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POLYHEDRAL ANNEXATION VS OUTER
APPROXIMATION FOR THE DECOMPOSITION OF
MONOTONIC QUASICONCAVE MINIMIZATION PROBLEMS

HOANG TUY AND BUI THE TAM

Abstract. We discuss polyhedral annexation and.outer approximation methods

for the decomposition of linearly constrained quasiconcave minimization problems

‘with a special structure of monotonicity. We show that polyhedral annexation
_ is generally superior, éxcept when the problem has some additional structure.

1. lnl:roductién .
Consider the problem:
(P) 7, t__ . ,r ,r _minimize'f(s.c) subject to:c ED L
where D is a polyhedron in R®, and f : € — R is a quasiconcave (not necessarily
c‘ontrinu.ous) funétion on a closed convex sét £ D ‘D, satisfying the following rank

k monotonicily condition:

(*) There exists a polyhedral cone K of dunensum n—k such that
zeqQ, o —a:eK=>a: €, f(;c')>f(:c) W

As shown in [18] this monotonic structure occurs in a wide class of problems
of relevant practlcal interest. From (1) it lmmedla,tely follows that the cone K
is contained in the recession cone of Q. Two special cases that have received

partlcular attention in the literature are the followmg

(Pll_) . . . minimize f(y) 4+ dz sub_]ect to (y,z) €D,
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where y€ R, z€ R, de R, (pt+q= n), f(y) is a concave function
and D is a polyhedron in R™ [10], [13], [15], [4]. Here k = p+ 1, & = R",
K={(v,w)€RPXR!:v; =... =0, =0, dw > 0}. -

P2 ‘minimize H'(,c’a:"—i— d') subject to z € D,
i=1
where D is a polyhedron contained in Q = {z: e + di>0,i=1,...,k}

1 k
yooo € are

(linear multiplicative programming (6], [7], {8] and the vectors ¢
linearly independent.- I-i'e_-re K= {u: clu 2 .'0, ..., cFu >0} :Q'ther examples of
problems that can be reduced to the form (P) with p;dpéfty (*) can be found
in {17], [18] and references therein. - 7 _
When k = 1, (P) is an extremely easy problexﬁ which reduces to solving one
" or two linear programs (see Remark 3 below). When k = 2, the most efficient
methods for solving (P) are parametric methods as developed in [7], [6] for linear
multiplicative programs, [5], [20] for special minimum concave cost network
flow problems and [26] r'for" the gé‘:ir'éralrcaSe.' However, parametric methods
become impracticable for k > 2, except in some rare cases when the constraint
polyhedron has a very special structure [22], {23], [24], [25]. - Therefore, outer
approximation and decomposition methods of Benders-Geoffrion’s type [13],[15],
[8] polyhedral annexation procedures [17], 18] and branch and bound methods
[2], [18], [4] have been developed to cope with the difficulty. It should be noted,
. however, that, except for [17] and [18], most of the mentioned papers only deal
with the special cases (P1)} and (P2) mentioned a.bdve.. To the best of our
knowledge, nowhere in the literature to date the general P_robl.e‘m (P) has been ‘
treated in sufficient detail and a study has been carried out about the_relafive
efficiency of diﬂ"erel-lt decomposition methods. - | | _
~ The aim of this paper is to discuss and to compare two decompoéitio.n.
approaches based on primal and dual outer approximation principles for the
general problem (P) under assumption (*), with k£ > 2 but relatively small. To
exploit the monotonic structure the general idea of décqmpo.«*Qi't'ioﬁ"is to i:'oﬁveijt"
(P) into a quasiconcave minimization problem in RF. Various decompos‘;—ition‘
methods differ by the reduction technique and also the way to handle the

reduced problem. Practical computational experience suggests that, for the
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above specified values of k, outer approximation procedures should be at least
competitive with branch and bound algorithms. Also these methods do not
reqili.re any continuity property for the objective function. There are, however,
two different decomposition methods of problem (P) via outer approximation:
the ordinary (primal) and the dual. The former is a variant of Benders-Geof-
frion’s procedure tailored to the specialrmonoto'nic structure; the latter is a
direct application of polyhedral annexation technique earlier developed in [16].
For the sake of simplicity, we will assume that D is a polytope (bounded
polyhedron) and . |
K={u: Cu>0},

where C is a k X n matrix, but with a little more éffort the methods can
be extended to the, general case whén D may be unbounded while K is an
arbitrary polyhedral cone. Although'no restriction is set on the value of %, our
approach should be practical mainly for values of & Wi‘fhin the above specified
range (typically for 2 < k < 10 on current microcomputers}). Computational
experience indicates that for these values of ¥ both primal and dual outer
approximation procedures are easy to implement and perform quite well even
for fairly large n. In any case, since the hardest part of the global search in
these methods operates in dxmensmn k rather than n, their advantage is obvious
if k< n.

After the introduction, we present the primal and dual outer'apprbximation'
methods in Seétions 2 and 3. In Section 4 we discuss the results of computational
experiments. With all their preliminary character and their imited value; they
clearly indicate that the dual method should outperform ‘the primal in most

problems where no additional structure intervenes.

2. Decomposition by primal outer approximation

© Since rank C' = k, the matrix C defines an affine mdpping (also denoted
by C for the sake of simplicity) from R™ onto R* and C(f2) can be idéﬁtiﬁed
with a convex set in R¥ = C(R"), containing C(K) = {t € R* : .t = Cz > 0}.
For every t E.C(Q) if Cz' =t and Cz =t for ',z € (1, then by virtue of
(1), féz') = f(z), therefore, F(t) = f(z) for Cz =t is unambiguously defined.
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From the quasiconcavity of f(z) on §2 it then follows that for any v € R the
level set {t € C() : F(t) 24} ={t:t=Cz, 2 € Q, flz) > 7} is convex.
Hence, the function F(t) is quasiconcave on C(2). '

~~Thus.problem (P) can be reformulated as:
(RP) - minimize F() subject to t € G,
where G= C(D) is a polytope of dimension  in R* and F(t) is a quasiconcave

function on C{Q) O G. .
"Note that by writing C = [Cg, Cn], where Cp is a k X k nonsingular matrix,

and accordingly, z = [:EB] we have
, TN .
lorsle, orle
:c—[ ? N]t-’l—[ ” N]xN=Zt+y,.

with Cy =zny — 2Ny =0, hence -
F(t)—f(Zt) )

. To solve (RP) (whlch is now.a problem in R* with k& sma.ll) a method which
suggests itself is by outer approximation of G = C(D) (see [12] , [2]). Following
this method, a key point is: given a point £ € C(R") C R*, determine whether
t € G'= C(D),andif? ¢ G then construct alinear inequality (cut) L(t) < 0 that
excludes f without excluding any point of G. This is an easy matter even thoﬁgh
- G is not given explicitly as the s’.olutidn.set of a system of linear-inequalities.

Of course, t ¢ C(D) if and only if the linear system Cx = has no solution
in D, so the existence of L(¢) is ensured by the separation theorem or any
of its equivalent forms (such as Farkas-Minkowski lemma). However, we are
not so much interested in the existence as in the effective construction of L(2).
Therefore, the best way to deal with the above mentioned point is via the
duality theorem of linear programming (which is another form of the separa,tlon
theorem) Spec1ﬁcally, assuming D = {z.: Az < b, £ > 0}, with A € Rmx" be

R™, cons1der the dual pair of linear programs

LP#) -  max{0:Cxz =f‘,A:r < bz >0}, -
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LP*(%) min{(f,v) + (b,w) : CTv + ATw >0, w > 0}.

PROPOSITION 1. 1) Ifv = 0,w = 0 is an optimal solution of LP*(T) thent € G.
2) Otherwise. there exists an extreme direction (o,w) of the cone CTv +
ATw > 0, w > 0, such that (,7) + (b, @) < 0. Then the affine function

M=t - @ G

L‘(f) >0, L(#)<0 Vt € G. | S | (4)

PROOF. 1) If v = 0,w = 0 is optimal for LP*(f) then by the duality theory of
linear programming, LP(%) is feasible, i.e. 1 € G.. _
2) If an extreme direction (¥, @) of the cone CTvo+4+ ATw > 0, w > 0 satisfies

(€0} + (b, @) <0, | B G),

then LP*(f) is unbounded, hence LP(%) is infeasible, ie. t ¢ G. From (5) we
have L() > 0, while for any ¢ € G, since LP(t) is feasible, LP*(¢) must have
optimal value zero, hence (¢,) + (b, @) >0, ie L{t) <0

On the basis of the above proposition, we can state the followmg

ALGORITHM 1 (Primal OA Decomposition Method). ‘ :

0. Select an initial polytope S; C C(R™) C RF with known vertex set V)
and such that C(D) C S; C C(Q). Set r=1.

1. Compute tr e argrmn{F(t) te Vil | S

2. Solve the linear porgam LP*(t’") sta.rtmg w1th the basic fea.sﬂ)le solutlon
v=0,w=0.

a) If v = 0,w = 0 is optimal to LP*(t’") then terminate: t’" € G hence t"
solves (RP) (the corresponding basic optlma,l solution z” of LP (t") satlsﬁes
Cz" =1t and solves (P)). ‘

b) Otherwise, an extreme direction (u ,w") of the constraint set of LP*(t')
is found such that (5) holds for o = v", % = w" (so by Lemma 1 the affine
functmn L(t) satisfies (4) for £ = t’") - _

3. Let L(t) be defined by (3), where § =v",% = w’. Form the polytope

Sesr = S0 {t: I{t) < 0}
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and compute the vertex set V41 of Sr4q (from knowledge of the vertex set V;
of S7). Set r <7 + 1 and go back to Step 1.

THEOREM 1 Algonthm 1 terminates after ﬁmtely many steps. -

PROOF. From its definition in Step 1 F@™) = mm{F(t) te S; } If Step 2&)
occurs then t" € G and since S, D G, it follows that FI(t") = min{F(t) : t € G}.
Cieerly, (vl,w1), (v?,w?),... are all distinct because for any r, L-(t") > 0 while
L.(t71%) < 0Vs > 1. Since each (v7,w") is an extreme direction of a fixed cone

(the constraint set of LP*(¢"), finiteness of the algorithm is ensured.

REMARK 1. In many problems’ (as in (Pl) (P2) mentioned in the mtroductwn)
we have : R :
-D CA{:r : Cz+d >0} C Qforsome deR" ' (6)
In this case, as initial polytope one can take Sy = {t € C{R") : a; < ¢; <
Bi, i=1,...,k}, where o; = min{cl'a: z € D}, Bi = max{c'z : z € D} and
P is the t-th row of C. Indeed, clea.rly C’(D) C Si. To see that 31 C C(Q),
note that if ¢ € Sy, then t; > a;, 1 =1,...,k, hencet = Cz for z sat1sfy1ng
¢z > «; Vi; this implies Cz > —d (because Dciz:cz+d;>0 Vz}) hence
zEQandiEC(Q) ' ' : .

. Also if (6) holds then (RP) is equlvalent to
minimize F(t) sub_]ect tote G,

where G = G + Rt = {t:t> C:c, € .D}. Indeed, from (1) F(#') > F(t) for
any #''> t = Cz with z € D because then # = Cz' with Cz' > Cz > —d, i.e.
z € 2 by (6). Sincet € G if and only if Cz <1, z € D, in LP(Z) one can relax
the constraint C:c ={té Cz <7, and hence mclude the 1nequa11ty v20in the
constraints of LP*(ﬂ o '

REMARK 2. There are severa.l ways to choose LP(?) in order tha.t its solut1on
helps to recogmze whether % ¢ G and to construct L(t) sat1sfy1ng (4) In
practice LP(f) should be chosen such that 1t can be solved efﬁmently For
1nsta.nce, consider problem (P1) when fly)= f(M z) Whlle D= {(y, z): M z=
y, Nz =b, z > 0} and for fixed y linear programs with consbraints (y,z) e D
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can be solved efficiently. Then to check whether t = (%,%) ¢ G, one should
solve LP(?) of the form o

min{dz : (7, z) € D},
(see e.g. [2], Chapter VIII): (7,%0) € G if and only if thls subproblem has an

optimal value not exceeding % .

REMARK 3. For k = 2, (RP) is a two-dimensional problem which can be
solved efficiently by parametric linear 'ﬁrégrﬁm:hing methods as mentioned
in the introduction. For k = 1, ie. f(z) = F(I(z)), where I(z) is an
affine functlon (RP) is a one-dimensional problem (find the minimum of the
univariate quasiconcave function F(t) over the line segment G = C{D)) and
hence can be solved by just comparing F(t) at the two endpoints of the line
segment ( (these endpoints are found by : mlmmlzlng and maximizing I(z) over
D). K in addition F(t) is a monotonic increasing function then (RP) has a single
(local and global) minimum which is achieved simply at any minimizer of {(z)
over D. Thus, such problems are extremely easy. Of course it does not make
sense to use these problems for testing general purpose concave minimization

algorithms, as has been done unfortunately in [3] (see also [2], pages 252-253).

3. Decomposition by dual outer approximation

The above decomposﬂ',lon method is an outer apprommat:on performed on
(RP), the reduced primal problem Although it looks simple, it requlres the
availability of a simple polytope S; such that C DHcs cc (Q), a condition
which may fail to hold for some important problems. Furthermore, as we will see
in the discussion (Section 4), its implementation poses in certain circumstances
some numerical problems, .

An alternative decomposition method free from these hmlta.tlons is by poly-
hedral annexation as developed in [16], [17].. This method can also be interpreted
as an inner approximation or dual outer approximation procedure {2], [11]

Without loss of generality we can assume that the origin 0 € R” is a vertex

of D. For any v € R define X, = {a: € Q: f(z) = v}. By quasiconcavity of
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f(z), X.'is a convex set. Clearly;
70=min{f(a:):_:c_eD};}_DCX.{o::}X_'?OC‘D*, R @

where E* = {y.:(y,z) < 1Yz € E} is the polar ofE By assumption K := {x :
Cz > 0} is contained in the recession cone of Q, hence K C ) since 0 € Q. In
view of (1), if Cz > 0 then f(x) > f(O) > Yo, hence T € Xy '_I‘hus, K C X‘Ym
a,nd if for some 7y E f (D) there is a polyhedron P C Xy such that P*C D* then
'surely ¥ =0, because then D C P C X Based on thls observatlon, the 1dea
of polyhedral a.nnexatlon is to construct a sequence of expa.ndmg polyhedrons

KCPLCPaCave 7 - o w8

together with a nonincreasing sequence y3 272 2 ... such that

P.cX,, r=12... )
in sﬁch a wa.y _t_ha.t -eve_x}tu-elly., at sorheitet‘atit;n ..s‘l: | | - | 7 :
PrcDY Ll : (10)
Then, ‘sﬂinceD C P,, c X,,, thei last value 7; will ;wftelci the optimai vahle..’ |
Specifically; let L be the linearity space of K,ie. L = {z:Cz =0}. Then

K*c Lt and from convex ana.lys1s [9] it is well known that K* —-cone{—c e g

—ck}, whlle Lt s is the hnear spa.ce spa.nned by c oo ,ck (¢! is the i-th row of

C’) Smce ra.nk C =k, L'L is a hnea.r spa,ce of dlmenszon k. Let T R’c — R"

. . o

be the linear mapping deﬁned by w(t) = Zt ' for every t = (tl, tk), 50
i=1

that Lt = (R¥), K* = n(RY). -
Now, since for any <y the set Xy contains K, we can always take, as starting
polyhedron in the sequence (8), P1 KC X.,, where 7, is the functior: valte

. at any available feasible solution. Lettmg Q1 = P1 th1s 1mp11es Q1 = K * =
W(Rk ) If Q1 C D* or equwa,lently, if ' : ' -

1

ma,x{(y,) a;ED}<1 Vyte - | R (11)
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then P = Q1 C D* and we are done((10) holds, so v, is the optimal value).
Otherwise, there is y! € @1\ D* and we can try $o find a cut to exclude y' and
‘determine a polyhedron Q; C @y sat1sfy1ng (9), i.e. such that Py := Q% C X,
for some v; < 7. If this can be done, then we can repeat the procedure with
Py in place of P1 I - - o -

A key pomt ia this scheme is: g1ven at 1tera.t10n r a polyhedron Q,, determine
whether Q,. C D*, and if there is YT EQ, \ D* then construct a cut to exclude
this point and determine a polyhedron. Q41 satisfying (9). .

Let @, C R*bea polyhedron such that Q,. = 7(Q» ) For every. teQ, we
have w(f) = E t;ct '€ Q- Deﬁne then

u(t) = sup{Zucf,w) rzeD}. (12)
and let z(¢) be a basic optimal solution of the linear program in-(12). Denote
the-vertex set and the extreme direction set of Q; by ZV,‘.?;‘U,. respectively.
ProPoOSITION 2. 1) If | | o |

pE)S1VEeV,, u@)<0Vtel, (13)
then Q, C D*, hence D C P,. |
D Hu(t") > 1 for somet” € V; or u(i") > 0 for some " € Up-and 27 i= 2(t7)

then =" € D\ P; and for any 6, 2> 1 and Y41 € f(D) such that yr41 <
min{+r, f(9,.:r )}, the polyhedron N

Qr—.—l —Qrﬂ{t Et c :v <1/9 } o | B (14)
satisfies |
Pf+1 = [W(Pr+1)] = conV(P U {gr‘rr}) - X‘m—x ., (15)

ProoOF. For every y € Q, we have y = w(t) for some te Q,— But every t € Qr

is of the form

'_ t—ZAv+ZAu A 202,20, A, =1

D weV, uelU, ) P wEVL
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Condition (13) then implies 'tha.t'- . |

7r(t), Z Av 7r(v), z )\ 1r(u) ) <1 V&: = D

vGVr _ " u€lU,

Hence (y, m) <1Vze D ie. Q,. - D , OT equwalently, Dc X To prove the
second pa.rt of the proposition, observe: that the relation (", ) = p(t") > 1
(for t" € Vi) or {t7,2") = ,u(t") >0 (fort" e Uy ) lmphes that. z” §é (@] =
P.. Since Q.41 = -n{t: Zt ¢t 0.z7) < 1} it follows: from well known

i=1

propertles of polars [9] that Q*,, = conv (Qr U {6, m”}) hence (15) because'
Q‘l"+1 = Lr41, Qr = P a.nd P C X"{r Whlle f(ﬂ T ) > 'Yr+1 \

We can thus formulate:

ALGORITHM 2 ( Dual OA Decompos1t10n Method)

0. Make sure that the origin 0 is a vertex of D. Set F! = best feasible solution
available, 71 = f(z* )an =Rk, 1 = V1 ={0}, h=U; = {—e)-ons ,—e*}
where ¢ is the i-th unit vector of R¥). Set r = 1.

1. For every t € (VU U;) \ {0} solve the linear progfam

ma,x{Zt,-(c",:n) :zx€ D}
i=1 . ‘
to obtain p(t). While solving this program, update z" and v, Whenever posmble
2. Check condition (13). . o o
a) I (13) holds then terminate: " is an optunal solutlon e
b) If x(t7) > 1 for some t" € V;. or u(t") > 0 for some t" € U, then let z” be
a basic optimal solution of the linear program defining u(t"). Compute

6, = sup{0: f(6z") = 7} - (16)

a.ﬁd define ‘ |

; o L koo _
Q1 = Qrn{t: Y t(d,2") < 1/6,}.

‘=1 '

3. Compute the vertex set Viqa and i_:he extreme d_ir_eci;iori; set Upqq of Qr_,.],
and let V{,, = V.u\V,, Ul = U,41 \ Uy Set r «— r+1 and go back to Step
1. '
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THEOREM 2. Algorithm 2 terminates after Anitely many steps.

PROOF. From Proposition 2, Pry1 = conv (P U {6,2"}), while g™+ ¢ Pry1,
hence z"t1! is distinct from all z!,...,z". Since every z7 is a vertex of D, the

number of iterations is thus bounded by the number of vertices of D.

'REMARK 4. If f(z) is quadratic then the computation of 6, in (16) merely
reduces to solving a quadratic equation of one variable.
If f(z) has the form

f(z) =max{dy: Mz +Ny<g¢,y2 0}.

( as it occurs in the (M P) reformulation of bilevel linear programs or max-min

problems), then the computation of 8, reduces to solving a linear program
max{f : dy > 0,M(6z")+ Ny < q,y 20,8 20}
¥ )

(see [25].).
'REMARK 5. To have an initial.polyhedron more tightly approximating X., and
to avoid computing the extreme direction set U, of each current polyhedron Q-
we can proceed as follows. -

Assume that 7, = f(Z!) < f(0), hence 0 € mtX.,,1 Let ¢® = — Ef=1 ', and
. for each i = 0,1,... , k compute the point & = 6;c’ such that 9; >0, f(&) =

(agree to take 6; equal to an arbitrarily large posmve number 8 if f(6c') >
71~V9 > 0)

PROPOSITION 3. Let L be the lineality space of K. If
Pl =S+L, S = [60 61$ ak]r

then
PI_S*nLJ* {yeLt: (@& y)<1,i=0,1,...,k}

satisfles ( 9)_a.nd the polyhedron@l such that w(@l) = Py is a k-simplex in RF

determined by the system of inequa.h'ties

Et(c c?) 5-91— j=0,1...,k.
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The vertex set of this simplex can be computed by solving, for each ¢ =

0,1,...,k the system

Dt el) = ;,;e{m LB (g}

C =1

A proof of this proposition can be found in [17].

4. Discussion and computational experience . 7
For simplicity of exposition we have assumed that rank C = k, i.e. the

rows ¢!, ... ,c¥ of C are linearly mdependent This condition is satisfied in

most cases of practical interest. However, if rank C =.h < k, and c,... ,c"
are linearly}independent then the function f(x) is monotonic with respect to

= {u: ( ) = 0, = 1,...h} (which is actually the constancy space of
f(?c)) so with minor changes the above method can be applied, with h, H
replacing k, K. Alterna.tWely, one can work in R* by considering the mappmg
te RF o 7(t) = Z,_ tic c wh1ch maps R" onto a h- d1mens1ona.l subspace of
" The two above algorithms have been eoded'in C"lan:g;ﬁe,ge and rlln"on'}e
PC AT 80486 DX, with numeric processor. As test, problems we used lmear

mut1pl1ca.t1ve programmmg problems of the form (P2)

mln{H(c c4d): Az <b, 5> 0}, S an
i1 AR
where the vectors ¢! and coefficients a;; of the-matrix A € R™*" were-_randomlﬁ
generated in the segment {-2;2], the vectors b € R™ and d € R* were chosen so
as to ensure that § # D= {z e R : Az <bz 20} Clz:c'z4d; >0,i =
,k}. Since the matrix C in (17) may be arbitrary, testing on problems (17) -
does pi'ovide information on how the algorithm works for general matrix C.

To compare the two a.lgonthms we solved 10 problems (17) thh n =
10,m = 10,k = 3 and 10 other problems w1th n = 15m = = 10,k = '3 by
each algorxthm The results reported in Table 1 clea.rly speak in favour of the
dual OA algorithm.
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The superiority of Algorithm 2 can be explained in part by the following
observations: o ‘ _

1) The_i)rimal OA method construi:_t}s a sequence approximating the optimal
solution-frbm outside the set C(D) C RF. As already mentioned, this requires
the availability of a.simple polytope $; contained in C(Q) and containing C'(D).
Therefore, it cannot be applied if the function f(a:) is not defined on certain
points outside D. Furthefmore, at every. 1tera.t10n th1s method involves the
computation of the values of the function F(t) at the points ¢t € V;,, which in
turn requires the computa,tlon of the matrix Z in (2) unless the latter is readily
available as in (P1) and (P2). By contrast, in the polyhedral annexation method
the optimal solution is approximated: by a sequence of feasible solutions z(%),
so there is no need to know the explicit value of F(#) at any ¢ and this method
works even if the function f(z) is only defined on' D. -

' 2) The linear program’ LP*(¢") in Step 2 of Algorithm 1 is often highly
degenerated, and is not very easy to solve (cycling is more likely to occur than
usually). It has n constraints and for large n its solution usuélly_ requires a
large number of iterations (of the order of 2n iterations). The linear program
in Step 1 of Algorithm 2 has the same constraint set as the foi‘_igin,al_' problem (m
constr;.gnts with usually m < n) and does n_ot‘present any pamticula,r.unpleasa,nt
feature not inherent to D itself.. -

3) From computational experlments it seems that the prunal OA method
tends to generate more cuts than the dual OA thus 1mp1y1ng a faster growth
of the vertex set of the current polytope.

Note, however, that for certain problems (such as (Pl) see Remark 2) with'a
constramt set D and the matrix C having a spec1a1 structure the linear program
LP*(t'") can be chosen so that it can be solved efficiently. For these problems

the primal method may be quite competitive with the dual.
| To see how Algorlthm 2 works for different values of m, n, k we also tested
it on a number of problems (P2) with k from 3 to 5, m from 10 to 30 and n
from 50~to 100. The results, reported in Table 2, indicate that this algonthm

is quite pra.ctmal for the considered values of k, evenif m,n are fairly large.
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Table 1
Methods |Characteristics (average values) p =10 h=15
Primal |Number of iterations _ 89113 |

- 0A Number of linear programs 61.3 {90.7

- .|Maximal number of stored vertices| . 27.236.8

. | Time (seconds) 3.76 |7.77

" Dual |Number of iterations 5.8 5.1

"~ OA  |Number of linear programs 25.1| 33

- Maximal number of stored vertices| 13.3 | 20.7

| Time (seconds) 2.79 | 45

Table 2

Prob- Number of {Number of Max number Time
lem | m | n |k |iterations 'LP’s |stored vertices | (seconds)
110 | 50 |3 7 44 29 | 13
2|10 | 80 {3 7 29 17 12
3 |10 {100 |3 | 8 34 |. 19 11
4 (20 | 20 {3 5 22. 12- 12
5 (20 | 50 {3:| . - 23 12 21
6 [20 | 80 |3 6 25 15 20
7 |25 |100 |3 7 40 27 47
8 (30 | 20 (3 8 40 20 36
9 |30 | 30 [3 . 6 31 16 - 30
10 [30 | 50 |3 7 . 36 18 67
11 130 | 80 |3 -8 37 - 23 74
12 130 | 100 |3 10 46 25 109
13 110 | 30 |4 | 8 78 38 23
14 110 [100 |4 6 52 28 16
15 (20 | 80 |4 5 38 20 28
16 |20 |100 (4 11 107 ~ 55 111
17 |30 | 50 |4 8 . 68 38 106
18 |30 | 80 |4 8 70 39 137
19 |10 { 50 |5 11 324 233 123
20 |20 | 80 |5 -9 139 75 - 107
21 |30 { 50 |5 10 182 99 5292
22 |30 {100 |5 13 337 201 711
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