holomorphic function h; for which. H N.U; = Z(h;). By Lemma 2.5 for each
¢ € I.there exist a neighbourhood V; of U; in E and a holomorphic function h;
on V; such that A;|y, = ki and Z(h:) is dense in Z(h;). Let D = U{V;: i € I}
a:n.d let {W} be a loca,lly ﬁmte open cover of D such that C’I(W ) p € V; for
7 € I Put | '

| H= U{Z(h lw) i€ I}

We check that H isa hypersuxface in D G1ven z € D Choose a. ne1ghbourhood
W of z such that wn W, =@ for s §E I(Zo) where I(zo) is a finite subset of I
Then

HnW U{Z(h )Iw)ﬂW} U{Z(hlw‘)ﬂW nW zJEI}
| ,—U{Z(h Iw,)ﬂWﬂW 4, € I(z)}
== U{Z(Rilw;) 1 8 € I(20)} 0 (U{W; : JeI(zo)})ﬂW

Hence it sufﬁces to show that U{Z(h; |W) i€ I(Zg)} is closed in U{W
I(z0)}. For simplicity we assume that I(zp) = (i1,42). Let {22} C Z(hs, lw:, ) U
Z(ks, lw;, ) with z, — z € Wi, UW;,: By Lemma 3.5 without loss of generality
we may assume that {z,} C Z(h,.|w .Ifz € W,l, then h,l(z) = 0, because
Ry is holomorphic on V;, 2 Cl( i )D- Consider the case z € W "Then with
n> N,z, € Wi, NW;,. Hence hi,(z) = 0. The lemma is proved.

PROOF OF THEOREM 2.1. (i) Since E has the approximation, H i is smgular for
a holomorphlc functlon on E\H [5] From the Lmdelofness of E and E\ H [5]
there exist two open covers {zj + U; 5} and {z;+V;} of E and E \H respectlvely
such that

Hﬂ(zJ+UJ)-——Z(h) for j=>1,

where h; are bounded holomorphlc functions on z; —|—UJ, f (x j +V ;) are bounded :
and U}, V; are balanced convex neighbourhoods of 0 € E. Choose a sequence

pj — oo such that
V= [uU;nV;)

izl
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is a neighbourhood of ¢ € E. Then wy(z; + U;) and wy(z; + V;) are open in
E/Kerpy.,, where we write wy = wp, .~ - }

By Lemma 2.6 wy(H) can be extended to a hypersuiface H in a neighbour-
hood D of E/Ker py in Ey = E,,. On the other hand, the function f can be
considered as a holomorphic function on (E/Kerpy )\ wy (H). Given z, € R(H)
with @' = h'(z) # 0, where % is a holomorphic function on a neighbourhood
U(z) of zg in Ey such that

U(ea) N B = U(z0) 01 2(h) = Uz0) 1 B(A)
Take e € E/Kerpy with z'(e) = 1 and write
E/Kerpy = Ce @ Ker z, with 2f = z'|(5/Kerpy)-
Then L
By =Ce® Ker :c'

Define a biholomorphism 6, from U(zo) onto a neighbourhood A x W{(zg) of
0 € Ey, where A is the open disc in C, by the formular

Gzo(te u) = (h(te + u) u)foru € W(zo) and tet+u€ U(zo),
Then as in the proof of Lemma 2.5, it follows that -
0:(Z(R)NU(20)) =0 x W(z)o; -

where W(z0)o = W(20)NE/Ker py. Since f6;! is holomorphic on A*x W (2o,
where A* = A\ 0, it can be extended to a holomorphic function g*°-on W;°,
where W;° is a neighbourhood of W(zp)e in Ker-z’. This means also that
Flozon E/K;rp;,\ z(r)) can be extended to a holomorphic function f* on a
neighbourhood G* of U(z9)N(E/Kerpy\ Z(h)) in Ey . By the identity principle
the family {f* : 2o € R(H)} defines a holomorphic extension g of f to a
nelghbourhood Gy of E/Kerpy \ H in EV Put

| G_ Int (GDUH)

Since . , .
Gnéo, 1(Ae x W) € GoN H for z € R(H)
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it folloﬁrs that G is a neighbourhood of E/ Kerpy \'S(H), where S(H) is-the
singular locus of H. By hypothesis, we may assume that Ev has the. approx1—
mation property: Hence, by. Theorem 1.1, there exists a hypersurface H in G
such that. e T

(G\E =G\H.
Since codim S(H) > 2, we ha.ve G o E/Kerpv It is easy to see that H is
singular for g. This yields that - =

‘ ﬁ fTE/KerpV:'z'ﬁr} wiierd
‘Consider the plurisubharmonic furiction p on G gi%n by
-

By [8] we can ﬁnd a plunsubharmomc function % on E,, with p > py, and p is

a continuous semi-norm on E, such that
Yw ‘='1/J'wv' |
It remains to check that Im wppy C G where Wopy E,— Evis the canonical

map. In the converseé case there would exist z € E, with wpp,(z) € 8G. Choose

a sequence {zn} C E/Kerp which is convergent to z. Then -
= llm(,ow”V (z4)= hm't,b(zn) < P(z) < 0.

ThlS is impossible: Hence Im wpp, C G. Then H= wppv (H ) is -a’ requlred
hypersurface and (i) is proved o : ‘

*(ii) Now assume that E-is’a (DFM) space.

(a) Let F be a Frechet space given by Lemma, 2:4 for P = E' the dual space

of E. Consider the Testriction. map
R/F P ZE

Since F! is B-complete and E is a barrelled sp.a.ce,' the open mapping theorem
implies that R is open. As in (i) we can finds a continuous semi-norm p; on
E anda hypersurfa.ce Hiina ne1ghbourhood Gy of E /Kerp1 in E, such that



HYPERSURFACES IN (DFC)-SPACES 141
(b) Let
H=R"(H).
Since F! has the approximation property, we can find, as in (i}, a continuous

semi-norm 8 > pyRon F., a neighbourhqod-@1 of F/Kerp, a hypersurface H,
in G; and a holomorphic function §; on Gy \ H; such that

glwﬂ = f )
where f is a holomorphic function on F! \ H such that H is singular for f.
~ (¢) Choose a continuous linear map S from I' onto F 4 and consider
M=S"YH,), D= 5—1(@1), g = §15|(p\my-

We check that M isr singular for g. Indeed, assume that there exists zy €
M such that g can be extended to a bounded holomorphic function g; on a
neighboﬁrhood 29 + U where U is a balanced convex neighbourhood of 0 € I*.
Consider the Taylor expansion of ¢; on 2zg + U/2 at zg
gi{z0 + 1) = Z Prgi(z0)(2),
. k>0
where

Pega(#)(z) = 1/2ri f (oo + )4

1tl
Let {z,} C D\ M with 2z, — 2. Then
Pkgl(zn) —* Pkgl(zb) as n—oofork>1,

uniformly on every compact set in ', Since every compact set in F4 is the

image of a compact set in 1, it follows that
'Pkgl(yn) —Trasn—ocofork>1,
uniformly c;n every compact set in F g, where y, .= S(zn) for n > 1. uWé have
sup{|Pags (sa)(2)| : 2 € U/2) < CJ2* for k20,

where

C = sup{lgi(z0 ¥ 2)| : 2 € U/2}.
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Hence the series

Z’-Tk(.@'ﬂ_ +y)

E>0
is convérgent uniformly on v+ V/2 where V = S(U) is a neighbourhood of
0 € Fig, to' a holomorp}uc extensmn of §; to yo + V/2. This is impossible,
because yo € Hy is smgula,r for §;. By Theorem 1.¥, M can be extended to a
hypersurface M in D such that

(D\M)* = D\ L.

(d) Let o be a cbntinuoqs seminorm on E induced by 3, and R : F” ﬂ' — E
be the map induced by R. Put T' = RS : ! — E,. Note that T is open.
Moreover -

I(Hl) CM andT I(G]) CD

Then as in (b) we have
T(D)

Since R(I-I ) is locally closed in Gl, it is so in Gl Using Lemma, 22 to T, Gl,
and R(H), we conclude that H = CI[R(H )] &, is a hypersurface in G4 for which

H =w;1(_ﬁ).

(e) Asin (i) wecanfind a continuous seminorm 7 2 o on E such that Im Wya C
(4. This completes the proof of (ii) and Theorem 2.1.

Now we have the followmg corollary on extendmg hypersurface from a
subspa,ce of a (DFC)-space E to E.

COROLLARY 277, Let- F be a subspace of a (DFC)- -space E satmfymg the
condition (i) or (ii) of Theorem 2.1. Assume that the topology of E is defined
by a system of Hibert- -seminorms {p} and H is a hypersurface in F. Then H
can be extended to a hypersurface H in E.

PROOF By Theorem 2 1 there ex1sts a semi-norm p on E and a hypersurface ‘
H C E, such that wp(H ) = H, where w,, : . E — 'E, is.the canonical map.
By the hypothesis we can assume that E, is a Hilbert space and, hence, F} is

a closed subspace of E,. Consider the orthogonal pioj_ection ot B, — F,.
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Then there exists a hypersurface H' C E, such that 7,(H') = H. Hence,
H = w;1(H') is a hypersurface in E.and it is extending the hypersurface H.

The corollary is proved.
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