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ON THE LEAST DEGREE OF POLYNOMIALS BOUNDIN G
ABOVE THE DIFFERENCES BETWEEN MULTIPLICITIES
AND LENGTH OF GENERALIZED FRACTIONS

NGUYEN DUC MINH

1. Introduction

Throughout this note, let 4 be a commutative local Noetherian ring with
maxlmal ideal m and dim A = d. Denote by N the set of all positive integers.

The theory of modules of generahzed fractions introduced by Sharp and
Zakeri [S Z1] has a wide range of application in Commutative Algebra; parti-
cularly, in the study of top cohomology modules and the Monomial Conjecture
‘(see [O],[S-H],[S-Z1]-[S-Z4]). By [S-Z3, 2.1], the Monomial Conjecture holds
for a ‘S‘ystem of pa;,rametefs (abbr. so.p ) x = (£1,...,74) of A if and only
if 1/(z1,..,22,1) # 0 in U(A)d_fl_lA This fact suggests the study of the
length £(A(1/(=7*, ,:cd ,1))). An interesting problem is to find conditions
.on x for this length to be a polynomial in n,,...,ny (see [S-H, Question
1.2]).. In some concrete cases, the authors of [S-H] and [C-M] showed that
there is certain intriguing link between polynomial properties. of the functions
DAL/ (=7, ,:cdd, 1))) and E(A/(:r -y Zg?)A). It is worth noticing in all of

these cases that

LA/ (7, s 23)A) = ny..mge(@r, 0, 2a; A) + P(n, x)

E(A(l/(a:?‘,...,mg",i))) = nl...nd.e(:éi,... :cld;A) - Q(n X),

where P(n,x) and Q(n,x) are polynomials (in n ) of degree at most d'— 1.
- On the other hand, it is known that the function

Ta(n,x) = LA/(z]",..., 32 A) — ny..nge(ar, ..., zq; A)
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gives a lot of informations on the structure of A. Cuong showed in {C2] and
[C3] that the least degree- of all polynomials in n bounding above I a(n, x) is
independent of the chou:e of x. This numerical invariant of A is called the
‘ pal'ynomml type of A. Some apphcatmns of the polynomlal type were g1ven in
[C2] - [C4] and [C M] .

Inspired by the study of Sharp, Zakeri a.nd Cuong, we study in this paper

the function:
Ja(m,x) = ny.nge(zr, .., za; A) — LAL/ (2. 25, 1))

We show that there are some similar properties between the functions

Ii(n,x) and Ji(n,x). Our main result is the following theorem.

THEOREM 1.1. Let X = (21,..., -za)be a 5.0.p of A and n = (71, -y ma) € N
_Th,en. the least degree of all polynomials- in-n . bounding above Ja(n,x) is
independent of the choice of x.,

. Before proving. Theorem' 1.1, we recall some standard fa.cts on-modules of
genera,hzed fractions in Section 2. Section 3 is devoted to the proof of Theorem
1.1. Section 4 glves some consequences and application. Espe(:lally, we get
again a result of Hochster on the Monomial Conjecture.

~I-am grateful to my supervisor, Nguyen Tu Cuong, for drawing my attention
to the subject and for hearty guidance during this research. I also-would like

to thank Le Tuan Hoa for many useful discussions and helpful comments. -

2. Preliminaries

The reader is referred to [S- Zl] for details of the following brief summary of
the theory on generalized fractions of Sharp and Zaker. .

Let k be a positive integer. We denote by Dk(A) the set of all k x k lower
triangular matrices with entries in A. For H € Di(A), the determinant of H is
denoted by |H|; and we use T to denote the matrix-transpose. '

A trmngular subset of A* is a non-empty subset U in AF such that (1)
whenever .(ul,...,uk) € U, then (u}? ") € U for all cho1ces of pos1t1ve
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integers n1, ..., 7k, and (ii) whenever (u1,...,ux) and (vi,...,v¢) € U, then there
exist (w1,...,wx) € U and H, K € Dy(A) such that

Hlu,, ...,uk]T = [w, ...,wk]T = K[vl, ...,vk]T.

Given such a U and an A-module M, R. Y. Sharp and H. Zakeri have constructed
the module of generalized fractions U~*M of M with respect to U as follows.
Let o = ((u1,..,uk), ) and § = ((v1,...,92),4) € U x M. Then we write

a ~ f3 when there exist (wy,...,wz) € U and H K € Dk(A) such that
k-1

Hlur, oo ug]T = [01, ey wi]T = Koy, ..., vi]T and |H|z — |K|y € (3 Aw)M.
This relation is an equivalent relation on the set U x M. For ;z:t:el M and
(#1,..,ux) € U, we denote by the formal symbol z/(uy, ..., u;) the equivalence
class of ((u1,...,ux),z) and let U~*M denote the set of all these equivalence
classes. Then U~*M is an A-module under the following operations.

Let a € 4; z,4v @ M and (u,, ...,u;;),(vl';...,vk) € U. We define

27 (U, e ur) +y/(v1, o) = (|Hlz + |K|y)/.(w1, ..;,wk)

a2/ (1, ey u8)) = a2/ (21, .y u1)

for any choice of (wy,...,wx) € U and H, K € Di(A) such that
Hiug, oo us]” = [w1, ey wi] T = Klog, .y v2] 7

An important ekample_of tr_iangu_lai subsets is the following subset of A%+ :
U(A)a+1 = {(z1,--,%4,1) € A : there exists j with 0 < j < d such that
Z1,...,z; form a subset of a s.0.p of A and zj41 = =g = 1}.

We shall need the following basic propertles of genera,hzed fractions in the

module U(A)7{7 A

REMARK 2.1. (see [S-H], [S-Z1], [S-Z4]) Let a € A, and (zi,..., z4,1) €

U(A)g41. Then o ' o

i) af(z1,...,zq,1) = [H|a/(y1, ;...,yd,l) for any choice of H € Dy41(A) and of
(Y15, Ya2,1) € U(A)g41 such that H[zy,...,zq, 1T = [y1,...,5a,1]7.
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ii) Let ny,...,nq € N. Then a/(a: T, 1) = 0if and only if there exists

t eN such that a. :r:l “"’d € Zx"'""tA
i=1

iii) Let o be a permutation of {1,..., d}, then
o/ (1550024, 1) = $ign(0).a/(To(1y; s Togay, 1)} |

LEMMA 2 2 Let I be the a.nmhdator of an m—prnnary ideal of A, let A = A/I
Let A —+ A be the natural 1 ring homomorphism. Let £1,...,25 € m. Then

1)z, ...,:pd isaso.pof A <= Zy,...,I4is as.0.p of A; when this is the case,
| (w1 - ,a:d,A) = el 4 ),
H)Foraﬂ (_ui, o Ud, 1) € U(A)d.H, | _ 7 ) .
A (1,0, 1)) = A /(e ),
PROOF. It is stra.lghtforwa.rd from [S H 2 1] -

LEMMA 2.3. (see [S Z3, 2.4 a.nd 2. 7] ) Suppose that d.’ > 1. Let z1 €Em be a

parameter element of A. Put A = A/z,A and let ~ : A — A denote the natural

homomorphism. Then the map Yg41 U (E);dfi — U (A)d_fl' ' A defined by

the formula | _ | '
¢d+.1 (y/ (12, .. uda 1) y/(xlau% 14, 1),

for aﬂ.g/(ﬁz," Jig, 1) € U(A)7%A4, is & hothomorphism of A—modulés: More-

over, if 2 isa non-zerodw:sor on A, then ker 1/;,;_,_1 ~ HE YAz HEHA).

The followmg will be often used in the next sectlons

LEMMA 2.4. Let x = (21,...,24) be a s.0p of A and n = (r1, .- nd) €. Nd,

Assume that depth A > 0. Then there exists ay € (z3? e & d")A such tha,t-

Y1 = 1 + a; satisfies the foﬂowmg properties: | _

1) y1 is a non-zerodivisor on A and pseudo-Hy d- 1(A) coregu]ar (m the
termmo]ogy of [S-H] ). L S

ii) Foranym—(ml, ,mq) € N¢ suc:h that my <n,, z-_l . d,

(:cl 2y e g A = (U, 23, 3 A,
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iif) For every a € A and m as in (ii),
B s FRETIC A A
in U(A)d" 14

PROOF. Set U = AssA|J(AttHg '(4) — {m}). Then (z1,232,...,274)A ¢
J p since depth A > 0. It follows from [K, Theorem 124] tha.t there exists

peD

ay € (z3?,...,27*)A such that w=n+a & Ub Thus y1 is a non-

pel

zerodivisor on A and pseudo-H{y (A)-coregular which gives (i). Note that,

for each ¢t € N, there is by € (23?,...,23%)A such that y{ = z! + b,. This

proves (ii). It is clear that there exist elements ry,...,7; € A such that Yyt o=

m -I-rgzc;n* + o+ rgxyd. Let

0 1
Dyp(A)3 H=| :

Ty r3 ... 1.0

0.0 ... 01

Then H(zy?,..,z7% 2z, 1T = [z7%,...,274, 97, 1]T. Hence (iii) follows
from (i) of Remark 2.1. - '

3. Main result
Let x = (21, ...,24) be a s.0. P of A and n= (nl, . ng) € N4 In this section,

we study the function

B JA(n,.x)_=m...nd.e(xl,...,xd;A)'; (AT, iz, 1),
First of all, we show that J4(n,x) is non-negative. 7 -
];.;.EM-MA 3.1. Z(A(l/‘('xl,'..;,éd, i))) < e(m'l‘, za; A ) o

PrRooOF. We use induction on d. ;
In'the case d— 1, we have £(A(1/(z1,1))) = e(a:l,A) by [S-H, 3. 1] Assume

that d > 1 and our assertion is proved for all rings of dimension smaller than
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d. Lemmas 2.2 and 2.4 allow us to assume that depth A > -0 and 3:1 is a
non-zerodivisor on A. Let A = A/ziA-andlet 7 : A — A be the natural
map. By Lemma 1.3, there is an eplmorphlsm from A(l / (3:2, yEd, T)) onto
A(1/(z1,. ,%d,1)). Thus o

E(A(l/(a:l,a:g, zd,l))) < E(A(l/(wg, Zay 1)) € e(Za, ..., Ba; A)

by the mduct1on hypothesm Since z1 18 non-zerod1v1sor, e(ml, Za, .. md, A)
e(Zz, ... :Dd, A). Thus E(A(l/(ml, yzd, 1)) L ez, .zq; A) and the proof is

completed. - | : _
LEMMA 3.2. Ja(n,x) < ny. ndJA(l,x) whete 1 = (1,...;1) € N4:

PROOF By [S-ZS] E(A(l/(:r ' ,:cd ,1))) >n1 ndf(l/(:cl, :z:d,l)) Hence
Ja(n,x) £ ny.. ndJA(l,x)

This lemma g1ves an immediate consequence as follows.

COROLLARY 3.3. IfJ4(n,x) is a polynomial, then it is linear in each ni, ¢ = |
1,...,d. - -

" In the rest of this section, we shall consider J ax(t) = Ja((t, ...,t),k) as a

function of one variable ¢. :

LEMMA 3.4. Let r be a positive integer satisfying m” g (21, ..., za)A: Then;
for every s.opy = (%1, ..., Td— l,yd) and any t € N, we have

JAx(f) <(Td)d 1JAy(lt)

PROOF Note tha.t for all t € N, m™ C (z1,.. :cd)‘“A - (:1:], say)A. We
shall prove the followmg sta.tement which is shghtly stronger than Lemma 3.4.
Let to € N and k € N such that m¥t C (4, ...,z5)A for all t > to. Then
Jax(t) € k41T 4(2) for all £ > to. ; o

We do mductmn ond. Inthecased =1 by [S-H, 3. 1] JA x(t) JA,y(t) =0.
Thus the statement is true in this case. Assume that d > 1 and our assert1oﬁ
is proved for all rings of smaller dimension. Lemma 2.2 enables us to assume

that depth-A > 0. Since (z;, :cé; N l,mdyd)A ¢ U p, there exists a; €
L . : o ‘ : pe Ass A )
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(2%, ..., z4 1, ohyi)A such that 4y =23 +a1 € |J p. Thus, y; is a non-zero
PeAss A
divisor on A. By the same method given in the proof of Lemma 2.4, we obtain

JA,x(t) = JA,z(t) _and; J:A,y(t) '_— JA,z’(t);

where z = (y1,%2,...,%a—1,%¢) and z' .= (y1,%2,...,T4—1,Ya). Hence, without
loss of generality, we can assume that z; is a non-zerodivisor on A. Set A =
'A/mﬁA anduse ~ : A — A to deqote the natural ring homomorphism. .By
Lemma 2.3, there is an A-homomorphism ¥ : U(A);%4 — U(A)7{T" A such
that ©(a/(Zz, ..., 24, 1)) = a/(at, 22, :..; 24, 1) for all 4/ (Zs, ...;Z4, 1)) € U(A)7%A.
Note that ,
‘I’(A(l/("""zs md,l))) = A(l/($1’$2’ ) ;:2,1))'
and -
| W(A/(35, ., 75", D)) = A(1/(24325,. s ¥ds 1)).
It follows that ' o
- UA(1/(27, ..., 2T, T))) = £(A(1/(23, -85, 1)) Nker V)
(AL (34;03, -, 5, 1))
and S -
f(ﬁ(i/(i‘?, 5",1))) -—f(A(ll(%,--- 75" 1)) Nker®)
| +E(A(1/(x1,xz, U SEDS

Since e(_a:'l"l,...,m;‘";:A) = e(Z32,. ,md ,A), we have
Ta((ts s o) (21,020 20)) = T, x:(n) (1)
+£(A(1/(x2, ' 'md,l))nkerup)
and . L o |
'JA((t;n,.-.,n),(:c;;é'z;...',:e;_l,y§>)"=J;é,yf(n) @
HUAT/(F5, ., 75" 1)) N ker®),

where X' = (Zq,...,Z4) and 37; = (Z2,...,Zd—1,75)- Now let n be an arbitrary

positive integer with n > ¢. Then W*" C (7}, ...,#3)A4 and hence there exist



122 v s NGUYEN DUC'MINH . -

elements 73, ...;,74 € A suchtha.t ghr = F3Z8 + ...+ TaZj. We choose .. .

10 e 0020 5
& i N 0 1 00
CDyA)5 K= v SRS
Ty T3 7 .0 .
R 0 ﬁ 7 (_) 1

Theri K [3:2, ;T3 l]T [.1:2, JER g 17 It'-“fellows from -i"Re"mar_k-"Zfl “
. CAR/(33 "maal)) C A(1/(25,-5 %81, 72" 1))-
Hence £(A(1/(z%,... md, 1)) n ker\Il) < E(A(l/(a:z, fg,’;”,i)) N ker\IJ})“s.'EOﬁ":tHe'
other hand, by the induction hypothesxs, o o

AT T

 Jaz(M) SE T IRe() s s (3)
Cembining (1), (2) and (3), we get _ Sy
TA((, 7oy 15 (215825003 a1, 80)iS B2 Ta((8 1y 1), (1,22, -0 T2, )

i <kd IJA((t 7, n) (&';‘1,&}'2, HTd— layd)) |

for all n > t. In particular ( for n =1), J4 x(t) < kd 1.J4, (t) and the proof is

completed. - R T A _) ¥ IR N

PROPOSITION 3.5. The least degree of all polynomxafs boundmg above J4 x(t)

is independent of the cho1ce of X.

ProorF. Let y = (y1,-. ,yd) be an arb1tra.ry s 0.p ) of A Then we can connect
x'and y by a sequence of at'most (2d'+ 1) s.0.p.’s of A’ vwith the property that
two ne1ghbour $.0.p. ’s chﬁ'er ea.ch from one by just one element. By repeated
applications of Lemma 3.4, there exist two constants ky,ky € N such that
JA x(t) £ k. JA y(t) and JA y(t) < k2 JA x(t) for all ¢t > 1. The proof is thén
ﬁmshed . SR :

LEMMA 3.6.’ i'e't-‘: (ml,“ md) n=(ny,.,ng) € N? with m; < nj,i =
1) sy d.ThenJA(m,x) < JA_(H, X). PR

PROOF. By Remark 2L31,3(iii), we need -only i)'rev'e' the lemma. in the case where
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mi = n1, .., Ma—1 = ng—1 and my < ng. We do induction on d. For d = 1,
by [S-H, 3.1], Ja(m,x) = Ja(n,x) = 0. Assume that d > 1 and our assertion
is trie for all local ring of smaller dimension. Using Lemmas 2.2 and 2.4, we
can assume that depth A > 0 and thaﬁ x1 ié a non-zerédivisor on A. Let
A= A/z" A andlet ~.: A — A be the natural homomorphisin By Lemma
2.3, there is an A- homomorphism @ : U(4);%4 — U(4)7{"A. By the same

argument as in the proof .of Lemma 3.4_1, we get -
Ta(mx) = Tx(n',x) + LAQ/(E2, ., 55, ) N ker®)
and | ) |
Ja(m,x) = j;,(m’,x') + LA(/(Z52, . Tgi7t T, 1)) N ker@),.

where n' = (ng,...,n4) , m' = (na,...,na—1,Mm4) , and X' = (Z2,...,Z4). By

induction hypothesis, Jz(m',x') < Jz(n’,x’). Since
AL/ (557, ., 7525, 25, 1)) Ca‘l(l/(m ¥ ,1)),

we get Ja(m,x} < J4(n,x), as required.

Now we are able to prove Theorem 1.1.

PROOF OF THEOREM 1.1. Let ¢ € N. Then, by Proposition 3.5, the least
degree of all polynomials of one variable ¢ bounding above J4 x(t) is independent
of x. Denote by f(A) this invariant of A and by pf(A4,x) the least degree of
all polynomials bounding above J4(n,x) which is well-defined by Lemma 3. 2.
It is clear that f(A) < pf(A,x). But by Lemma 3.6, J4 (t) > JA(n x) for
allt > max {nl, , 74} which implies. that f A) > pf(4, X) Thus pf(A x) =
f(A) is 1ndependent of the choice of x. The theorem is proved

4. Consequences and application

In this section, the numerical invariant of A given in Theorem 1.1 will be
called the polynomial type of fractions of A and will be denoted by pf(A). We
stipulate that the degree of the zero-polynomial is equal to —oo. We give some

-properties of polynomial types of fractions.
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First, from Lemma. 2. 2 we get the followmg
LEMMA 4.1. Let I be the anmhxlator of an m-pnmary Jdeal of A Then P f (A)
pf(A/T). o o |
LEMMA: 4.2, Denote the m-adic completmn of A by. A. Then p f(A) P f(A)
PROOF. Let A — A be the ca.nomca,l map Let x = (:1:1, md) be a s.o.p
of A and n = (ny,...,ng) € N% Then % = (:vl, ,:cd) is a s.0.p of A and '
e(:cl,...,:cd , A) = e(ml, ,Eaq , A)

It is not difficult to check that

A/, 1) = A 05 1) A

(A(l/(ml ST /i 1))) = ‘(';1'@ A(i/(-’c"‘; TR ,1)))

= La(AQ/ (3, . 234, 1)).

Hence, Ja(m,x) = J;(n,X), and therefore pf(A) = pf(ﬁ).

When we want to factor out by an ideal generated by a parameter element,

we sha.ll use the following fact. .

PROPOSITION 4.3. Let z be a parameter element of A with- dlm(O ‘x4 < d=2
Then pf (A/ zA) < pf(A). o L "

'. PROOF Let A= A/:nlA andlet = : A ~ A be the natura.l map Choose a-
5.0. p X= (9:1, .7:,1) ofA such that 1=z and let n = (nl, nd) € N, Then

similar to the proof of Lemma. 3. 1 we obtam

LA/ (21", 7g ,1))) <3(A(1/(-'v e gt 1)))-

As dim(0: x)4 < d—'2‘,’e(:r:.1 , ,:cd ,A) =e(Z3?, ..., T3%, A). Thus, Jz(n',x")
< Ja(n,x), where n' = (ny,...,ng) and = x' = (24;..., 7). Hence; pf(4) <
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PROPOSITION 4.4. pf(A) <d-—2.

ProoF. We do induction on d. From [S-H, 3.1 and 3.2], if d = 1 then pf(4) =
—~o00 and if d = 2 then pf(A4) < 0. Assume that d > 2 and the assertion is
true for all rings of smaller dimension. By Lemma 4.1, we can assume that
depthA > 0. Using Lemma 2.4, we can find a s.0.p x = (1, ..., 24) such that z
is non-zerodivisor and pséudo-Hﬁ{l (A)—coregtila,r. Set A= A/z, A and we use
~— : A — A 'to denote the natural homomorphism. By Lemma 2.3, there is an

exact sequence of A-modules and A-homomorphisms
0 — Hi (4)/z1 HigH(4) — U7 A5 V()7 A
Let n = (nq,..., nd) € N¢. Then similar to the proo;f of Lemma 3.4, we get
Tty ) = T )
+(A(T/(z32, ..., 204, D)) n kem/;).
Sin.ce_:cl is pseudo—l"fﬁ;l(A)-coregula,r, |
Re(Hy'(4)) 2 > (H; 1(«4)/5013{'{1 H4) = E(ker%b)

(where we use RE(M) to denote the residual length (in the sense of [S H]) of an
Artlma.n-module M). Therefore,

Ja(n,x) < 'nlJA((l, M2, 02}y X) = 11 (J1((R2y ey 1), (T2, oons )
+(A(L/(z57, ..., %3, 1)) N kery)
< m(Ta((72, 1)y (22, -, 20)) + RECHE (4))).

Hence pf(A) < max{pf(4)+1,1}. Applymg the induction hypothesxs we get
pf(A) <d-2.

Recall tha.t the polynomial type p(A) of A, defined in [C2], is the least degree
of all polynomials in n bounding above I4(n,x). It was proved in [C-M] that if
p(A) <1, then pf(A) < p(A). In fact, we can prove a more general statement.
In the proof, we follow the terminology and notation of [S-H].
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THEOREM 4.5. pf(A) < p(4).

PROOF. We do induction on d. In the case d = 1, the proposition is proved by
[S-H, 3.1]. ‘Assume that d > 1 and our-assertion is true for all:rings of smaller
dimension. The case A being a Cohen-Macaulay ring was proved in [C-Mj.
Now, suppose that p(A) > 0. Let "A be the m-adic completion of A.. Then we
can assume that A is complete by the fact that p(4) = p(A) and pf(4) = pf(A):
In that case there exists a system of parameters z = {z;,...,z4} of M so that

the following conditions are satisfied:

0 {md €.a(M); - T
Li E a(M/(mz+1: 3$d)M)’ = 1:":d_ 1.

(see [02]) Followmg [C4] a s0p X = (3:1, :cd) of Ais call a p standard
system of parameter (ps-s.o.p for short) if x satisfies the conditions (*).

Let n = (n1,...,nq) € N¢..Since depth A > 0, by virtue of Lemma 2.4, we
can ﬁnd"ial € (z3? ,'.'..,l:cga)A such that y; = z1 + a; is a non-zerodisor on A
and pseudo-H @& 1 (A)-coregular. Note that y'= (y1, 72, .. ' ;é:d) is againa ps-s.0.p
of A. Let A= A/ yiAandlet "2 A — A be the natural map. In the proof of
Proposition 4.4 we have alrea.dy shown that pf(4A) < rma,x{ pf (A) +1,1}.

On the other hand, by [C4],"

IA(H,Y) an Tl

where €; = e(y1,Z2, 0 T3} (Tig2ys Td)M 1 Tig1/(Zig2,...;2a)M) and k =
p(A). It is clear that p(A) = p(A) + 1. Since A is not a Cohen-Macaulay
rmg, by 1nduct10n hypothes:s we get T o

pf(A) < maX{Pf(A) 1 1} < p(A) +1= (A)

The proof is completed.
We connclude this note by an application to theMonom.ial Conjecture.
We say that the Monomial Conjecture holds for x1,...zq if for every mteger
md.’ é (:CH-I: ,$;+1)A.
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Proposition 4.4 provides a quick proof of a result of Hochster which supports

the Monomial Conjecture.

COROLLARY 4.6. ([H, Proposition 2]) Let x = (:cl,...,xé) be a s.o.p of A.
Then there exists t € N such that, whenever m; 2 t,...,mq > t, the s.o.p

y = (e", ...,z ) of A satisfies the conclusion of the Monomial Conjecture.

PROOF. Because pf(A) < d — 2, there exists t € N such that tle(x; 4) >
Ja,x(t). Thus, for every my > £,...,mq 2 t,

QA= 24, 1) > 6(A(L/ (28, . 2, 1)) > 0.

Therefore, 1/(z1",...,254,1) # 0, Vmy > t,...,mgq 2> t. It follows from (ii) of
Remark 2.1 that, for all m; > ¢,...,my > ¢, the Monomial Coenjecture holds for

the s.o.py = (27,...,z7%).
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